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This paper describes stable field configurations of two scalar fields 8( x. y. z, t) and <1>( x, y, z, t). The field 
configurations follow from a simple least action principle based on an energy density which is a function of 
8, <1>, and their first derivatives. The description is Lorentz-invariant. The structures are of a stringlike type 
and are characterized by several integers. It is shown, that the simplest closed strings, described by the 
integers N = I, M = I. p± 1, are stable. The structures P = 1 and P = -1 are related by mirror 
symmetry. Three constants enter in the basic action principle: a length I, a constant E with the dimension 
of energy time length. and a dimensionless parameter 'Y. All properties of these field configurations have 
discrete values, which is a direct consequence of the nonlinearity of the basic expression for the energy 
density. An attempt is made to identify these structures with elementary particles, the electron and the 
positron in the simplest case P = 1 and P = - I. To this aim. the total energy of the field structures is 
equated to the rest energy of the particles. The constants E, I, and 'Yare related to the fundamental 
physical constants h, m, e. The model proposed represents a classical field structure with quantized 
properties. 

I NTRODUCTI ON 

This paper deals with an attempt to find equations de­
scribing stable, singularity-free field configurations in 
three-dimensional space. The field configurations will 
turn out to be such that high but finite field values and 
high energy densities occur in a limited spacial region, 
say inside a sphere of radius R, and fall to zero at dis­
tances r» R from this region. The classical field intro­
duced here has a simple geometrical meaning and is 
governed by nonlinear equations derived from a least 
action principle. In general, the field is not identical 
with known physical fields, but an identification will be 
attempted in certain limiting cases. The procedure is 
first to introduce this field, to investigate stable solu­
tions, and then to identify its asymptotic parts with phy­
sical fields. The ultimate aim is to identify the struc­
ture described in this way with a stable elementary par­
ticle. In such a classical structural field theory, there 
is no room for the separate notions field and particle; 
the field is considered to be the fundamental entity, the 
particle being a localized distribution of the field. The 
motivation to search for such a theory was given long 
ago. 1-3 

The theory is based on the assumption of an energy 
density depending on two real scalar field variables 8 
and cp, and on their first derivatives with respect to the 
four-dimensional coordinates x, y, z, t. The fields 8 
and cp have the character of angular variables in an auxi­
liary Euclidean space of three dimensions Uj. These 
assumptions are a generalization of an earlier attempt3 

to obtain discrete particle properties in a theory dealing 
with a single field 8. The present paper first recalls the 
results of this simple case and then treats the generali­
zation to two scalar fields, and finally deals with the 
physical interpretation. 

SINGLE SCALAR FIELD 

When dealing with a single field 8, the least action 
principle is introduced as follows 

oW=O, 

W= J{K sin2 8 +A[(V'8)2 - c-2(28/2t)2]} dx dy dz dt. 
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This expression was found by exploiting a close con­
ceptual and formal analogy between moving domain walls 
in magnetic crystals and moving particles. 3,4 The field 
8 (x, y, z, t) is visualized as an angle in an auxiliary 
plane ut. u2 and describes the direction of a unit vector 
n in this plane. The term K sin28 describes an aniso­
tropy in the plane ut. u2 and has been chosen in this form 
for simplicity. Higher order terms Ki sin2l 8 could be 
added. The constants A and K have the dimensions of 
energy per unit length and energy density respectively, 
and c is the velocity of light The Euler equation cor­
responding to (1) reads: 

08 = (K/2A) sin28. (2) 

We first specialize to one spacelike coordinate, assum­
ing 8= 8(x, t). This case has been studied independently 
and from a different point of view by Perring and 
Skyrme, 5 and there has been much interest in recent 
years in its leading to a special class of soliton solu­
tions. 6 

A solution of (2) is 

sin8=± (cosi1X/Xort, 

with 

x =X - vt, Xo = 1T (A/K) 11 2 (1 - v 2/ C2)1/2, 

(3) 

(4) 

where v is a constant velocity < c. This solution re­
presents a stable field configuration or an object with an 
internal structure moving with velocity v along the x 
axis. Inside a spacelike region of the order of magnitude 
Xo on the x axis the angle 8 changes from 8 = 0 to 8 = 1T. 

describing a clockwise or counterclockwise rotation of 
the vector n by an angle ± 1T. An invariant ± 1T of topo­
logical nature may therefore be ascribed to the struc­
ture (3). Most of the energy associated with (3) is con­
centrated in the region xo. In the rest system (lJ = 0) the 
structure is characterized by the discrete surface en­
ergy density 

Es=4(AK)1/2 (5) 

corresponding to a discrete mass density 

ms=Ejc2, 
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(6) 
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FIG. 1. Definition of the 
angular variables e and 1> as 
polar and azimuthal angles 
defining the direction of the 
unit vector n in the space 

u, 

and by the length 

lo =7T(A/K)I/2. 

u1' u2' u3· 

(7) 

The solution can be visualized as an infinite planar 
sheet oriented parallel to the y-z plane with mass den­
sity (6) and thickness (7). The occurrence of discrete 
quantities is a direct consequence of the nonlinearity of 
Eq. (2). 

The structure discussed thus far may be considered 
as a "one-dimensional stable particle. " This model 
particle exhibits a number of properties which are com­
mon to real particles: discrete mass, a length lo which 
can be considered as an elementary length, and an in­
variant ± 7T. The description is Lorentz-invariant and 
free from singularities. It may be asked whether Eq. 
(2) has similar solutions describing localized stable 
fields in three-dimensional space. However, it has been 
shown by Derrick7 that stable, time-independent solu­
tions of (2) do not exist in three dimensions. This holds 
moreover for a large class of similar nonlinear equa­
tions. 7 On the other hand, Anderson and Derrick2 showed 
that stable time-dependent (oscillating) solutions do ex­
ist for some related equations. This type of stability 
does not have the absolute nature of the topological sta­
bility of solution (3) but is metastable in the sense that 
it is destroyed by sufficiently large perturbations. 8 In 
the next section, we describe an approach that leads to 
topologically stable field configurations in three 
dimensions. 

SOLUTION FOR TWO SCALAR FIELDS e, cf> 

In this section we consider a unit vector n in an auxi­
liary Euclidian space of three dimensions u;. The direc­
tion of n is determined by the polar angle e and the azi­
muthal angle cf> (Fig. 1). e(x,y,z,t) and cf>(x,y,z,t) are 
considered as two real scalar fields in physical space. 
In this way the physical space is mapped onto the sphere 
of radius 1 centered in the origin of the auxiliary space. 

By analogy to (1) a least action principle is 
postulated: 

6W=0, w=J (Ksin2e+ADo+E~)d4x, 

with the abbreviation 

Do = [(ve)2 - c-2en + sin2e[(vcp)2 - C-2cp~] 

(8) 

(9) 

being used. The operator V stands for the gradient in 
the three spacelike coordinates. The constants K and A 
have the same meaning (and dimension) as before. The 
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term ADo describes an energy density associated with the 
rate of change of the direction of n. A quadratic term, 
ED~, has been added, representing an additional energy 
density for high rates of change of e and cpo The intro­
duction of this term is the simplest way to assure sta­
bility, as will become clear in the next section. E is a 
constant with the dimension of energy times length. The 
constants K, A, E define a characteristic length 

1 = (E/K)1/4 

and a dimensionless constant 

y=EK/A2. 

(10) 

(11) 

Other lengths can be constructed with the aid of land y, 
e. g., the length la, (7), which is equal to 7Ty-l/4l. If all 
lengths are expressed in units of l, Eq. (8) can be 
written in the dimensionless form 

6 W= 0, W= (E/c)J (sin2e + y-l/2D + n2)d4~, 

where 

D= l2Do. 

(12) 

The assumptions (8) and (9) characterize the basic 
properties of space; it will be shown that they lead to 
stable field configurations of the type described in the 
introduction. 

The Euler equations corresponding to the minimum 
principle (12) are two coupled, nonlinear partial differ­
ential equations of second order for the two scalar func­
tions e and cpo The equations read 

2(y-l/2 + 2D)LJe + 4(veVD- e.,DT) 

- {1 + (y-1/2 +2D)[(V<f»2 - cp~]}sin(2e) =0 

and 

[(y-l/2 + 2D)LJCP + 2(VCPVD-1>.,DT)] sine 

+ 2[y-l/2 + 2D)(V<f>ve - 1> TeT)l cose = 0, 

where T= tc/l. 

(13) 

(14) 

No attempt is made to solve these equations in general 
form, but we show that simple solutions having cylin­
drical symmetry can be found. For this purpose, we 
introduce reduced cylindrical coordinates p, cp, 1:, T 

with x = lp sincp, y = lp coscp, z = l!; and write 

D= (e~ + p-2e~ + e~ - e~) + sin2e(1)~ + p-21>~ + cP~ - 1>~). 

(15) 

We assume 1> =± iLcp where L is an integer, and e= e(p), 
i. e., that e is a function of the coordinate p only. Un­
even values of the "index" L are admissible because the 
basic action principle (8) remains unchanged if n is re­
placed by - n. Here, however, we assume L = 2 for 
simplicity, so that we have 1> = cpo Equation (14) is sat­
isfied by these special forms of the fields, and expres­
sion (15) reduces to 

(16) 

From Eq. (13) we then find the following second order 
equation: 

epp = (1 + 6yl/2e; + 2y1!2p-2 sin2er11,sin2e(h1 / 2 + (i- y1/2e~ 

+ yl/2p-2 sin2e)p-2) _ [1 + 2yl/2 (e~ _ p-2 sin2 e) ]p-l e p} ,(17) 

U. Enz 348 



                                                                                                                                    

a 
21t 

b 

6 6 
\ 

5 
\ 

5 \ 
\ 
\ 

I. \ 
\ 

1t 1t \ 

M=2 

2 

10 
ooL--------L5----~--1~0+ 

FIG. 2. Solution 8 = 8(p) for a stable field configuration with 
cylindrical symmetry. (a) M=l, (b) M=2. Dashed curve: 
numerical solution for 8(0) = 27T. Solid curve: solution with 
proper boundary condition 8(0) = O. The solutions depend on 
the dimensionless parameter y. In both examples 1'=1. 

This equation can be solved numerically. From Eq. 
(16) it can be seen that for divergence-free solutions 
the boundary condition for p = 0 is given by sinB = 0 or 
B=Mrr, where M is an integer. We impose the further 
boundary condition B = 0 for p - 00. Assuming y = 1, we 
find for M = 1 the solution shown in Fig. 2{a). The first 
derivative in the origin is Bp{O) = - O. 9205. This solution 
constitutes a stable field configuration which is infinitely 
extended in the z direction. The stability is of a topo­
logical type and is related to the fact that ¢ changes by 
2rr on any simple path one time encircling the z axis. 
The field 8(p) has the value rr on the entire z axis and 
falls rapidly to zero with increasing p. The dimension­
less energy density sin2 B + D + rJ2 decreases rapidly as 
well (Fig. 3) so that only the inside of a cylinder with 
a radius of, say, p = 5 contributes appreciably to the 
integral (12). For static solutions with cylindrical sym­
metry, this integral reduces to 

w= 2rr-J EK (Z1 - zo)(t1 - to)I1 (y) 

with 

(18) 

(19) 

where Z1 - Zo and t1 - to are the integration intervals on 
the z and t axis respectively. 11 (y) is a dimensionless 
integral, a measure of the energy per unit length of the 
structure on the z axis. It still contains y. In the pre­
sent example, with y= 1 we find 11 (y) = 12.9. For y« 1 
the integral approaches the asymptotic value 11 (y) = 3,93/ 
y. 

All these properties lead to the intuitive picture that 
the solution of (17) can be considered as a stable cylinder 
or string with lateral dimensions of a few units of l. The 
orientation of the string axis in space is arbitrary due 
to the symmetry properties of D. 

Apart from the simple solution M = 1 described above, 
one can find numerical solutions for M> 1. Definite in­
tegrals 1M are associated with the:;e solutions. As 8 is 
defined as a polar angle with 0 -'S 8 -'S rr, the proper bound­
ary condition is 8(0) = 0 for even M and 8(0) = rr for un­
even M. The solutions consist of M segments (or shells) 
o -'S 8(p) -'S rr with alternating positive and negative slope 
8 p' For segments with 8" > 0 we have ¢ = cp + rr and for 
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segments with B,,<O we have ¢==cp. Fig. 2{b) gives the 
solution for M = 2 with 8p (0) = 1. 302. 

At this point, an interesting property of the solutions 
8(p) of Eq. (17) may be mentioned. This equation can be 
written in the form 

(20) 

and can be interpreted as Poisson's equation based on 
a density function E (p). This density is uniquely defined 
by the solutions 8(p) of Eq. (17). As 8(p) decays expo­
nentially for large p, it follows directly from Dirichlet's 
theorem that 

(21) 

The numerical solution of (17) fulfills this condition. 

The string can also be treated with the aid of a Ritz 
approximation. The exact solution of Fig. 2 (a) (M = 1) is 
then replaced by 8 = rr - ap in the interval 0 -'S P -'S rra-1 and 
by 8 = 0 for p > rra-1• Equation (16) then reads 

(22) 

Using elementary integrals, we obtain for the integral 
11 (with y = 1) 

I 1R{a) == h 2 + ! Cin2rr + a2 (h2 + Cin41T) + ia-21T2 , (23) 

which acquires a minimum value of I 1R{ao) = 15.07 for 
ao = 0.744. This value of the integral is not unreasonable 
compared with the exact result of 12.9. It gives an indi­
cation of the accuracy of a similar apprOXimation which 
will be made below for a more complicated field 
structure. 

Concluding this section, we remark that the introduc­
tion of two angular variables leads to at least one stable 
field configuration of a string like type. This result is 
to be compared with the case (1) of a single scalar 8, 
which leads to a stable planar structure of infinite ex­
tension. If three angular variables representing Eulerian 
angles in a four-dimensional space Uj are introduced, 
which are governed by an action principle analogous 
to (8), a localized field structure with spherical sym­
metry is obtained. In this structure 8 = 1T is limited to 
a single point. Skyrme9 was the first to describe a solu­
tion equivalent to this pointlike structure. The string­
like structure has some similarities with a disclination 
in a nematic liquid crystal. 10 

Summarizing, we observe that the introduction of one, 
two, or three angular variables leads to stable struc­
tures of planar, stringlike, and pointlike shape respec-

5 

I. 

3 

2 

10 

FIG. 3. Density sin28 + n + n2 
as a function of the reduced 
cylindrical coordinate p. 
1'= 1. 
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e = const 
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«> = II' + kz 

= const 

FIG. 4. Twisted string with 
a surface () = const (cylinder) 
and a curve cf> = const (helix) 
indicated. 

x 

y 

tively. Our further considerations will be based on 
stringlike structures. 

STABILITY OF CLOSED, TWISTED STRINGS 

We first note that by putting 

</>=cp'fkz/l'fwtc/l (24) 

and by still assuming a time- independent function e 
= e(p), a slightly more general solution than (16) can be 
found. A period A on the z axis, defined by k = 2rr1/A, 
and a rotation of the vector n with constant dimensionless 
angular frequency ware described in this way. Equation 
(14) is still satisfied by the above choice of </> and e. 
Equation (15) then reads 

(25) 

A differential equation analogous to (17) can be found by 
combining Eqs. (25) and (13), which has again stringlike 
solutions. Solutions with k *" 0 are called twisted strings. 
In Fig. 4, a twisted string is sketched schematically. 
The axis e = rr coincides with the z axis, and the sur­
faces defined by e = const are cylinders. A helix </> 

= const is also indicated. 

If the same Ritz approximation as before (e = rr - ap) 
is applied to the twisted string, we obtain for the inte­
gral (12) 

W E 2 (}- }- ) ( ) [rr2 -1/2 + Cin2rr -1/2 =c rr ~1 - ~O T1 - TO 2" y -2- y 

+ (~2 + Cin2rr _ tCin4rr) (k2 _ w2) 

+ a-2 (rr2 + rr2 y-1 /2 (k2 _ w2) + 3rr
2 

(k2 _ W2)2) 
4 4 16 

+ a2 (~2 + Cin4rr) ] (26) 

with 1;=z/1 and T=ct/1. 

For large values of (k2 - w2) the structure of the twist­
ed string is modified as compared with the untwisted 
string in the sense that the lateral dimensions are de­
creased and the total minimum energy is increased, 

At this point a transition is made to a more qualita­
tive consideration, The string is now imagined as an 
obj ect that can be flexed without lOSing its topological 
structure, and, for moderate curvature, without ap-
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surface e = const 

-.!~ 
string axis e = n 

FIG. 5. Sketch of a closed string. A torus defined by () = const 
is indicated. 

preciable change of the energy per unit length. For the 
planar solution of Eq. (2) (Bloch walls) the correspond­
ing transition is common practice. 11 

Closed strings are now conSidered, i. e., strings of 
which the axis defined by e = rr forms a closed line. This 
is done with the aid of Fig. 5. The string axis is a cir­
cle of radius R. An angle (3 is introduced to define a 
point on this axis. R{3 corresponds to the coordinate z 
of the straight string. A further angle 0' is introduced to 
define an angular coordinate corresponding to the angle 
cp of the straight string. 

Two sets of structures can be defined by writing 

</> =N{3± 0', (27) 

where N = 2rrR/A is an integer indicating the number of 
full 2rr twists on the circumference of the string. The 
condition e = const defines surfaces topologically equi­
valent to a torus as indicated in Fig. 5. The two sets of 
structures (27) can be called right-handed and left­
handed closed twisted strings. The spatial distribution 
of e and </> for these structures follows in principle from 
Eqs. (13) and (14). However, the numerical solution of 
these equations for this three-dimensional field confi­
guration is a mathematical problem which has not yet 
been solved. 

In the following we present some considerations of a 
qualitative nature concerning the properties of closed 
strings. 

(a) The two structures (27) are related by mirror 
symmetry, which can be described by an integer P 
taking the values + 1 or - 1. 

(b) The closed string with the twist number N = 0, 
i. e., the untwisted closed string is unstable. 

(c) A continuous line defined by e = 0 (or, more gen­
erally, sine = 0) passes through the closed string N = 1. 

e=n 

coo C=1 

FIG. 6. The two structures denoted by C = 0 and C = 1. The line 
defined by () = 0 is a straight line (C = 0) or a closed curve 
(C=l). 
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FIG. 7. Dimensionless integral I",,(ko, 1'), a measure for the 
minimum total energy of the closed string L = 2, N=M= I, 
C= 0 as a function of y. The curve has a minimum of 1",,=4.16 
for 1'",34 with a corresponding ko'" 1. The curve ko(Y) is also 
plotted. 

The field 1> changes by 27T on any closed path encircling 
this line once. The presence of this line, which can be 
considered as a string 8 = 0, follows from the property 
of single valuedness of the field 1> in all points except 
where 8 = O. The string 8 = 0 is therefore a stable entity 
of much the same kind as the closed string 8 = 7T dis­
cussed up till now. In the structure denoted by C = 0 in 
Fig. 6 this string 8 = 0 is represented as a straight line. 

(d) The following argument shows that the closed 
string N = 1 is stable. Due to the property (c) V8 is of 
the order of 7T/R inside the closed string. For small 
values of R the dominating term ED~ contributes as 7T4/ 
R4 to the energy density, whereas the volume is pro­
portional to Ra• Therefore, for R - 0, the total energy 
increases in proportion to l/R. For large values of R, 
on the other hand, the energy is proportional to R be­
cause, according to (26) the energy is proportional to 
the total length of the string. Hence, there is at least 
one radius Ro defining a string of minimum energy. This 
argument is valid for static as well as for time depen­
dent solutions 8. This makes it clear why it is neces­
sary to introduce the term ED2 in the action principle 
(8). 

(e) In a crude way, the energy of the closed string can 
be calculated starting from equation (26) and assuming 
the circumference of the closed string to be 27T R = N7I. 
and therefore 

(28) 

The additional terms following from the finite curvature 
of the string are neglected. For reason described be­
low we assume 

(29) 

The action (26) for the closed string N = 1 can therefore 
be written in the form 
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Wcs = (E/c)47T2(T1 - To)k-1{y-1/2C1 + C2(k2 _ y1/2) 

+ a-2[y-1/2k27T2/4 +/s 7T2(k2 _ y1/2)2] + a2Ca}, 

= (E/c)47T2
(T1 - TO)les 

with 

C1 = t7T2 + tCin27T '" 6.15, 

C2 = h 2 + Cin27T - tCin47T '" 6. 59, 

Ca = t7T2 + Cin47T '" 8. 05, 

(30) 

(31) 

where the dimensionless integral lcs is a measure of the 
energy of the closed string. lcs can be treated as a func­
tion of k and a and minimized with respect to these vari­
ables for any value of y. The minima are characterized 
by k=ko(y) and a=ao(y). As ao and ko are found to be 
near to each other, we assume a = k. The resulting 
lcs(ko, y) is plotted in Fig. 7. The curve lcs(Y) shows a 
minimum for y '" 34; the corresponding value of ko (and 
of ao) is 1. 43. The minimum value of the integral is 
les, min =4.16. It should be emphasized, however, that 
these results represent a rough approximation, which, 
moreover, neglects the effects of the finite curvature 
of the string. Therefore, the values of lcs given in Fig. 
7 are probably much to high. It may be mentioned here 
that the assumption L = 1 leads to similar structures and 
values of los which are slightly smaller than those given 
in Fig. 7. 

(f) The action principle (8) is symmetric with respect 
to 8 = 7T and 8 = 0; an asymmetry enters only by virtue 
of the boundary condition 8 - 0 for r - 00. This leads us 
to suspect that solutions may exist in which this sym­
metry dominates. In (c) the existence of a string 8 =0 
passing through the closed string 8 = 7T (N = 1) has been 
discussed. The string 8 =0 is either infinite in length 
or closed in such a way as to interlock with 8 = 7T. This 
property can be described with a constant C assuming 
the values C = 0 and C = 1 respectively. The two struc­
tures are shown in Fig. 6. The structure with C = 1 
approaches the above symmetry more closely. It de­
scribes a closed Mobius strip with a 27T twist having 
strip boundaries defined by 8=0 and 8=7T. 

(g) So far, the discussion has been based on static 
functions E and a time dependence of 1> given by (24). 
However, a time dependence of 8 is not excluded, and 
this would lead to a negative contribution to the value of 
D(a) and therefore to the integral. The time dependence 
of 8 possibly comes in through a rotation of the whole 
structure C = 1 (Fig. 6). We are unable to estimate the 
difference in energy between the structures C =0 and 
C = 1, but it is probable that for C = 1 the integral los is 
considerably lowered due to the negative contribution 
associated with 8T • 

(h) If it is assumed that the structure C = 1 is stable, 
it follows that outside of sphere of radius Rl containing 
the whole structure of both strings 8 = 1T and 8 = 0, and 
where EIJ2 «AD, Eq. (13) reduces to 

08~8(yl/2_W2). (32) 

This occurs because in this outside region 1> takes the 
form 1> = const + wt. For 

(33) 
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T ABLE I. Elements of three-dimensional field structures. 

u/ Auxiliary space of three dimensions 

K 

A,E 

Constant describing anisotropy in ui 

"Exchange" constants 

e,1> Scalar field variables, polar and azimuthal angle 
in u,. e=e(x,y, z, t). 1> =1>(x,y, z, t) 

l' 

L 

M 

N 

C 

Length parameter describing the structures. 

Dimensionless parameter 

Integer indicating "index" of the straight string 

Integer indicating "number of shells" 

Integer indicating "number of twists" 

Constant taking the values 0 or 1 

P Constant taking the values -1 or + 1, describing the 
symmetry of the solution 

(in units c/ I) the asymptotic static solution is 

eo:l/r. (34) 

The argument (21), therefore, does not apply here, and 
for e:::: 1 

(35) 

(i) For N> 1 the stability is not obvious, a decay into 
simpler structures is not excluded topologically. Table 
I summarizes the various parameters of the structures 
described. The structures discussed in the last sections 
have not, to my knowledge, been described before. In 
these structures, a new synthesis between continuous 
field properties (e, cp) and discrete properties (N, M, 
etc.) is realized o 

INTERPRETATION 

Thus far, we have mainly dealt with geometrical and 
topological properties of the model, except for the con­
stants A, K, E, c which were introduced as phYSical con­
stants from the beginning. In this section, a physical 
interpretation is attempted. The main result up till now 
is that stable structures or field configurations have 
been found which follow directly from the basic action 
principle. These structures represent entities of finite, 
discrete action or energy localized in a limited region 
of three-dimensional space. The characteristic prop­
erties of the model are: (a) no singularities occur, all 
field values and densities remain finite; (b) integers 
characterizing the structures (like Nor M) occur in a 
natural way together with classical continuous fields; 
(c) the stability, at least for N = M :::: 1 is of a topological 
type; (d) the description is Lorentz-invariant as be­
comes clear from Eq. (9). 

These properties make it tempting to try to identify 
these structures with elementary particles. However, 
in general this would be a formidable task, and we lim­
it ourselves to the discussion of some arguments that 
might contribute to such an identification. The idea is 
that a particular structure, specified by the integers 
L,N,M,e,p, corresponds to a particular free elemen­
tary particle in such a way that the total energy of the 
structure represents the rest energy of the particle. 
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The energy is defined as the spaceUke part of the basiC 
integral. 

With T=ctIZ we may write according to Eq. (30): 

(36) 

Here, we consider lOB as the exact result of the integral, 
based on a time dependent field (J (e:::: 1), and not as the 
approximative value given in Fig. 7 which is probably 
much too high. If we adopt the hypothesis that the two 
simple st stable structures L = 2, 12 N:::: M = 1, C = 1, 
P = ± 1 can be identified with the electron and the posi­
tron, we find 

where m is the mass of the electron. If it is further 
assumed that the structure with e=1 is stable, and 

(37) 

w =y1/4 [Eq. (33)], the field (J falls off as rrroir for large 
distances r as compared with the string radius lEq. 
(34)}. The energy density in this region is then given by 

Arr2y2 of r4 (38) 

because the term containing D2 can be neglected. Here, 
ro is a length which follows in principle from the exact 
solution of the minimum principle for C:::: 1. The length 
ro is probably much smaller than Ro, the stable string 
radius. The energy density (38) is identified with the 
energy density e2 y-4 of the electrical field of the elec­
tron in the limit r - 00, and we find 

(39) 

where e is the elementary charge. This means that the 
charge is quantized. It may be further assumed that the 
circumference 27TRo = 27Tk~lZ of the stable string is equal 
to the Compton wavelength, yielding 

l = kohl me. (40) 

Here again ko is considered to be the exact value of the 
equilibrium wavenumber corresponding to the proper 
minimum of 1

00
, In principle, we can determine E, I, y 

(or alternatively A, K, E) from Eqs. (37), (39), and (40). 
For E we find 

(41) 

However, as we are unable to calculate ro, a further 
specification of the constants does not seem possible at 
this stage. On the other hand, it can be stated that the 
basic action principle is a well-posed mathematical 
problem. To find a more accurate solution than the one 
presented here should therefore be possible if sufficient 
computing facilities are available. We expect that ko 
and lOB will turn out to be at least one order of magnitude 
smaller than the figures given here. 

To conclude, some more general remarks may be 
made. 

(1) A major property of the described field structure 
is that all its parameters are quantized, which is a di­
rect consequence of the nonlinearity of the basic equa­
tion. The quantized properties are of two kinds: dimen­
sionless quantum numbers (integers like N, M) and quan­
tized physical properties (like mass and charge). We 
therefore believe that a further quantization according 
to the rules of quantum electrodynamics is unnecessary 
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and even meaningless. The model therefore represents 
a classical particle which quantized properties. 

(2) The notion of exact localization of a particle has 
no meaning in this model; it should be replaced by say­
ing that the major part of the energy is contained in a 
finite region of space. 

(3) A mirror symmetry exists between the structures 
N=M=C=1, P=1, and P=-1 (electron and positron) 
so that the charge is described by CPo A closer exami­
nation shows that the ensemble of two structures P = 1 
and P = - 1 is not topologically stable and may annihi­
late. This statement is not true for two structures both 
described by P=1 or P=-1. 

(4) Structures with N> 1 or M> 1 have a higher energy 
and are possibly related to heavier particles. 

(5) The interaction of two particles is not a free addi­
tional property, but is inherent in the model. Roughly 
speaking, the interaction is the consequence of the co­
existence in space of the two structures, which extend 
through the whole of space. 

(6) The dimensionless parameter y describes a prop­
erty of the vacuum and is not associated with a particu­
lar field structure. Nevertheless, the structures and 
the integrals los depend in an essential way on y, e. g. , 
y determines the relative contributions of the terms 
D and D2 in the basic integral. From Eqs. (39) and (41) 
we find a relation between y and the fine structure 
constant o!: 

o! = e2/nc = ty-1/2-?or2krJ;'. (42) 

(7) The described structure can be considered to be 
an extended oscillator of angular frequency c/ Ro = mc2

/ n 
determined by (40). This "internal motion" may be re­
lated to the spin of the particle. Considerations on mov­
ing oscillators of this frequency were at the root of the 
original work of de Broglie, 13 leading to quantum me­
chanics. Therefore, we believe that a reconciliation of 
the present model with quantum mechanics may prove 
to be possible along de Broglie's lines of thinking con­
cerning the causal interpretation of quantum mechanics. 13 
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In conclusion, we may state that the proposed model 
exhibits a number of promising physical properties; 
its validity will depend on the exact values of the dimen­
sionless constants and mass ratios. 

Note added in proof: In deriving the asymptotic be­
havior (32) of 8, a term of the order of OS has been 
neglected. This term is of the same order of magnitude 
as ~ 8, so that this neglect is not justified. If in the 
basic action principle (12) D2 is replaced by D3, the 
corresponding term in (32) turns out to be of the order 
of 85 so that () then falls off as ro/r asymptotically. This 
modification of (12), however, does not change the 
topological properties of the model nor the stability of 
the string N = M = 1. The physical interpretation re­
mains also unchanged. The asymptotic behavior of () 
for the modified action principle will be treated in more 
detail in a future paper. One of the results is that, 
given C = 1, the" charge" ro turns out to be independent 
of the details of the internal structure of the "particle." 

I A. Einstein and L. Infeld, Evolution der Physik 284 
(P. Zsolnay, Vienna, 1950). 

2D. L. T. Anderson and G. H. Derrick, J. Math. Phys. 11, 
1336 (1970). 

3U. Enz, Phys. Rev. 131, 1392 (1963). 
4U. Enz, Helv. Phys. Acta 37, 245 (1964). 
5J. K. Perring and T. H. R. Skyrme, Nuc!. Phys. 31, 550, 
1962. For an extended reference list see A.C. Scott, Proc. 
IEEE 61, 1443 (1973). 

6N.J. Zabrusky and M.D. Kruskal, Phys. Rev. Lett. 15, 
240 (1965). 

7G.H. Derrick, J. Math. Phys. 5, 1252 (1964). 
BD. L. T. Anderson, thesis (Univ. St. Andrews, Scotland, 
91969). 
T. H. R. Skyrme, Nuc!. Phys. 31, 556 (1962); J. Math. Phys. 
12, 1735 (197l). 

lOp. G. de Gennes, The Physics of Liquid Crystals (Oxford 
U. P., Oxford, 1974). 

l1J.C. Slonczewski, Intern. J. Magn. 2, 85 (1972). 
12A possible alternative is L = I, which leads to a similar 

structure with a slightly lower value of I"". 
13L. de Broglie, Nonlinear Wave Mechanics (Elsevier, New 

York, 1960). 

U.Enz 353 



                                                                                                                                    

Convergence of lattice approximations and infinite volume 
limit in the (A<f> 4_cr<f>2_,..,<f>h field theory 

Yong Moon Park* 

Department of Theoretical Physics, University of Bielefeld, Germany 
(Received 15 March 1976) 

By unified method we prove the convergence of the lattice approximation of the (,-<j>4 _IT<j>2 -1jI<j»3 field model 
with periodic, Dirichlet and Neumann boundary conditions in a finite box. This then allows us to take the 
inifinite volume limit of the Dirichlet states by the Nelson's monotonicity argument. The model under 
consideration satisfies all the Wightman axioms except possibly the uniqueness of vacuum for J.t = 0 and the 
mass gap. 

I. INTRODUCTION 

This is a continuation of our previous works1,2 in 
proving the convergence of the lattice approximation in 
the (?t<t>4 - cr<t>2 - Il<t> ls quantum field model with various 
classical boundary conditions in a finite box. With a 
unified method we prove the convergence of the lattice 
approximation of the model with periodic, Dirichlet 
and Neumann boundary conditions. We then use our 
results together with uniform bounds of the Schwinger 
functions 3,4 and the Nelson's monotonicity argument5,6 

to take the infinite volume limit of the Dirichlet states 
of the model under consideration. The resulting theory 
satisfies all the Wightman axioms except possibly the 
uniqueness of vacuum for Il = 0 and the mass gap. 

During the last few years there has been much 
progress in the construction of the (?t<t>4 - crcf>2 - Il¢h 
quantum field theory. The main results have been the 
proofs of existence and semi-boundedness of the volume 
cutoff Hamiltonian, 7 convergence of the lattice and 
momentum cutoff Schwinger functions with free and 
periodic boundary conditions as the cutoffs are re­
moved1, 2, B and convergence of the infinite volume limit 
for the weakly coupled model. 9,10 Recently, Park3 and 
Seiler and Simon4 have established uniform bounds of 
the volume cutoff Schwinger functions of the models 
with free and periodic boundary conditions. Frohlichl1 
has constructed the infinite volume theory for the 
strongly coupled model with weakly coupled boundary 
condition. 

In the P(¢ h field theory the control of the boundary 
conditions provided great flexibility in the study of the 
infinite volume limit. 5.6.12-15 The main purpose of this 
work is the completion of our program in proving the 
convergence of the lattice approximation in the 
(?t<t>4 - crc/J2 - Il<t> h quantum field model with various 
classical boundary conditions in which we are interest­
ed. Then one may develop the (?t¢4 - crcf>2 - Il¢ h field 
theory parallel to the P(<t> h model. 

The method we will use in proving the convergence 
of the lattice approximation for Dirichlet (D) and 
Neumann (N) boundary conditions is essentially same 
as that for free (F) and periodic (P) boundary condi­
tions developed in Refs. 1, 2. Since the proof is very 
complicated (even if it is not so hard) and since the 
over-all structure of the proof is same as that for 
P. b. c., we feel that it is convenient to reproduce the 
proof for P. b. c. This makes the paper better organized 
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and thus more readable. That is, we will prove the con­
vergence of the lattice approximation for D, N, and P 
boundary conditions simultaneously. 

We now discuss briefly our main ideas of the proof. 
Let A be a box in R3 and let 0 be the lattice spacing 
parameter. Let C~(mo, no) be the covariance of the 
lattice free fields cf>6(n) with X (= D, N, P) boundary con­
dition. By the standard eigenvector expansion13 one 
may write 

Cr(mo,no)= 6 ikX(mo)i{(no)llo(k)"2. (1.1) 
kErf 

See Sec. 2 for the details. Let S~,o(fl' ... ,in) be the 
corresponding lattice cutoff Schwinger functions of the 
model under consideration. A direct proof of the con­
vergence of S~, 0 as 0 - 0 seems to be very difficult (in 
fact, we are still not able to produce a direct proof). 
Therefore, we will introduce the lattice and momentum 
cutoff Schwinger functions sr, 6, ,,(fJ, ... ,in). See Sec. 3 
for the definition. It is easy to show that S~.6'K - Sr,6 
as K -1 and S~,6'K - S~,,, as 0 - O. Hence, if we prove 
that 

sr 6 • (fj, ... ,in) - sr 6 (flo •.. ,in) uniformly in 0, 
, t 1e"1 • 

(1. 2) 

the convergence of the lattice approximation follows 
from the standard 3E argument. As in Refs. 1, 2 we 
shall use the method of the inductive expansion devel­
oped by Glimm and Jaffe7 and modified by FeldmanB to 
establish (1.2). To prove (1.2) for X = D, N by the in­
ductive expansion method, 1,2,7,8 one must check the 
following: 

(a) isolation of localization factors, 

(b) bounds of the kernels of Feynman graphs by 
majorizing functions, 

(c) estimations of small graphs including the mass 
renormalization cancellations, 

(d) that the partition function is nonvanishing. 

Since we do not have translation invariance for D, N 
boundary conditions, we need to modify the method used 
in Refs. 1, 2, 7, 8 to handle (a) for X = D, N. Roughly 
speaking, we will be able to isolate the distance factors 
from the following inspection: Let Cr,.(mo, no) be the 
lattice and momentum cutoff covariance (defined in Sec. 
3) and let I x - y I x denote ordinary Euclidean distance 
for X = D, N, F and periodic distance for X = P. Then 
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it follows that 

IC~.«mo,no)I-I(m-n)011 for anyjEN+ 

uniformly in K, 0, where mo, no E A. This means that 
the momentum and lattice cutoff covariance decays 
polynomially. This fact is enough to isolate the distance 
factors. See Step 3 in the proof of Theorem 4.1, Sec. 4. 
In Sec. 3 we establish basic estimates to take care of 
(b). We shall give the estimates (c) in the Appendix. To 
prove the nonvanishing of the partition function (d), we 
shall apply the method of the mass shift transformation 
used in the previous work2 together with the nonvanish­
ing of the partition function for sufficiently large mass 
m6. Since the boundary terms for D, N, P boundary 
conditions are independent of the mass, one may apply 
the mass shift transformation. See proof of Theorem 
2.1 in Sec. 3. 

We remark that as a by-product we also establish the 
convergence of the momentum cutoff Schwinger func­
tions in the (;>..¢4 - a¢2 - Il¢ h model with D, N, P bound­
ary conditions in a finite box (Corollary 4.3). To be 
more precise, if X = D, N, P, the results of this paper 
may be summarized by a diagram: 

x 5-0() rue X=D D( 
SA 5 (fj, ... ,in) - "i.. (f1> ... ,in) - S~ fj, ... ,in) 

• +'-1 t.~1 I A I~~ 
~ 5~O X 

A. 5. < (fj, ... ,in - SA, < (fj, ... ,in) 

The organization of the paper is as follows: In Sec. 2 
we introduce the notation and definitions on the lattice 
fields and the lattice cutoff Schwinger functions with 
X (= D, N, P) boundary conditions. We then state our 
main theorems, namely, convergence of the lattice 
approximation and the infinite volume limit of the 
Dirichlet states in the (;>..¢4 - a¢2 - 1l¢)3 field model. We 
also give the proof of the existence of the infinite volume 
limit of the Dirichlet states. In Sec. 3 we introduce the 
Schwinger functions with a joint lattice and momentum 
cutoff and establish basic estimates which we will use 
later on. Assuming the convergence of the inductive 
expansion as K - 1 uniformly in 0, we establish the con­
vergence of the lattice approximation. In Sec. 4 we 
prove the uniform convergence of the inductive expan­
sion. In the Appendix we establish estimates for small 
graph including the mass renormalization cancellations. 

Apology: After having established the convergence of 
the lattice approximation of the models with free and 
periodic boundary conditions more than one year ago, 1.2 
the author felt that the result was not as fully utilized as 
it deserved mainly because the result for Dirichlet 
boundary condition was lacking. We hoped that someone 
would study the problem for Dirichlet boundary condi­
tion, since all the techniques we need contained in Refs. 
1, 2, 7, 8 except the control of the isolation of the 
distance factors. We are very reluctant to come back to 
this subject. We tried hard to simplify this paper to 
improve its readibility. In some parts, we skip detailed 
proofs and give only a bare description of the proofs 
because of notational complications. We apologize for 
that. But we hope that the underlying idea is apparent 
to the reader. 

Note: Recently Feldman and Osterwalder16 have an­
nounced the infinite volume limit of the Dirichlet states 
of the model we consider. Their argument is also 
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based on the mono tonicity of the Dirichlet Schwinger 
functions, but they did not provide any description of 
the proof showing the convergence of the Dirichlet 
Schwinger functions. Since the preprint has not yet 
appeared, we produce this paper. 

II. NOTATION. DEFINITION AND MAIN RESULTS 

In this section we first introduce the lattice fields and 
the lattice cutoff Schwinger functions (Euclidean Green's 
functions) of the (;>..¢4 - a¢2 - Il¢ h quantum field model 
with D, P, N boundary conditions in a finite box. 
Throughout this paper we assume that;>.. E R+, a, 11 E R. 
'Ml then state our main results. We specialize for the 
case where A is a box, say (-l/2, l/2) x (-l2/2, l2/2) 
x(-lI2,lI2). Let 0 be the lattice spacing parameter 
for the lattice L5 ={noln = (n(j), n(2l, n(3l) E Z3}. We 
denote A5 = A n L5 the set of lattice points within A and 
aA5 denotes the points in A5 which have the nearest 
neighbors outside A5 • Following Ref. 13, we assume 
that lj, l2' and l3 are odd multiple of 0 for P and N 
boundary conditions and even multiple of 0 for Dirichlet 
boundary condition (if A is a cube with length of side 1, 
this means that 0 =1/(2j + 1) for P., N. b. c. and 0 =l/j 
for D. b. c. , j EN'). We introduce the lattice fields 
¢5(n) as the real Gaussian random process indexed by 
the lattice in A5 with mean zero and covariance given 
by2.13 

where 

and 

1l5(kr2=0~2(6- 2 E COS(6k(il))+mL 

T; = T X n [- 7T/O, 7T/O]' 

) 

27T Z X 27T Z X 27T Z 
TX = II l2 l3' 

"!!"Zx"!!"zx"!!"Z 
11 12 13' 

X=P, 

X=D,N, 

(,! X(,l = ..' , . . {COS(k(ilX(I)) if l.k(il/7T is even 
gk(,l( ) sin(k('lx(,l) if l/k(I)/7T is odd, 

3 . 
fkD(X) = (111213rl/2 Dl h~IL(x(ol) 
h (I) x (i) = sm . X. 1 /.. 7T IS even" 

{ 
. (k(O (0) 'f 1 k(/l/ . 

k(il( ) COS(k(llx('l) if 1jk(,l/7T is odd. 

(2.1) 

(2.2) 

(2.3) 

We note that the functions {03/2fkX(mo)}kETf satisfy the 
completeness conditionl3 : 

03 6 f/(mo)fkX(no) = om.n 
kETt 

(2.4) 

for mo, no E A5 • It is convenient to introduce the covari­
ance for the free (F) boundary condition given by 

CF(mo, no) = (27Tr3 r:~: exp[ik. (m - n)6]115 (kr2 d 3k. 

(2.5) 

Let dll~.5 be the underlying Gaussian measures on 
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5'(A) with X. b. c. We introduce the smeared free fields 
and Wick product of free fields by 

¢6(f) = 03 6 ¢6(n)f(no), 
n6EAO 

: ¢'!:: x(g) = 03 6 : ¢6(n)m:xg(no) 
n6EAG 

(2.6) 

for f,g E L ~(A), where: :x is the Wick ordering with 
respect to the Gaussian measure dll~,6' 

We now introduce the lattice cutoff interacting action 
for the (X¢4 - a¢2 - Il¢ >s field model with X (= D, N, P) 
boundary condition. We write (. > ~:J for J . dll~,6' The 
interacting action is given by 

V<x) - V<x) + V<x) 
A,6 - I,A,5 c,A,a, 

Vgl,6 = h2«:¢~:X(XA»2 > ~:~ - i x3( (:¢::X(XA»3) ~:~ 

+h20m~:¢~:X(XA)' 

om~=(42x6)03 6 [C F (mo,no)]3, 
nOEAo 

(2.7) 

where C F is the covariance for the free boundary con­
dition defined in (2. 5) and XA is the characteristic func­
tion of A. One may easily check that the above definition 
of om~ is equivalent to that of Ref. 1 (at most, up to 
finite mass renormalization). See the details in the 
Appendix. 

Remark 2. 1: We hold the coefficient om~ of the mass 
counter term fixed. We always use the om~ appropriate 
to free boundary condition. 1 We do this for convenience 
in using the conditioning theory and monotonicity argu­
ment for the Dirichlet states. A more appropriate co­
efficient of the mass renormalization counter term for 
X. b. c. would be 

(2.8) 

It is then easy to check that for X = D, N, P and I A I > 1 

I om~ - om~:~ I ~ const, uniformly in A and O. (2.9) 

We will give the proof of (209) in the Appendix. 

The partition function and the Schwinger functions are 
defined by 

Z~,fi=(exp(- V~,6»~:~' 

We now give the main results of this paper: 

Theorem 2.1: For x> 0, a, 11 ERin (2.7) and X 
=D,N,P: 

(a) (The convergence of the lattice approximation. ) 
The limits 

limZi,fi = Zi, 
6 ~O 

limSi,6Ub' .. '!n) = SiUb ... '!n) 
6 ~O 

exist for fi E 5(A). 

(b) There exist constants K 1(X,a, 11) and K 2 (X,a, Il,A) 
and a suitable Schwartz space norm I • I such that 
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0< zi ~ exp(KllA I), 

ISi(fb ... ,!n)1 ~K2(A)n! nlfll, 
1=1 

where I A I is the volume of A. 

(c) For TE C andfE5(A») the limit 

lim(exp(T¢5U) - V~ 6» ~x~ = Zi(7f) 
6"0 ' , 

exists and is analytic in T. 

Remark 2.2: In Refs, 3, 17 we have established the 
following: 

exp(- alA I) ~ ZF,F ~ exp(b IA I), 
n (2. 11) 

I S~(ft, ... ,fn) I ~ Knn! n Ifil, 
i=1 

where a, b, and K are constants independent of A. 
Similar results also hold for free boundary condition. 4,17 

Hence the result of Theorem 2. 1 (b) is much weaker 
than (2.11) for X = P. 

We postpone the proof of Theorem 2. 1 at the later 
part of this paper. As consequences of Theorem 2. 1 
we have the following result: 

Corollary 2. 2: Let X, a, and 11 be as in Theorem 2. 1 
and letX=D,N,P. 

(a) There exists a unique measure dqi for each X 
= D, N, P on 5' (A) such that 

S~ Ub .. 0 '!n) = J ¢ Ul) .. , ¢ Un) dq~ 

for fi E 5(A). 

(b) (Lee-Yang theorem and correlation inequalities. ) 
The Lee- Yang theorem5,15 and the correlation inequal­
ities5,15 whi h hold for the (X¢4 - a¢2 - Il¢)z field theory 
also hold for the (X¢4 - a¢2 - Il¢ >s field theory. 

Proof: (a) This follows from Theorem 2.1 (b), 
Minlos' theorem and the method used in Ref. 8. 

(b) This is a consequence of Theorem 2. 1 (a) and 

(c). • 

Now we use the above result and the uniform bounds of 
the Schwinger functions with P (F) b, c. 3,4 to take the 
infinite volume limit of the Dirichlet states. 

Theorem 2.3: The infinite volume limit of the 
Dirichlet Schwinger functions 

exists for fi E 5 (R3). The Schwinger functions 
{~U1> ... '!n) In = 0,1,2, ... } satisfy the axioms of 
Osterwalder and Schrader18 with the possible exception 
of clustering, These are moments of an unique mea­
sure dqD on 5'(R3). The theory satisfies all the Wight­
man axioms with the possible exception of the unique­
ness of vacuum for 11 = 0 and the mass gap. 

Proof: Since we have fixed the coefficient om~ of the 
mass renormalization counterterm independent of 
boundary conditions, it follows from Refs, 5, 6 that 
for fi > 0 
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S~,6(fb'" ,in) ~ S~ ~(fb'" ,in), 

S~, 6 (flo ... ,in) ~ S~., 6 (flo ... ,in) if A cA'. 

From the convergence of the lattice approximation 
(Theorem 2.1 (a) and the result in Refs. 1, 2) it follows 
that for II > 0 

n 

S~(f1"" ,in) ~ S~' FUh'" ,in) ~Knn! n if; I, 
1=1 

S~(f1' •.. ,in) ~ S~,Ub •.. ,in), A cA'. 
(2.12) 

Here we have used (2.11) (or the result of Ref. 15). The 
first part of the theorem follows from (2. 12) together 
with the method used in the (X<p 4 - aq} - 1l<P h field the­
ory. 5,6,14,15 By the Osterwalder and Schrader's recon­
struction theorem, we only need to prove the uniqueness 
of vacuum for 11"* 0, This follows from correlation in­
equalities, Lee-Yang theorem, and the method used in 
Ref. 15. This completes the proof of the theorem. • 

The rest of this paper is devoted to the proof of 
Theorem 2. 1. We shall employ the method used in 
Refs. 1, 2 with some modifications, which are neces­
sary to control the localization factors. 

III. REDUCTION OF THE PROBLEM 

In this section we first introduce the lattice and 
momentum cutoff Schwinger functions and then reduce 
the proof of Theorem 2. 1 to the uniform convergence 
(with respect to 0) of the lattice and momentum cutoff 
Schwinger functions as K -1 (Propositions 3.2-3.3). 
At the end of the section we also establish basic 
estimates which we will use in the following sections. 
Following Glimm and Jaffe, 7 we introduce a momentum 
cutoff function of the form 

a(il<{3(il, (3.1) 

a (i), (3(j) E {Mo = 0, M
J 

= M?+v>'-1 if j ~ 1}, 

where .HI"> 1 and lJ> 0 are constants given in Ref. 7, 
and 1/ is a fixed C;(R) function satisfying 

1/(x)=l for Ixi ~~, O<1/(x)<l for ~< Ixl <2 
1/(x)=O for Ixl~2 and 1/(x)=1/(-x) 

and by convention 1/(k/O) = O. We introduce 

(3.2) 

We define the lattice and momentum cutoff free fields by 

<p;'.(n) = 03 '6 <po(m~) '6 f/(mo)!/(no)K(k o). 
mOEA5 kE'If 

(3.3) 

Notice that the momentum cutoff function K(ko) depends 
on O. 

Direct computation yields 

(<p;'. (m)<p;'. (n» i~~ = C~,.(mo, no), 

CI,.(mo, no) = '6 x fkX(mo)!/ (no)llo (k)"2K (ko)2 . 
kETO 

(3.4) 

The lattice and momentum cutoff partition function and 
"unnormalized" (un) Schwinger functions are defined by 
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ZX - 'e (_ VX »(X) 
A,5,' -\ xP A,5,. A,O, 

sI.:r..Ulo'" ,in) =(<Po(f1)'" <P5Un) exp(- V~,o,.» ~~, 
(3.5) 

where the triple cutoff interacting measure VI,5,. is 
obtained from VI,o in (2.7) by replacing <po(n) and 
C~(mo, no) by <P;'. and C~.(mo, no) respectively. We 
then have 

Lemma 3.1: Let x> 0, a, 11 E R, and let X=D,N, P. 

(a) For 0>OandfjE5(A) 

limzI 5 • = zI /; , 
K"1 ,t , 

(b) Let K have compact support. Then for fl E 5 (A) 

exist. 

Proof: Under the assumptions, all the objects we deal 
with are well defined by virtue of the momentum cutoffs 
K and 0, For example, it is easy to check that VIo • 
ELP(5'(A),dll~,o) and ' , 

exp(- VI,5,.) ~ const(o, K), 

where const(o, K) is finite if either 0> 0 or else K has 
compact support. The proof of the lemma follows as 
in Refs. 5, 13. • 

For convenience we write 

Z~,. = ZI,6=O,., 

SI:~n(flo ' . , ,in) = SI:~O,.(fh 0' • ,in). 
(3,6) 

As in Refs. 1, 2 we reduce the proof of Theorem 2.1 to 
the following propositions: 

Proposition 3.2: Let X=D,N, P andfl E 5(A), 
i=l, •.. ,no 

(a) There are constants K 1(X,a, 11) and K2(X,a, 11) in­
dependent of A, and a Schwartz space norm I 0 I such 
that 

zI,. ~ exp(KtlA I) 

sI:~n(fh' .. ,in) ~ n! C~1 ifll) exp(K2 1 A I). 

(b) Let o~ O. As K-1, 

uniformly in 0, 

sf:~:.(fh" . ,in) - s~:~nUh" . ,in) uniformly in o. 

(c) For TE C andfE 5(A) we write ZI,5,.(T{) 
=(exp(T<P6(f)- V~,o,.»i~~. Then, as K-1, 

Z~,5,.(Tf) - Z~,6(Tf) uniformly in ~. 

The convergence is uniform in T for a compact subset 
of C. 

Proposition 3. 3: Let m~ be sufficiently large (depend­
ing on A). Then 

limXI,. = zI > O • 
• -1 
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The proofs of Propositions 3.2 and 3.3 are delayed to 
the next section. Using the above results, we now prove 
Theorem 2. 1. 

Proof of Theorem 2.1: We first note that Lemma 3.1, 
Proposition 3.2 (b)-(c), and a 3E argument yield 

zf.o H zf, Zf.o 0-=0 Z~(Tf), 

sf,unUb' .. ,In) 0 -=0 sf,unUb ... ,In)' 

If we prove that 

(3.7) 

(3.8) 

for all 1115> 0, Theorem 2. 1 follows from Proposition 
3.2 (a), (3.7), and (3.8). 

We now prove (3.8) by using Proposition 3.3, the 
method of the mass shift transformation, and the 
Jensen's inequality. Identifying cf>o(n) =qn and following 
Guerra, Rosen, and Simon. 5,13 One may write 

Z~ 0 = const J n dqnexp[- tq· A~. q - 6 v~ o(qn)], 
, n ' 

(3.9) 

where the constant is the normalization factor for free 
measure, L:n Vf,o(qn) is the polynomial obtained by re­
placing cf>o(n) with qn in the definition of V~,o, and A~ 
is the matrix corresponding to the (- t.; + m~). For de­
tails we refer to Ref. 13, Sec. IX Let zf. 0 (m~), 
Vf,6(m6), and (. > ~:~,m2 denote the partition function, the 
interacting action, an~ the Gaussian expectation with 
respect to the mass m~ respectively. With this notation 
one may write 

Zf.o(m 2
) = (exp(- V~,6(m2») ~:~,m2. 

From Proposition 3.3 it follows that Z~(m2) > 0 for 
sufficiently large /11 2. Also the expression (3.9) yields 

zf.o (m 2 
- b2) = (exp[ - V~.6(m2 - b2)+ tb2:cf>~:mz(XA) D ~:~. m2 

x{(exp[tb2:cf>~;mz(XA)D~~~.m2}-1 (3.10) 

for m2 > b2 and X = D, N, P, where: :m2 means the Wick 
ordering corresponding to the mass 111. The above is 
the "mass shift transformation. " It is not hard to check 
that 

(3.11) 

where d is a constant independent of A, 6. We denote 
C~ m5 by the covariance corresponding to the mass mo 
and 

6C~. mI' m~ = C~. mi - c~,m~. 
Using the formula for the change of the Wick ordering 
(see also Ref. 2, Lemma 3.7) one may check that there 
is a constant cX(A, 6) such that 

V~,6(m2 - b2) 

= V~0(m2) + 6 6 [6C~,m2.m2_b2(n6, n6)]:cf>~:m2 
nfiEAo 

(3.12) 

where Icx(A, 6) I"" const(A) uniformly in 6. The proof of 
(3.12) is elementary. We only remark that two diver­
gent scalar terms appear during the change of interact­
ing action from V~,o (m2 - b2

) to V~,o(m2) coming from 
the mass and vacuum renormalization counter terms. 
These are cancelled out explicitly and leave a regular 
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scalar term. We denote the second term in the right­
hand side of (3.12) by :cf>~:m2(6C~). From Theorem 4.1 
in the next section it follows that 

j ([:cf>~:m2(6C~)l exp[- V~,6(m2)D ~;~.m2j "" const(A) 

(3.13) 

uniformly in 6. The above uniform bound is a conse­
quence of smoothness of oCf(no, n6) and Theorem 4.1. 
We do not produce the explicit pro,?f of (3.13) and leave 
it to the reader. We remark that 6C~ (n6, n6) is a con­
stant bounded uniformly in 6. Let m 2 > b2 and let /11

2 be 
sufficiently large so that Zf (m2) > O. Then the relation 
(3.10)-(3.12) and Jensen's inequality yield 

Zf.o(m2- b2)[Zf.o(m2)]-1 

~ exp[- const(A)](exp[- V~.6(m2) + tb2:cf>~:m2(XA) 

+ :cf>~ :m2 (6C~) D ~-;>o. m2[Z~,o (m 2) ]-1 

? exp[ - const(A)] exp{«tb2:cf>~:m2(XA) + :cf>~:m2 (6C~)) 

x exp[- VX (m2)D (X) 2[ZX (m2)]-I} A,B A,fi,m A,B • (3.14) 

Since Z~(m2) > 0 and since Z~ I; - Z~ as 6 - 0, it follows 
that there exist a constant E (A) > 0 such that 

Z~. 0 (/112
) ~ dA) '> 0 

for sufficiently small 6. We use the above result and 
(3.13) [and the analogous result for :cf>~:m2(XA)] to bound 
(3.14) from below by exp[- const(A)]. Hence we have 

Zf,o(m 2 - b2)~ exp[- const(A)]Zf,c(m2 ). 

By taking the limit as 6 - 0 and using the fact that 
Z~.o(m2» 0, we have completed the proof of (3.8) and 
so Theorem 2. 1. 

As explained briefly in the Introduction, the proof of 
Proposition 3.2-3.3 is based on the inductive expan­
sion developed by Glimm and Jaffe, 7 and modified by 
Feldman. 8 To control the expansion, one needs basic 
estimates. The rest of this section is devoted to estab­
lish a technical lemma, which summarizes these basic 
estimates. We begin by introducing more notation. 
For fE L ~(A) we write 

io(k) = (21T)-3/26 3 6 f(n6) exp(- ik· n6), k E T;. 
noEAo 

• 

(3.15) 

The above is a discrete version of the Fourier trans­
formation. During the inductive expansion we will 
divide the box A into the union of cubes. 7 To prevent 
double counts of the lattice points on the boundary of 
cubes, we consider half open cubes of the form 

t.={xjxEA, x(j)E[a(i),b(i»), la(j)-b(i)! =d, i=1,2,3}. 

In the rest of this paper we use the following convention: 
The center Of a cube t. refers to the nearest lattice side 
n6 E t. from the geome tric center of t.. If there are 
several nearest lattice points, we pick up one of them 
as the center of t.. This definition is identical to the 
usual definition when 6 = O. As in Refs. 1, 2 we also 
write 

11 (k)2 = k2 + m~, J1. (k (0)2 = (k (0)2 + m~, 

J1. o(k (i))2 = 6-2[2 - cos(6k(i))] + /116, i = 1,2,3, 

X.o.o(k)=(21T)"3/2 63 6 exp(-ik.n6), 
• nfiE.o. 
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3 
FA. c (k) :::: IIJ [ I A 11/31lo (k (I» + 1 ]-1 , 

where I AI is the volume of A. Finally we introduce a 
discrete version of derivatives with respect to k E T; 
variables: 

(D~,l/)(k) = (1/21T)(f(k (1) + 1T/lt. k (2), k (3» 

- l(k(1) -1T/l1>k(2),k(3»1, 

(~, N,l/)(k) = (l/7T)(f(k(t) + rr/21 h k (2), k(3» 

_ I(k (1) - 7T/21 t. k(2), k (3»]. 

(3. 17) 

Df,2 and Df· 3 are defined in a similar manner. The 
following is the result corresponding to Ref, 1, Lemmas 
2.1-2.3. 

Lemma 3.4: Assume kE T;, X=D,N,P. 

(a) For each k E R3
, 1l6(k) -Il(k) as <5 - o. 

(b) Ilo(k)-l.; (1T/2)Il(kr1• 

(c) For IE S(A), I h(k) I .; const(f)1l (k)"2, 

(d) I(Df)mllo(kr21';0(1)Il(kr2-lml. 

(e) We assume that I A I .; 1 and the center of A is 
at the origin: 

I (Df)mXL>., 0 (k) I .; 0(1) I A IHm 1/3 F d, 6 (k), 

(f) Let I( be the momentum cutoff function defined in 
(3. 1)- (3.3): 

I (Df)ml((ko) I .; 0(1) min{(a(l)rlmll i = 1,2, 3}x,., 

where x. is the characteristic function of the support of 
I( (k). 

Proal: (a) Obvious. (b) This follows from the follow­
ing inequality5: 

2y2 ~ 1- cosy ~ 21T-2y2 if y E [- 7T, 1T]. (3.18) 

(c) From the definitions in (2.2) and (3.15) it follows 
that 

Illo(k)fa(k)I';0(1)<5 L; 16/(n<5)- 0 l(n'<5)I. 
nOEAO In'-nl.l 

We use the method employed in proving Lemma 2.2 in 
Ref. 1 to bound the above by const(f), where const(f) 
depends on the volume of the support of I. The lemma 
follows from the part (b). 

(d)- (e) The proof follows by replacing Dm in the proof 
of Lemma 2. 3, Ref. 1, by (IJ1)m in (3. 17) and adapting 
a method similar to that of Ref. L 

(f) This follows from a straightforward computation 
and (3.18). We leave the detailed proof to the reader. • 

IV. CONVERGENCE OF THE INDUCTIVE 
EXPANSION 

In this section we prove Proposition 3.2 and Proposi­
tion 3. 3 and thus complete the proof of Theorem 2.1. 
The proof is based on the method of inductive expansion 
developed by Glimm and Jaffe7 and modified by Feld­
man. 8 We organize the proof close to that of Refs. 7, 8. 
We already have used the method successfully to estab-
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lish the convergence of the lattice approximation of the 
i\rt>i field model with F and P boundary conditions. 1,2 
The difficulty for X:::: D, N is that we do not have the 
translation invariance of the free Gaussian measure 
dll~,N. Hence it is much more complicated to isolate 
the localization factors for X = D, N than for X = F, P. 
We must introduce a modification to the method of 
Glimm and Jaffe7 so that we can overcome this 
difficulty. 

As in Refs. 7, 8 the notation G may refer, depending 
on context, to the topological graph G, the function 
G(q) on S'(A), or the kernel G(k , ). Following Ref. 8, we 
introduce a norm of the graph G: For 'Y> 2a > 0 

II G(X) IIl,y, ,,= sup sup IIp':.cMYI G(X) III H.S,' 

p'f:. C 

Here pe,., C, MY and I' I are "operators" that modify 
the graph G and its kernel. See Ref. 8 for detailed 
discussion. In our case the notation may differ slightly 
from that of Ref. 8. Let cf,o be the operator defined by 
its kernel in (2,1) and let Cr,6 be the corresponding 
operator for F boundary condition. We then have that13 

for <5 ~ 0 

(4.1) 

where the constant c is independent of A, <5 for IA I ~ 1. 
The above result has been proved in Ref. 13 for two­
dimensional space-time and <5 = O. The same method 
yields (4.1). It then follows that 

II rt>(X)(f)1I1,Y," =KII (c!)1/2-YI 112 

.; K' II (cI)1/2-rl 112 '" I I I Y' 

II rt>~X) (f) Ill, y,,,::::K II (Cf, 0)1/2-"/11/2 

.; K' II (Cx. 0)1/2-YI 11,2'" I 10 I Y' 

Notice that I/lr and I/oly are finite for IE Cro(A), From 
the method used in Ref. 7 it also follows that 

'/ f1 rt> (X) (h) 1\ .; n ! il I II I Y' 
f 1=1 l,y," l=t (4.2) 

For the detailed derivation we refer to Ref. 7. 

Proposition 3, 2 and Proposition 3. 3 will follow as 
corollaries of the following results: 

Theorem 4. 1: Assume G is a graph having N external 
legs. Then there is a constant K j (i\, (J, Il, 'Y, 0) indepen­
dent of A, 6, and I( such that 

I<G exp(- vf,o,.>~~~ I"" NNIIG Ilt,y, "exp(K1IA I) 

forX=D,N,P. 

Theorem 4, 2: Let II Gilt, Y, '" < 00 for some 0 < 'Y < 'Yo. 
Then, as I( -1, 

lim(Gexp(- Vf,o .»~x~::::[G]~X~ 
1(,,1 '" 

exists for all 1i ~ 0, The convergence is uniform with 
respect to 6, 

We postpone the proofs of Theorem 4,1 and Theorem 
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4.2. We now prove Proposition 3.2 and Proposition 
3.3. 

Proof of Proposition 3.2: (a) and (b). This follows 
from Theorem 4. 1, Theorem 4,2, and (4.2) by setting 
G=TIj'=1c{l6(f1) (and G=1). 

(c) This follows from the method which we will use to 
prove Theorems 4.1-4.2 and the method used in Ref. 
8. Feldman8 has shown a result similar to that of 
Proposition 3.2 (c) with 0 = 0 and X = F by modifying 
the method used in proving Theorems 2-3 of Ref. 8. 
analogous procedure gives us the proof. 

Proof Of Proposition 3.3: This follows from Theorem 
4.1-4.2 together with the method used in proving 
Theorem 3.5 of Ref. 2. Intuitively, one expects that 
Z~-1 as m5- oe , since C~(x,y)-O as m~-oO. 
This proves the proposition, 

Corollary 4. 3: Let S~ •• (fl, ..• .in) be the momentum 
cutoff Schwinger function. Then the limit 

limS~ •• (f1>' .. .in) = S~(fl' .•• .in) 
• ~1 

exists for fl E 5(1\), X = D, N, P. 

Proof: We set 0 = 0 and G = TII=1 c{l (f) (and G = 1). Then 
the corollary follows from (4.2), Theorem 4.2, and the 
fact that Z~> 0 [Theorem 2.1 (b)]. • 

Before proving Theorems 4.1-4.2, we describe 
briefly the structure of the proof which is parallel to 
that in Refs. 7, 8. Roughly speaking, the authors of 
the cited papers have proved the result corresponding to 
Theorem 4.1 and Theorem 4.2 for (G exp(- vI .• » (F) by 
expanding it by a so- called "inductive construction. ,,7 

Each inductive step consists of three main steps: (a) a 
high momentum (P-C) expansion, (b) a low momentum 
(Wick) expansion, (c) combinatoric estimates. Then the 
problem was reduced to estimates of the elementary in­
tegrals labeled by Feynman graphs. The combinatoric 
estimates have been used to bound the number of the 
terms in a sum of Feynman graphs. After isolating 
localization factors the kernels of graphs in each term 
have been bounded by majorizing functions. For the 
details we refer to Refs. 7, 8. As in Refs. 1, 2 we will 
replace (Gexp(- Vr,.»(F) by (Gexp(- V~,6,.l>~~~ and will 
perform exactly the same inductive expansion as in 
Refs. 7, 8. We will also assign combinatoric factors 
similar to those of Ref. 7 for combinatoric estimates. 
We will have to introduce a modification to Ref. 7 (and 
Refs. 1, 2) to isolate localization factors because of 
lack of translation invariance for X = D, N. The rest of 
the proof will be similar to that in Refs. 1, 2, 7, 8. 

We need more notations and some observations. We 
define 

C~,., .,(mo, no) "" (c{l6.K(m O)c{lr.,K,(no» ~~~ 

= 6 fkX (mo)foX(n/j)u6 (K,K';k), (4.3) 
kE Tf 

u6 (K, K'; k) = 116 (k t 2
1( (k6)K' (k6)' 

It is easy to check that 

C~,.,.,(mo, no) 

360 

= I ~ 6 U 6 (K, K'; k) exp[ - ik· [m - n)o], 
ill kE T: 
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C~.'.K,(mo, no) (4.4) 

=_1_ 6 U (K K"k) A Hexp[-ik(i)(m(i)-n(i)o] 
I 1\ I kE r. r. , , 1=1 

6 

+Ex exp[ - ik (I)(m (j) 0 + n(O /j + l ill}, 

X=D,N, EN=1, ED=-1. 

We write, for fE L ~(A), 

1f (k1o ... ,km) = 1 Al m/2153 TI f(no);;, f~(n/j). (4. 5) 
n6EA6 /=1 

["or X = P it follows from (3.15) and (4. 5) that 

hP(k 1, •• • , k m ) = (27T)3/2fo(k 1 + ... + k m ). 

We next consider the momentum cutoff function K(k6 ) 

more closely. Following Feldman, 8 we define A, u, and 
U-the maximum lower cutoff, the minimum upper cut­
off, and the maximum upper cutoff of a group of legs­
by 

>..=max{2,O'jO}, u=min{J3jll}, U=max{J3;O}, (4.6) 
it' itl i,l 

where n (k(o) =n(k(o/J3(i» - n(k<il/O'(i» is the 
'Ill, '" 1,6 'I 1,6 I 'I 1,6 I 

momentum cutoff function in the ith space- time direc-
tion for the leg l. Because of the lattice cutoff we may 
assume that 

{lin", 27T/O for all i and l. (4.7) 

Let 

SUPP17s, '" (kJ;~) n [- rr/o, 7T/ 01 = [- J3J:J, - a;: ~1 U [o:;:~, J3i: i]. 
We denote >"6' u6 , and U6 as the o-dependent maximum 
lower cutoff, minimum upper cutoff, and maximum 
upper cutoff of a group of legs obtained by replacing 

(I) (.)(1) b (I) (.)(i) t' I . (4 6) F a, ,''' y 0",6, "',6, respec lYe y, In . . rom 
(3.18) and the definition of k6 in (3.2) it follows that 

1>"/>"61:1 "'°(1), lu/u6 1:1 ",0(1), IU/U6 1·1 "'0(1). 

(4.8) 

Finally, from (4.3) it also follows that 

1 (C~'K'K')(n15, no) 1 '" 0(1)U. (4.9) 

We are ready to prove Theorem 4.1 and Theorem 4. 2. 
As we stated before, we will only give a sketch of the 
proof and leave the details to the reader. 

Sketch of Proof of Theorem 4.1: We only consider the 
proof of the theorem for the >..<p~ field model (i. e., the 
case of a = Il = 0). Since the term ac{l2 + J.Lc{l does not 
introduce any divergent counter terms, we only need to 
change certain combinatoric factors slightly in the 
following proof to account for this additional term. This 
can be done easily. See also the argument given in 
Ref. 11. We follow the same steps as in the proof of 
Theorem 3.1, Ref. 1. 

Step 1: The iruiuctive expansion: As a consequence of 
(4.8) and (4.9) one may employ the expansion of Glimm 
and Jaffe7 and Feldman8 to obtain 

(4.10) 

where ]X(G) is the elementary integrals labeled by the 
Feynman graph G. We remark that in dealing with Wick 
vertices we have used a polynomial in the fields similar 
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to that in Sec. 3. 2 of Ref. 7. This can be justified as a 
consequence of (4.9). We note that IX(G)'s can be ob­
tained "essentially" from those of Refs. 7, 8 by 
replacing 

fd 3k (~~nkPTf' C~I) kE~'N 
J.1. (k)"1 

(gXankl + ... + k m) 

am~ 

by 
J.1.6 (k )-1 

(x~)(k1> ... ,km ) 

om~,. 
(4. 11) 

The estimate leading to Theorem 4, 1 is completed by 
first using the method of combinatoric factors to bound 
the number of terms in the sum of graph G and then 
bounding the size of each term. 

Step 2: The combinatoric factors: The combinatoric 
bounds given in Ref. 8, Lemma 4.1, apply equally well 
to our case. This follows as a consequence of (4. 8). 
See also the argument given in Step 2 of the Proof of 
Theorem 3.1 of Ref. 2. Using the combinatoric esti­
mates, we have that 

where c (G) is the combinatoric coefficient given 
above. 7,8 

(4. 12) 

Step 3: Localization factors: This step is one of the 
most complicated parts of the proof. As explained be­
fore we need a modification to the method used in Refs. 
1, 2, 7, 8 to deal with D, N boundary conditions. Since 
we do not have translation invariance of dJ.1.~ 6, 
X = D, N, we cannot translate each cube in ix (G) by a 
simple method. See Ref. 7, Sec. 5. 2. To demon­
strate our method for isolation of the distance factors 
from IX(G), we first consider the simplest graph given 
by 

I!,a,(G)= I~I kb {(X!)(k)(x~,)(k)}u6(K,K';k) 
6 

= 06 0 cf K .,(n6, n'o), 
noEA ,. 
n'I>Ea' 

(4.13) 

where A and A' are the cubes centered at po and 
p'6,P,P'EZ3

, respectively, Let Ao and A6 be the cubes 
obtained by translating A and A' to the origin. We write 

3 
Xa(k) = n X~)(k(!», 

i=1 

X~)(k(ll)=a I; exp(-ik(!)n(Oo). 
n(il6 
nGEa 

We then have the following result: 

Lemma 4.4: Let I~.a' be given by (4.13), For 
X=D,N, P and y=O, 2,4"", 

II (pa - p' a) I iI~, a,(G) I 

(4. 14) 

<:; 0(1) n:~x {(th I~ I kP
Tf 

I (~ (Df,i)2Y12Uo (K, K'; k) 

x Xao (± k )Xao (± k) I} , 
361 J. Math. Phys., Vol. 18, No.3, March 1977 

where Xa(±k) = n~=1 X~)«_l)nik(il) for n= (n1> n2,n3) 
E Z3, Ini 1<:; 1, and (1/2)p = 1 and (1/2)D,N = 1/2. 

Remark 4, 1: One may easily check that the expres­
sion in the lemma is bounded by 0(1) as a consequence 
of Lemma 3.4. Hence, the above result implies the 
uniform polynomial decay of the lattice and momentum 
cutoff covariance. 

Proof: We first consider the lemma for X = P and 
y = 2. Translating A and A' to the origin, we get 

I~,a'= (21~)13 L; U6(K,K';k)Xao(k)Xaij(-k) 
kETf 

xexp[-ik' (p-pt)61. (4.15) 

For Ix(1l1 p -'S l/2 and Ix<il I D,N -'S ZI we define 

Ix(1l11,6'" h 2 (l/21T)2{2 - 2 cos[ (21T/lI)X(Il]}, 

Ix<lll~, N, 6'" h 2 (l/1T)2{2 - 2 cos[ (1T/li)X (oJ}, (4.16) 

From (3.18) it follows that 

Ix(illi"" Ix(Oli,o, X=D,N,P, (4.17) 

if IX(lllp-'SZ/2 and Ix(ilID,N-'SII_ We also note that 

1 n(1 )61 i,6 exp(ik (On (I) 6) = t1T2(Df' 1)2 exp(ik (I)n (I )6), 

i=1,2,3. (4.18) 

We now use (4.15), (4.17), and (4.18) and the discrete 
version of the integration by parts to obtain the lemma 
for X = P and y = 2. Here we also used the periodicity 
of U6 (K, K'; k) (period 21T/6). The lemma for general y 

follows from a method similar to that for y = 2. This 
proves the lemma for X = P. 

We next establish the lemma for X = D and y = 2. We 
substitute (4.4) into (4. 13). We then translate A and 
A' to the origin to obtain 

1 {3 I~.a'=-IAI I; Uf>(K,K';k) 66 I; n 
kE 7f n6Ea91=1 

n'6Eao 

X Hexp[ - ik (O(n (I) _ n,(I»6 + ik (I) (P (0 _ p,(ila] 

- exp[ - ik (l)(n(O + n,(l)a + ik (I)(P (I) a + p,(j)a + II) ]}. 

(4.19) 

Let A be the set of all subsets of {I, 2, 3}. By expanding 
the above we have 

. 2 

I~, a'= I; (± 1) jew (12~)1 I; U6(K, K'; k) 
aEA l kErf 

x[ A x~)(k(l)x~)(+k(l) exp(i I; k(l)(p(ll_ p/(I)a 
1=1 0 6 i Ea 

+ ~ k(il(p(l)a +p,(1)6 +1;)\J } 
lEa 'J 

'" I; ~:~" (4,20) 
aEA 

where a is the complement of a E A and (+) and (-) signs 
depend on a. An elementary calculation yields 

Ix(l)-y(f)I"" Ix(ll+y (o+ZII for IxU)I, ly(OI <:;Z/2. 

(4.21) 
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We consider each term in (4.20) separately. From 
(4. 17) and (4.21) it follows that 

jjpO-P'<5j~/~:'::"j ~ I ( 6 j(p(j)_p'(I»oj~,6 
lEa 

+ 6~ l(p(f)+P'(/)<5+lll~)/~:~'I' (4.22) 
lEa iJ 

We now use (4.18) and the argument below (4.18) to 
bound the above by 

O(l)(W I~I 6 I (t (D~,;)2uo(K,K';k) 
kE TJ? 1=1 

x ~ X~o)(k(i»X4o(±k(i))I. 
1-1 • 

(4.23) 

Since the above bound holds for each a E A and since 
there are 23 terms in (4.20), we proved the lemma for 
X = D and 'Y = 2. The lemma for the other cases follows 
from a straightforward modification of the method used 
above. This completes the proof of the lemma. _ 

We now generalize the method used above to isolate 
the distance factors from more general graphs in (4, 12). 
We begin by introducing more notation. We define 

Z':1'" {(nj, ... ,nm)jnj=O,l, l~j~m}, 
(4.24) 

For given a E Z~l [a = (a(1), a(2), a(3»] we define an opera­
tor Pa by 

(Pa(f)X:~»)(kij) + ... + l?~i» 

= Xiil«- 1)"1ki il + ... + (-l)"mk:':» ~ 

a(j) = (nj, ... ,nm ) E Z':1' 

(4.25) 

We extend the above definition to the function F 4,o(k) 
defined in (3.16): 

(4. 26) 

Here we have written F4 ,o = nf=1 F~,)o. Eventually, we 
will assign the operator Pa to the kernel of each vertex 
in a given Feynman graph G. Let w(k , ) be the kernel 
of the graph G consisting of the kernels {WI (k',I) 
Ii = 1, ... ,q} of the vertices in G. One may write 

q 

w(k , ) = n wl(k"I)' 
i=1 

Let M be the total number of legs in G. We assign an 
operator Pa , a E Z~r, to the kernel w(k,) in the following 
manner: 

q 

Paw(k,) = n (Pa.wl)(k" I), 
1=1 • 

where (Pa wl)(k , I) is obtained from wl(k, I) by replacing 
i' '""" 

X4(k1 + •.. + km) in wl(k"I) by (Pa,X4)(k ,,l)' Hence, for 
given Pa , a E z~1, ai's are defined implicitly and vise 
versa. We are now ready to control localization factors. 
Following Glimm and Jaffe, 7 we first divide cubes in 
Gil, P, C, W-vertices such that the conditions in Ref. 7, 
Sec. 5. 2, are satisfied. We then obtain 
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/X(G) =6/X(G,,), (4.27) 
" 

where G" is the graph corresponding to that of Refs. 7, 
8. Hence, one may write 

/X(G,,)=(l/IAI)M 6xW~(k), (4.28) 
k' sE 76-

where M is the total number of k's in the summation. 
Let df be the scaled distance analogous to that defined 
in Ref. 7. We prove the main result in this step. 

Proposition 4. 5: For X = D, N, P we have 

/X(G")~( II[Oll(d;)om J) ~~x{J;(G)}, 
lino. , 

connect to 

P, c, W (or Gft ) vertices 

I;(G)= f(th 1~I)m 6 Paw(k), 
\ k'.E 7f 

(t)p=l, (i)D,N = i, 
where, with exception of the kernels of the mass renor­
malization cancellation diagrams, the kernel Paw(k) is 
obtained from the corresponding majorizing kernel 
w(k) of Ref. 1, (3.15), by replacing each function 
Fo, 4 (k1 + ... + km) in w(k) of Ret 1 by (Pa,F 4,6)(k1 
+ ••. + k m), where a' E Z~l is implicitly defined by a 
given a E Zs,n, The kernels for the mass renormaliza­
tion graphs are given by (4,34) in the following proof. 

Remark 4.2: For X = P there is only one term on the 
right-hand side of the proposition, namely, the term 
corresponding to Pa = 1 (see Ref. 2). One may expect 
that the term J; (G) for Pa = 1 is dominating the others 
corresponding to the case of Pa'" 1. We will exploit 
this observation in the Appendix. 

Proof: The complete proof of the proposition is very 
complicated mainly because of notational complication. 
In principle, the proposition will follow from the method 
used in proving Lemma 4.4 together with Lemma 3.4. 
For X = P the result follows as in the proof of Lemma 
4.4 (see also the step 3 of Ref. 2, Theorem 3.1). We 
give the proof for X = D. A similar method gives us the 
proof for X = N. 

Let us assume that the graph G" does not contain W 
vertices and mass renormalization diagrams, We write 
/X(G,,) in the lattice space expression (i. e., in the con­
figuration space). For instance, see (4.13). We then 
have 

/D(G,,)=03M' 
"loE 41 lino. I 

i=1,oooM' connecting 
between vertices (4.29) 

In the above expression each C~,/(,/(,(ii/o, n;o) represents 
a line l connecting two lattice points localized in two 
cubes, say, AI and Ai (AI * Ai)' and M' is the number 
of vertices in the graph G". We now follow the proce­
dure used in the proof of Lemma 4.4. We first substi­
tute (4.4) into (4.29) and then translate each cube 
AI, i = 1, ... , M', to the origin. One then has 
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JD(GoJ = 15 3M' 6 f1 ( 6 Uo(K, K' ;kl) 
n,OE.l.i.O, lines 1 klE Tf 
1=1, .00, M 

(4.30) 

where ~i. 0 is the cube of volume I ~i I centered at the 
origin, and PI 15 and M15 are the centers of the cubes 
connected by the line 1. We expand (4.30); we then have 
23M I terms, where MI is the total number of the lines in 
G",. Each term has a multiplication factor (1/2)3M,. By 
changing the order of summations in (4.30) we may 
write 

JD(G",)= 6 [(±1)IAI-M2-~ 6 f1 (P.w)(k l )]' 
aEZ:~l kl' sE Tr vertices 

(4.31) 

where 

---1 f1 U6(K,K';kl~ ~ [j f1 (P.X~»)(k:::+'''+k~)} 
\lines 'l j=1 )vertices r 

x f1 {exp[ikil)(PiO - P;(O)15] if nil) = 0 }J 
lines I exp[ikil) (Pi015 + M(il15 + 1;)] if niO = 1 . 

Here {kl. z, ••• ,k"., ,}c {kill = 1, ... ,MI } and n 1 is a com­
ponent of a E Z~11. Notice that each component of line 1 
has a factor either exp[ikiil(plil - M(i»15] or else 
exp[iki°(pi015 + p;(i)15 + li)] depending on a E Z~11. We now 
employ the method in the proof of Lemma 4. 4 to pull 
out the distance factor from the above exponential func­
tions. See the step used in (4. 20)- (4.23). The proposi­
tion follows from Lemma 3.2 and the method used in 
Ref. 7. 

For a graph G", containing W vertices, we follow a 
similar procedure. We need to be careful to handle W 
vertices. The kernel of an individual W vertex has the 
form [(6. 2. 2)- (6.2.4) of Ref. 7] 

w(kt. •.. ,k1) = (111.0' •• 1l'.Ot1Vfi (k l , •.. ,k,), 

Ii X~(ki) 
vij(kt. ... ,k,)=c ~ -x. (0) 

JICil i:1 ~ 
(l ..... ml=JI 

(4.32) 

where 11 is the product of momentum cutoff functions. 
See Ref. 7 for the detailed discussion. We follow a 
procedure similar to that used before. In the procedure 
we consider (4.32) as the kernel of one W vertex. That 
is, in the final step in which (4.31) was derived, the 
sign of each kJil, j = 1, ... ,l, i = 1, 2, 3, is the same in 
each term in (4.32): 
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us to exhibit the low momentum cancellation explicitly 
as in Ref. 7. The rest follows as in Ref. 7. 

Finally, we consider the mass renormalization can­
cellation diagrams. The majorizing function for a given 
diagram is very complicated because of our lack of the 
translation invariance of covariances for X = D, N. We 
will derive it carefully. The diagram under considera­
tion corresponds to the following expression in the 
lattice space: 

m-li--4;~--m'li - mli~' m'lI 

{
I 2 2 "" ~ 242 • 6 = 2A 15mo•K•K' '-' ut:.,.l.' - 2A 

n6E.l. 
n'6E.6.' 

X 1; (AC~K K,(n15,n'Ii)\} 
ntH::..l. ,i=1 • i' i ') 
n'OE.l.' 

x C~.K4.K4 (mli, nli)C~.K5. Ki;(n'15, m'Ii), (4.34) 

where K = f1~=IKi and K' = f1~=IK;. We use (4.4) for 
CD

A K K', j =4, 5, in the above expression. We do not 
• i' J 

decompose C~K .K' for j = 1, 2, 3. We follow the proce-
dure used befor~. J After isolating localization factors, 
the majorizing function of the kernel of the mass re­
normalization cancellation diagram has the form 

I D'R.k4
D'R: k5 [(U4. 6 -lu5• 0 -IK S (k4•0)K S (k 5• 0» 

x 6 h 2 {15m~'K'K'Ii.l.'.l.' - 4
2

• 6 
nOE.l. 

n'6E.6.' 

X ( ~ C~.K .K' «(n + P)15, (n' + P')15») } 
i=1 i i 

xC~ exp(±ikli)n(i)15»)(i~ exp(±ik~i)n'(il) )JI, 
(4.35) 

where X = D, p15 and P'Ii are the centers of ~ and ~' 
respectively and the (±) signs in the exponential func­
tions are determined by a given a E Z~1' in the proposi­
tion. The detailed derivation of (4.34) is left to the 
reader. This completes the proof of the proposition. 

Step 4: Estimates of I;(G)'s: We assert that, for each 
a E Z~~, and X = P, D, N, I;(G) is bounded above by a 
product of factors given by those of Ref. 1, Step 4 in the 
proof of Theorem 3.2 of Ref. 2 (equivalently those of 
Lemma 5.1, Ref. 8). The theorem now follows from 
Proposition 4. 5, the above assertion, and the method 
in the proof of Theorem 3, Ref. 8. 

We prove our assertion. We use the method of de­
composing big graphs into small graphs to estimate 
1; (G) for each a E z~1' and X = D, N, P. We adapt the 
decomposition process of Refs. 1,7, 8. As in Refs. 1, 
7, 8, it is sufficient to establish the bounds correspond­
ing to Ref. 1, Propositions A.1, 1-5 for small graphs 
[for each a E Z~1' and X(= D, N, P)]. The estimates of 
the small graphs corresponding to those of Ref. 1 are 
given in the Appendix. See Propositions A, 1-2 in the 
Appendix. This proves our assertion and completes the 
proof of the theorem. 

Proof Of Theorem 4.2: We employ the method used in 
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the proof of Theorem 3 of Ref. 8 (also Theorem 3.4 
of Ref. 1) together with Theorem 4. 1 and the method of 
its proof. The proof then follows as in Refs. 8. We 
leave again the detailed proof to the reader. 

APPENDIX: ESTIMATES OF SMAll GRAPHS AND 
THE MASS RENORMALIZATION CANCEllATIONS 

In this appendix we establish the basic estimate for 
small graphs including the mass renormalization can­
cellations and obtain the same upper bounds as those of 
Propositions A. I-A. 5 of Ref. 1 (equivalently Proposi­
tions 5.3.3-5.3.6 of Ref. 7 and Theorem 6 of Ref. 8). 
We will only sketch the proof. For the detailed struc­
ture of the proofs we refer the reader to Refs. 1, 7, 8. 
We begin by proving the following: 

Proposition A.l: 

For each a E Z~11 and X (=D, N, p), the bounds of the 
small graphs corresponding to Proposition A. 1. 1 and 
Propositions A. 1. 3-A. 1. 5 of Ref. 1 hold in our cases. 

Proof: We will reduce the problem to that of Ref. 1. 
From Proposition 4.5 it follows that if one replaces 

-./6 b IA I kE71 f "/6 a3k ~ )(1)& (217)3 6 

F o,A(k1 + ••• +km) y (PaFA,5)(k1 + ••. +km) 

(AI) 

in the expressions for small graphs in Ref. 1, one ob­
tains the corresponding expressions in our cases. To 
give the general structure of the proof, we prove the 
proposition corresponding to Proposition A. 1. 1 (a) of 
Ref. 1. The majorizing kernel of the graph 

is given by 

l_E: 
4 

See Proposition 4.5 and Sec. 6.2 of Ref. 7 for the de­
tails. Hence, 

[ (
21T)3)2 ]1/2 ,,; (~)11AT 6 x\V~(kl,k5)\2 , 

kl' k5ET6 (A2) 

\V~(kl,k5) I,,; (Hk (~~~r 6_ y Iv;(k2, k3, k 4 , k j ) I 
kjET"6 

1=2,3,4 

Since u(k) and Ks(k) [and also u5(k) and Ks(ko)] are even 
functions of k, we can set Pa == 1 in the estimate of (A2) 
for all a E z:1 1• We also note that since 

(A3) 
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we can replace 

(1)l(21T)3) 6 bY! ./0 d3k 
I A I kErf -!f/6 

(A4) 

to get the upper bound of (A2). Hence, IIA~X)1I3.1 in (A2) 
is bounded by that of Ref. 1 for free boundary condition 
[(A. 3. 5)-(A. 3. 7) of Ref. 1]. As in Ref. 1, IIA~X)lb,l is 
bounded by 

0(1) I ~ I" (10gv(2»1!2 for E' > O. 

This proves the proposition for the graph under 
consideration. 

To prove the proposition for the remaining cases, we 
only need to combine the method used above together 
with that used in Ref. 1. In the most cases, the estima­
tions are reduced to estimates of operator norms of the 
majorizing kernel of a single vertex (or Hilbert­
Schmidt norm of the kernel). During a certain stage of 
the estimation we can set P a = 1 and use the replacement 
in (5.4) by the same reasoning as before. One may 
check explicitly that for a given graph the upper bound 
for Pa* 1 is bounded by that for Pa=L Then the prob­
lems are reduced to those for free boundary condition 
in Ref. 1. The proof follows as in Ref. 1.. 

We finally consider the cancellation of the mass re­
normalization. We state the result. 

Proposition A. 2: (The mass renormalization cancel­
lation): Let 1V; (k4, k5) be the kernel of the mass renor­
malization cancellation diagrams given in (4.34). Then 
the result corresponding to that of Proposition A. 1. 2 
of Ref. 1 holds for all a E z~1j and X: 

\ I UI~ \ \ ,,; 0 (1) (\ ~ \ \ ~' \ )eA -ed-n 

for some E > O. Here d is the scaled distance from ~ to 
A'. 

Proof: We will reduce the problem to that of free 
boundary condition treated in ReL 1. Then the result 
will follow as in Ref. 1. We introduce 

3 

omX;~.K.",(mo)=42.6 03 6 n[C~'Ki'Ki(mo,no)]. (A5) 
noEA6 j=1 

The above is the coefficient of the mass renormalization 
counterterm appropriate to X boundary condition. We 
will prove the proposition for X =D. The proposition for 
X = P, N follows from a straightforward modification of 
the method for X = D. We first show the result in the 
proposition for the diagram 

l,\26 m2 
2 

• 
That is, we prove 

(l}-o 

11( ,~,)2 .0 D 6 [[omL'K'-om~~L'K'«m+p)o)] 
k4• k5E To m6E l>.o 

XD'R k D'R' k (A U6(kiJ-IKs(ki.6)) 
, 4 t 5 1=4 

X~~Il \exp[± i(k~j) ± k~iJ)mb ]]11"" 0 (1) 16.12'A -" (A6) 

where ~o is a cube of volume 16. 1 ,,; 1 centered at the 
origin. We substitute (4.4) into (A5) to obtain 
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5m~~~, .. (m5)= (1~I)g 6 D V(kl,k2,k3) 
Ri ET6 

1=I,2,g 

3 
Xrr I(/) (klo ,k~j), k~O;m5), 

1=1 

where 

v(k l , k2' kg) =(A u6(k/t2Ks, I (k,,6)K~, I (k i , 6~' 
1=1 ') 

(A7) 

(AB) 

fO -= 53 6 [A t {exp(- ik)Om(i) 5) - exp(ikjOm(/) 5 + il,)} 
n(1l6 i=1 
n6EA6 

X exp(ik}i)n(/) 5)] 
=42 ·B· (t)95k(j)+k(j)+k(j),O~( A [1- eXP(ik}l)ll)]) 

! 2 3 l i =1 

+ {exp[ - i(kli> + k~i)m(il 0 + ik~O (m (Il 5 + li)] + cyclic} 

+ {exp[ - iklom (j) 5 + ik~i) (m(1> 5 + li) + ik~i)(m (i) 0 + li) 1 
+ cyclic} ] 

-=tI~j)(klil,kiil,k~i); m Ci)5). 
i=1 

We substitute (AB) into (A7). We then obtain 15 terms 
from (A7). We write 

(A9) 

where 5m(D),J, j = (juj2,j3') is the term corresponding 
to Ij1)IjJ)IjJ.) , j! ,j2,j:i' = 1, ... ,5. The contribution of 
5m(O)", j* (1, 1, 1) (the term containing at least one Ij'), 
j -= 2, ... ,5), to (AB) is very small. In fact, it is bound­
ed by 0 (1)ljl I ~ 12e:\:ed-e• The main reason is that each 
term Ijil, j = 2, ... ,5, contains at least one factor 
exp(ikji) 1i), i = 1, 2, 3. We multiply a factor (1,t2 11j I ~,6 
~ 0(1) to 6m(O),j and use the technique employed in pro­
ving Proposition 4.5. In this way one may pull out a 
convergence factor from each exp(ikj01i)' The proof is 
easy, and we leave it to the reader. Hence, it is suffi­
cient to consider the contribution coming from om(O)", 
j= (1, 1, 1), i. e., the term obtained solely from the 
Ilo, i=I,2,3, in (AB). We note that 

Xv(k l , k2' k g)6(kl +k2 +kg). 

The only difference between om(D),(I,!,1) and om2 is that 
of the discrete integration (summation) and the contin­
uous integration. It is easy to Check that 

10m2 • _ 5mCO), (I,l,p I ';O(1):\.-e. 
5,K S ,J(S A,5.IC S 'ICS 
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We replace om CO ) by omCD),O,!,1> in (A6) and use the 
above result. Then the bound (AB) follows from Lemma 
3.2. This proves (AB). 

As a consequence of (AB) and (4.34), the following 
result is sufficient to establish the proposition: The 
Hilbert-Schmidt norm of the kernel of the diagram 

= ID~'k D~:k IrA U6;i KS oi) 6 ~2. 42
• 6 

4 5Lv=4 n6Eao 
n'6E..1.0 

X{6a ,a'6n,n'( 6 A c~," , •.. (m6, (n' +P')o)\ 
o 0 m6E Ai; i = 1 j J '/ 

- A cL ,K •• «n +p)6, (n' +P')6)} 
1=! i J 

x(~, ""p(±ikl"n'~ ~~, exp(±ik~'n")]1 (AlO) 

is bounded by 

1110.1,.1.11 ~0(1) (I~I 1~'lteA-ed-n. (All) 
HoS. 

The proof of the bound in (All) follows from the meth­
od used in Appendix A. 4 of Ref. I, a method similar to 
that in the Step 3 of the proof of Proposition 4.5, and 
Lemma 3.4. We do not produce the detailed proof of 
(All); we only give a description of the proof. We first 
substitute (4.4) into (AID) and expand it. We then have 
29 terms. After the summation over the lattice space 
Aa, each term has a form similar to that of (A4.1) of 
Ref. 1. In principle one may obtain the expression of 
each term in (AID) from that of (A4. 1) of Ref. 1 by 
replacing 

-rIo 

(PaXa )(k j +k2 +kg +k4) o 

J7/6 dgk ~ 

(X4o)&(kl + k2 + k3 + k4) by 

(X a' )0(- kl - k2 - k3 - k5) o (P a' Xa;)(- k j - k2 - kg - k 5), 

(A12) 

when (PaXa)=Xa(± (k l +kg+kg)±k4) and Pa.Xa. 
= Xa'(± (k j + k z + kg) ± k 5). Otherwise there is no diver­
gence. We use Lemma 3 0 2 and follow a method simi­
lar to that used in Appendix A. 4 of Ref. 1 to bound 
each term in (AID). The rest of the proof follows from 
a straightforward modification of the method in Ref. 1. 
This proves the lemma for X = Do The proof of the 
proposition for X = N, P follows in a similar manner. 
This completes the proof. 
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The problem of calculating the equilibrium properties of dense fluids in the semiclassical limit when the 
quantum effects are small is studied. Expressions are given for the pressure, free .energy, and the rad[al 
distribution function in terms of the properties and correlation functions of the c1ass[cal ~ystem and .s-body 
"modified" Mayer functions -"',2, .... ,. It is shown that the correct radial dis~rib~tion function .of a flUId III t~e 
semiclassical limit is generated from the classical radial distributIOn function [f we replace III turn each J 
bond (f0 = e -1l4>([,2)_1) by an effective r ff bond, where rrr = fO+(1 + Jo)r +(1 + JO)(1 + r)L 

[2 . . III fli" 
and where L is subset of the line-irreducible graphs each of whIch contalll one J bond. The e ectlve paIr 
bond correct to the second order in thermal wavelength A ( = l21Th2/31 m) 112) for a fluid of hard spheres is 
calculated for Aid = 0.1, and 0.2 at reduced densities p* = 0.3 and 0.6. The most striking effect of the 
quantum mechanics on the structure of a hard-sphere fluid is found at and near the point of contact of the 
hard spheres. 

I. INTRODUCTION 

In recent years considerable progress has been 
made in understanding the structural properties of 
classical fluids, made of spherical or nearly spherical 
molecules, thanks to the molecular dynamics and 
Monte Carlo methods, 1 and to very ingenious theories 
like the scaled particle, 2 the Percus-Yevick theory, 3 

the hypernetted chain,4 and various perturbation 
schemes. 5-11 However, when dealing with the fluids in 
which deviation takes place at a microscopic level 
from classical law, our theoretical understanding is 
far from satisfactory. 12 

In the semiclassical limit, when quantum effects 
are small and can be treated as a correction to the 
classical system, the usual way of studying the proper­
ties of fluids is to expand them in powers of Planck's 
constant h. 13

-
20 The first term of this series is a classi­

cal value and other terms arise due to quantum effects. 
In the Wigner-Kirkwood (WK) method, 13,15 expansion is 
done in powers of the kinetic energy operator ft2v 2

, 

which leads to a series in powers of ft2. Since V2 
operates on the potential energy term, the WK method 
fails in cases where the intermolecular potential is a 
nonanalytic function of distance. Such systems are 
dealt with by the Hemmer-Jancovici (HJ) method19 ,20 
in which expansion is done in terms of the Ursell func­
tion and which leads to a series in powers of fl. Re­
cently, in a series of papers, Singh and Ram21 ,22 and 
others23,24 have investigated the effect of quantum 
mechanics on the structural and thermodynamic prop­
erties of fluids. Expressions for the first quantum 
corrections were derived using the WK method for the 
analytic potential case and the HJ method for the non­
analytic potential case. The fluid of hard spheres has 
been treated for the thermodynamic properties to the 
second quantum correction term by Gibson. 25 It is 
found that the contributions of the higher-order terms 
(corrections) increase with the density. At liquid den­
sities, one has to consider several terms of the series 
even at sufficiently high temperatures. This suggests 
developing a theory or method which should enable us 
to sum the series. 
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This paper is concerned with the evaluation of the 
thermodynamic properties and low-order correlation 
functions of dense fluids in the semiclassical limit. 
The major emphasis is on the development of a general 
method applicable to all types of fluids and with suitable 
approximations to all order of the quantum corrections. 
We use the grand canonical ensemble and functional 
differentiation technique to derive the required results. 
These results are given in terms of the properties and 
correlation functions of the classical system. Then it 
is shown how the different quantum correction terms 
for different fluids can be derived from these 
expreSSions. 

In Sec. III, we define an effective pair potential 
(functions of temperature and density) that will be 
found if the properties of a fluid, in which quantum 
corrections are present, are interpreted on the assump­
tion that such corrections are absent. Usually, the 
examination of different properties leads to different 
effective pair potentials. Here we shall confine our­
selves to that effective pair potential which generates 
the correct radial distribution function in the semi­
classical limit. 

Expansion of the grand partition function and the s­
body correlation function are developed in Sec. II in 
terms of diagrams26 (or graphs). A diagram is a collec­
tion of circles (or vertices) and bonds connecting the 
vertices. There are two types of Circles, white and 
black. Each white circle has a label and position 
associated with it, but black vertices are unlabeled. 
Each bond has associated with it a function of positions, 
The value of a diagram is defined in terms of these 
functions and an integration over the positions which 
can be assigned to each black circle. According to 
convention,26 a factor which is determined by the topo­
logical structure of the diagram is associated with the 
value of the diagram. For a detailed discussion of this 
aspect of the problem, readers are referred to the 
articles by Stell, 26( c) and Morita and Hiroike. 26(b) 

The exchange effects, which are introduced by the 
Bose-Einstein or Fermi-Dirac statistics, have been 
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neglected in this paper. In the case of dilute gas, it 
has been found that the exchange terms decrease 
rapidly with increasing temperature and are negligible 
in the temperature region we are concerned with. 27 
However, for dense fluids the situation is not so clear 
and it is possible that the exchange effects do form a 
significant part of the total correction at intermediate 
temperatures. We propose to examine this effect in a 
future publication. 

11. GENERAL FORMULATION 

The grand paritition function and the grand canonical 
s-particle density distribution function are defined by 

:9:(V, P, z)= Eo ~! f ···f exp [t Y(i)] 

N 

x WN (1, 2, •.• , N) n di (1 ) 
i=l 

and 

ns(l, 2, ... , sf z) =2-1 6 (N 1 ) 1/· .. j exp [t Y(i)l 
N-.,s - s . /=1 J 

N 

XWN (1,2,o •• ,N) n di, 
i:;S+l 

where y(i) = lnz(i) = - 3V' + PJ-l - (3¢(i), the fugacity 
Z=\-3 exp (+PJ-l) (fl is the chemical potential) and 

WN(1,2, •.. , N) =i\3N(1, 2, ... ,NieBH il,2, ••• ,N). 

(2) 

(3) 

Here HN is the Hamiltonian operator of a system of N 
identical particles, each of mass m put in a container of 
volume V. Under the assumptions that the total potential 
energy of interaction is pairwise additive and that the 
molecules are spherically symmetric, one can write 
for the Hamiltonian 

(4) 

where ¢(i) is the potential energy of a particle i situated 
at ri due to external forces, and ¢(i,j) is the pair poten­
tial energy between particles i and j. 

In the semiclassical limit one has 

(5) 

where % is the classical value of WN and is defined as 

% =expl- {:l £ ¢(i,j)l. (6) 
i<i 

In the WK expansion, WN is expressed as 

(7) 

where 

e2(i)=- ~~ [v~ 2 ¢(i,j)- ~ (VI 2 ¢(i,j)rJ, (8) 

and in the Hemmer-Jancovici expansion 

WN = 1 + :0 u;'(i,j) + 6 u;'(i,j, k) + ... , (9) 
;<j I<j<k 
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where 

Vl"(1) = w;n(1) = 1, 

u;'(1,2)= wg>(1,2)=1, 
(10) 

u;'(l, 2, 3) = ~(1, 2, 3) - W;(l, 2) 

- W;(1, 3) - W;(2, 3) +2, 

and so on. Here U'{'(1, 2, •.• , l) is a "modified" Ursell 
cluster function of l distinguishable particles. From 
(10) it is clear that (i) the product property of \¥7"s 
implies the cluster property of the U'{"s and vice versa, 
and (ii) Vl" can be found from a solution of the quantum­
mechanical l-body problemo Equation (9) represents the 
expansion of WN in a more general way and reduces to 
(7) if the potential function is differentiable. 

We find it more convenient to work in the grand 
canonical ensemble with what we call the "modified 
s-particle Mayer function, " ff2 ... s being defined so that 
it reduces to zero if anyone of the particles 1,2, •.. , s 
becomes remote from the others and 

N N 

WN(1,2, ••• ,N)=n (1+flJ) n (1+flJD···. 
i<j i< j<k 

Comparing (11) with (9) we find that 

0;'(1) = 1, 

U'{'(1,2, ... ,l)=6 n UffflN···), 
c I c I 

(11) 

(12) 

(13) 

where the sum of products is carried out over all con­
nected graphs C of llabeled points. 

The s-particle cluster function which arises in a 
natural fashion in the study of a statistical mechanical 
system is defined by a functional derivative of l~26(c): 

. 6s 1n2 
Xs(1, 2, ••• , s) = ~ exply(z)] 11 e (ill (14) 

l::!iips:s l~i:$B xp Y 

The other definition of the cluster functions is obtained 
from their relationship with the s-particle distribution 
function, 

(15) 

where the sum of the products is carried out over all 
possible divisions of the s-particles with the condition 
that L: apr; = S. By successive variational differentiation 
of X 1 (1) we find 

6X s (1,2, ••• ,s) (1 2 l) 
6Y(z) =XS>I' , ••• , s; 

(16) 

+Xs(1, 2, .•. , s) 6 6(i -1). 
i=l 

S.K. Sinha and Y. Singh 368 



                                                                                                                                    

Substitution of (11) in (1) and (2), respectively, leads ns=n~ + n~, (19) 

to where 

:=:(v, p, z) = t ;, / '" f exp[~Y(i) - {3 £¢(i,j)] 
N?::Q • ,=1 i<J :=:o(V, (3, z) = Eo ;! f··· f exp [Y(i) 

x[ n (1 + fll) n (1 + flN)"'J n di, 
i(J I(J(k i=l - {3 ~ ¢(i,j)] i?l di, (20) 

(17) 

I )_';;'-1 /, 1 
ns (1,2, ... ,s z - - !-...J (N ) , 

N"s - S • 

xf···/exp[~Y(i)-P t¢(i,j)] 
.=1 j(J 

(21) 

[

N N ~ N 
X n (1 +fll) n (1 +fNl)'" n di. 

j(j i(J(k I=S+l 

and 

n~(1,2, ... ,slz)=:=:~1 ~ (N~ )'/"'f exp[ty(i) 
N"s S • .=1 (18) 

- {3 ~ ¢(i,j)] n di. 
i<j i:::s+l 

(22) 
For future use we break:=: and ns into two parts: 

and n~ will be defined later on [see Eq. (28) below]. 

A. Cluster expansion of:=:, ns and XI at constant fugacity z 

The expansion of ~ at constant z is obtained from (17) in terms of the composite graphs, with fll, fIll, ... bonds 
(represented in graphs by lines, shaded triangles, ... ) and X'f polyhedron containing 1- 1 lines (represented by a 
vertex, dotted line, triangle, ... ) where A~ is a cluster function of 1 labeled points of reference system. That is 

_ n . o'ln:;'o 
~(1, 2, ... , Z) - exp[y(z)]Ill [ (')] 

;=1 i=10 exp y Z 

so that 

n~(l) =X~(I), ~(1, 2) =X~(I, 2) + ~(l)XO(2), 

n~(I, 2,3) =xg(1, 2, 3) + ~(1, 2)~(3) + ~(1, 3)~(2) + ~(2, 3)~(3) + ~(I)XO(2)~(3), 

For graphical representation the notation is 

k 

fll '" i ~. -----.. j, A 
Z J 

and 

~(i,j) == i "-"""'-e j, xg(i,j, k) == 

k 
/,fIt,,, 

..... 
I' ... .. \ ................. 

Z J 

Thus, 

~(z)=:=:(z) [1 + sum of all distinct (topologically) composite graphs with no labeled 
vertices, at most one fII-bond connecting any two vertices and/or one fIII-bond 
connecting any three vertices, with ~ polyhedron (1 ~ 1)]. 

(23) 

(24) 

I r--- .... ., k 

X~(i,j, k, Z) == 
~ : 

: . 
i L-.---.. ~j 

(25) 

Using Lemma 3 of Morita and Hiroike26
(b) we get the following prescription from (25) for the graphical expansion of 

In=:: 

where 
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~ (z) = sum of all distinct connected composite graphs with no labeled vertices, at most 
one fll-bond connecting any two vertices and/or one fIll bond connecting any three 
vertices, with ~ polyhedron (l?- 1), 

From (14), (16), and (26), we derive the graphical expansion of Xl: 

X I (l, 2, ... , l/ z) =X~(l, 2",., l/ z) + lsum of all the distinct connected composite graphs, 
composed of 1 white vertices labeled 1,2, •.• , l, respectively, some or no 
unlabeled vertices, at most one fII-bond connecting any two vertices and/or 
one fill-bond connecting any three vertices, with ~ polyhedron (l?- 1)). 

USing relation (15), we obtain the graphical expansion of ns (1, 2, •.. , s/ z), 

ns (l, 2, . , , , s/ z) = n~ (1,2, .•. , s/ z) + n;(l, 2, ... , s/ z) 

where 

n;(1, 2, ... ,s/ z) = lsum of all distinct graphs composed of s white vertices labeled as 
1,2, ••• , s, respectively, some or no unlabeled vertices, at most one fll-bond connecting any two points 
and/or one fill-bond connecting any three vertices with ~ polyhedron (l?- 1)] (Each composite graph 

(26) 

(27) 

contains at least one labeled vertex.) (28) 

Equations (26)-(28) provide the starting point for further topological reduction in the following section. 

B. Expansion of InZ, and ns at constant p 

Since the number density p is easily associated with physical measurements other than fugacity, we consider in 
this section the problem of expressing In:=: and ns as functionals of p and n~. This is done with the help of the func­
tional Taylor expansion. 

Let L(z) be any function, such as In:=:(z) or ns (1, 2, .•• , s/ z), and letting Lo(z) be its value for a reference 
(classical) system, then Lsee Eq. (19)) 

L(z) = Lo(z) + Ll (z). 

Taking the functional Taylor expansion of the right-hand side of (29) about zo' we have 

( ) f -,)(aLo(z)) -, I (-) (aL1(z)) -, 
L(z) = Lo zo) + Ll (zo + ~z(rl (az(r~) ""'0 dr1 + ~z ~ oz(r{) z=zo dr1 

+ ~ f f ~z(~)~z(~) Cz~:~~~lr~) ) Z=Zo iY~ dr~ + .... 

Here Zo is the fugacity of the reference system and 

We then transform 

J OLo(z) a21~Cr/ z) [ 
+ an~(r/ z) az(r~)az(~) ru 

so that (30) can be written as 

If (-,)(OLo(Z) an~(r/z)) 
L(z)=Lo(zo) + L1(zo) + ~zrl an~('r/z) az(~) d~drl 

Z=Zo 

If - (aL 1(Z) an~(yjz)) -, - 1 if (-,) (-,) ( a2LO(Z) an~(rjz) 
+ ~z(r;.) an~(r/ z) az(~) Z=Zo dr1 dr1 + 2: ~z r 1 ~z r 2 an~(r/ z)an~(r) z) azCrD 

(29) 

(30) 

(31) 

anO(r/z)) - - - - 1 If (-') (-')( aLQ(z) a2n~(r/z)) [,[,[ + (32) 
x ;z(~) "'0 dr~ dr~ dr1 dr2 + 2: ~z r 1 ~z r 2 an~eY) z) az(~)az(~) '='0 r 1 r 2 r 1 •• '. 

Using the relation 

- / (- a In:=: (z) 
n1(r1 z)=z r 1) oz(rJ 
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from (26) we get 

- - / - o~ (z) 
nl(r/z)=n~(rl Z) +z(r1) oz(rJ (33) 

Expanding rhs of (33) about zo' we obtain 

(34) 

At constant density we have21 

(35) 

Then each order of correction in (34) is separately zero. Thus 

(36) 

and so ono Substitution of (36) into (32) leads to 

(38) 

For a uniform system 

so that 

L(z)=Lo(zo) + L1(zo) - Zo o~~:o) :p [Lo(zo) +L1(Zo)]+} :p [(Zo O~~:o)r OLg~Zo)J +000 0 (39) 

a. Thermodynamic properties 

With the help of (39), we get the expression for In2, 

lnS(z)=lnS (z )+t(z)_ o~(zo) _ ~ (j..e.) (a~(zo») 2 +~i..[~ 2 (OPJ (a~~(pzo»)2] + •• 0 

o 0 " 0 p ap {3 P ape ap 2 ap {3 p ape} u 

=lnS (z ) + Hz ) _ P a~(zo) + p2 i.. [(j..e.) (a~(zo») 2] 0 

o 0 0 ap 2{3 ap a pC ap (40) 

Here use has been made of the relations 

a InS ap ap 
p=zo ~ and Zo az

o 
=p a({3P

c
) 0 (41) 

The pressure P of the system is given by 

{3P= V-llnSo (42) 

Substitution of (26) and (40) in (42) leads to 
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(3P=(3Pc - ;1 p2 I (~(1,2) +p a~~~,2)) U~(1,2)d2 - ;1 p3 f f (2~(1,2,3) +p O~(!~2,3)) 

xU;'(1,2,3)d2d3- ~p4f f f [3 [~(1,2,3,4)_~(1,2)~(3,4)]+ (p O~(1~!,3,4») 

- 2p~(1, 2) o~~~, 4)] [Fz'(1, 2) u;'(3,4) d2 d3 d4 + i{3 p2 :p {(:;c) [;1 :p (p2 f ~(l, 2) 

X[Fz'(1,2)d2+;1 p3f ~(1,2,3)U;'(1,2,3)d2d3) ] 2}+ •.. 

Integrating with density (43) gives an expression for the Helmholtz free energy per particle 

(3a={3ac-~pI u;'(1,2)~(1,2)d2-~p2 J J u;'(1,2,3)~(1,2,3)d2d3-ip3 J J J [Fz'(1,2) [Fz'(3,4) 

x~(1, 2,3,4) - ~(1,2) ~(3,4)}d2 d3d4 + ~~ (:;c){3 (f u;'(1,2) :p [p2~(1, 2)]d2 r + 00 •• 

Other thermodynamic properties can be obtained from (43) and (44). 

b. Radial distribution function 

For the two-particle distribution function we find from (39) and (28) that 

~ (~) = 0 (~) + ' (~)_! (~) o~(zo) ~[o (~) + ' (~)J Z 112 Zo n:." ZO {3P ape op ap 112 Zo n:." Zo 

+;{3 :p {(p :;c) 2 :p [~C;o2)] UP ~(Zo)) 2}. 
Hence the radial distribution function of the system in the semiclassical limit is 

g2(1, 2) =~(1, 2) + ~(l, 2) [Fz'(l, 2) + 2p J t;(l, 2,3) [Fz'(1, 3) d3 + ~p2 J [~(l, 2, 3,4) - ~(l, 2) ~(3, 4)] 

x [Fz'(3,4)d3d4- 2~pa~C) (3(:p [P2~(1,2)]) Up[p2 J~(3,4)[Fz'(3,4)d3d4]) 

+ p f u;'(l, 2, 3) t;(1, 2, 3) d3 + p2f ~(l, 2,3,4) u;'(1, 3, 4) d3 d4 + ~p2f[~(1, 2, 3, 4) 

- ~(l, 2) ~(3, 4)] [Fz'(l, 2) ~(3, 4) d3 d4 + p2f llf!t(l, 2,3,4) - ~(l, 3) ~(2, 4) 

x u;'(l, 3) ~(2, 4) d3 d4 + p31 [!fs(1, ••• , 5) - ~(l, 2, 3) ~(4, 5)] U:~'(l, 3)Ur(4, 5 )d3 d4 d5 

+~ p3f [!fs(1, ••• ,5) - ~(l, 2) ~(3, 4,5)] U:;'(3, 4, 5) d3 d4 d5 - 6~!3 U;c) {3 

x (:p lp2 ~(l, 2)]) Up (p3 f t;(l, 2, 3) u;'(l, 2, 3) d2 d3 ) ] + ..•. 

Following exactly a similar method one can derive 
the expressions for the higher-order correlation 
functions. 

We make here the following observations: 

Since at the point of contact of spheres 1 and 2 

u;'(1, 2, 3) '" - ~(1, 3) - ~(2, 3) 

and 

u;'(1, 2) '" - 1, 

a contribution to the first quantum correction to the 
radial distribution function at r= d also comes from 

(43) 

(44) 

(45) 

(46) 

(48) 

L For a fluid of hard spheres the leading contribu­
tion from err to an integral in (43), (44), or (46) is of 
order xl-l. Therefore, the first quantum correction is 
obtained from those terms which are linear in [Fz' and those terms which contain u;'(1,2,3) and u;'(1,2)[Fz'(1,3).25 

From this consideration one finds that at the contact 
(47) 

where n= (2'JJ")1/2(d/x)(r/ d -1); d is the diameter of 
a sphere. For the second quantum correction, one has 
to consider all those terms which involve u;' [here taken 
equal to (1/ [2) (x/ d)n2 erfcn, where erfcx = (2/I71)f; 
xexp(- f) dt], u;'(l, 2, 3), and [Fz'(1, 3) [Fz'(2, 3), and so 
on. 
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point, 

g2(d) = O. (49) 

2. If we put 

~(1,2)=- l~: {3{2V'~2<p(1,2)-{3lV'12<P(1,2)]2} 

and 
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+ V'21>(1, 2). V'21>(2, 3) 

+ V'31>(3, 1). V'31>(3, 2)]. 

From the terms written explicitly in (46), we get 
[except the three terms which involve u;'(i,j) u;'(k, l) 
where i,j, k, Z= 1, 2, 3,4 and i of-j, k;" Z] the first quantum 
correction to the radial distribution function for 
a fluid whose particles interact with a pair potential 
which is an analytic function of distance, 21,23,24 Higher­
order quantum corrections (which are not given here 
because of their length) will be obtained by considering 
a greater number of terms in (46) and by the proper 
choice of u;' and 0;', 

Exact evaluation of the integrals appearing in (43), 
(44), or (46) is not possible because the values of 
classical correlation functions ~(1, 2, 3), ~(1, 2,3,4),." 
are not known, It may, however, be noted that in the 
perturbation theory of classical fluids such integrals 
have been evaluated either by using simplified superpo­
sition approximation28 or the Barker-Honderson dis­
crete summation method, 29 But, any such attempts here 
can have only limited success for reasons discussed 
in the Introduction, In the following section, we propose 
a computationally convenient method through the intro­
duction of an effective pair potential which generates the 
correct radial distribution function in the semiclassical 
limit, 

III. THE EFFECTIVE PAIR POTENTIAL FOR THE 
PAIR DISTRIBUTION FUNCTION 

Here we consider the density expansion of (46), 
The s-body distribution function for the reference sys­
tem is given as 

~(1, 2, •.. , s) = exp [- ~ 1>(i,j)] 

x [1 + Eal(l" •• , S)pl] , (50) 

where the coefficient a l (l, .•. , s) is the cluster integral 
involving s base pOints (white circles) and 1 field points 
(black circles). Now we define the two-body Mayer 
function for reference systems, 

In terms of graphs, (50) can be written as26 

~(1, 2, •.. , s) = sum of distinct simple linear graphs 
consisting of white 1-circles labeled 
1,2, •.• , s, respectively, some or no 
black circles, and some or no fO bonds, 
such that there is a path from each 
black circle to each white circle and the 
graphs are free of articulation circles, 
i. e" the graphs are root-connected and 
one-irreducible. (51) 

If the deviations from the classical behavior are 
small so that the contribution of all the diagrams (i) in­
volving more than one flii bond and (ii) involving flv or 
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higher bonds are negligibly small, then we have to 
consider only those graphs in (46) with one fIll bond or 
none. Under this condition we find that all the diagrams 
of (46) can be generated if we replace in turn each f O 

bond in (51) by an effective j"ff bond where 

(52) 

L is a subset of the elementary graphs each of which 
contains one fIII link. That is 

~'\ '~ I I, 
I \ +2 I , 

I \ I )0. 

d - ~ A 

(53) 

where the dotted line indicates a (1 + fO) bond and the 
curly line an fO bond, Casonova et al, 30 have used the 
same subset of graphs for defining an effective pair 
potential which generates the exact two-body correlation 
function in the presence of three-body forces. We have 
found31 that L12 can be apprOximated by the following 
integral equation: 

L12 =p ~(!, 2) f ~(1, 2, 3)fN~ d3, 

From (12) we find that (54) can be written as 

L12 = <gg(i, 2) ~(1, 2, 3)[U;'(1, 2,3) 

-2u;'(1,2)u;'(1, 3) - u;'(1,3)u;'(2, 3) 

- u;'(1, 2)u;'(1, 3)u;'(2, 3)] d3 

IV. EFFECTIVE PAIR POTENTIAL AND A 
FLUID OF HARD-SPHERES 

(54) 

(55) 

In the fluid of hard spheres, the leading contribution 
to L12 which is of order A 2 , comes from cluster forma­
tions in which two distances of a triangle formed by 
three particles 1, 2, 3 lie within d and d + A, and the 
third distance is greater than d + A. If r 12 > d + A, L 12 

can be evaluated following the method of Jancovici. 32 

The result is 

Xsine - ;11 cose] - ~ }, (56) 

where 

and 

1 -ri2 
COSQl = - 2~ • 

For the configuration in which r12 and r l3 (or r23 ) lie 
within the interval (d, d + A) and r23 (or r 13) is greater 
than d + A, we find that 
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FIG. 1. Position of three spheres in a configuration in which 
r23:" d + A. 

- u;'(1, 2) - u;'(1, 3) - u;'(1, 2) u;'(1, 3)] 

(57) 

Jancovici32 has evaluated ~ for a configuration in 
which two short distances on which integration has to be 
done are r 13 ~ d and r 23 ~ d and the long distance which 
has to be kept fixed is r12 :" d + A. Here we have a differ­
ent situation; one distance on which integration has to 
be performed is a long distance. However, for the cal­
culation of ~, we adopt the method of Jancovici with 
proper changes so as to suit our problem. Thus, in 
the high temperature limit (Aid - 0), ~(r12r13r23) is 
found to be proportional to the probability of one parti­
cle of mass m/2 moving in a plane wedge (Fig. 1), the 
summit angle of which is e = 1T - cos-1(t cosO'), where 
cosO' = 1 - ~/2~; r 12 - d and r13 - d are the distances 
of the particle 1 to the edges, on which the wavefunc­
tions of the system of three-particles are constrained 
to vanish. In terms of polar coordinates (r,e,cp) chosen 
as in Fig. 1, the three distances can be written as 

+0·2 
.I'd 3 = 0·3 

0·0 

:.L- AId =0·\ 
-0,2 

0 -hId =0·2 
II 

i -0,4 
.., ..... 

.... 
':;; 
-- -0,6 0< 

-0'8 

- \·0 

o 0·2 0·4 0·6 0·8 \·0 \·2 \·4 \·6 

FIG. 2. jeff as a function of interparticle separation at the re­
duced density p* ~ O. 3. 
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+ 0·2 
.l'd 3 =0·6 
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FIG. 3. jeff as a function of interparticle separation at the re­
duced denSity p*=0.6. 

r12 =d + rsincp, 

(58) 

and 

( 4 ~ (_~) W;' r, e, cp) = B L.J exp X! 
m:;;:l 

(59) 

where I is a Bessel function of imaginary argument. 

Equation (57) is solved numerically and the results 
obtained from (52) for Aid = 0.1 and 0.2 are given in 
Figs. 2 and 3, respectively, at reduced densities 
p* (=pd3

) = 0.3 and 0.6. We find that the contribution 
of term involving L is very small compared to other 
terms. 

From the behavior of rf! it follows that the effect of 
the quantum mechanics is to enhance and make soft the 
hard core diameter 0 Due to this, a substantial change 
in the structure of a hard-sphere fluid is found in the 
neighborhood of the point of contact. The effective pair 
potential is obtained from r ff by the relation 

_ j3cpeff (1,2) = In(1 + rff). 

We find that the softness of the hard core depends very 
weakly on the density but quite strongly on the 
temperature . 
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Half-space analysis basic to the time-dependent BGK 
model in the kinetic theory of gases 
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The elementary solutions of the linearized time-dependent BGK equation are shown to have, for the case 
of no discrete eigenvalues, the half-range expansion property necessary for half-space analysis. Also the 
partial indices corresponding to the basic matrix Riemann problem encountered are shown, for the general 
case, to be nonnegative, as required for the half-space analysis. 

I. INTRODUCTION 

The time-dependent BGK model in the kinetic theory 
of gases can be linearized and expressed in the manner 

(t7~ +exadx; +l)h(X,C,l)= (")-3/2! h(x,c',t)[l +2c·c' 

(1 ) 

where hex, c, t) represents the perturbation of the dis­
tribution from the Maxwellian distribution, c, with 
components ex, ey , and ez and magnitude e, is the 
velocity, t is the time, and x; is the space variable. In 
the manner of Cercignani, 1 we find that Eq. (1) can 
be decomposed, by taking moments, into a set of two 
coupled equations plus three uncoupled equations. Since 
the uncoupled equations have been discussed in consid­
erable detail,l we consider here only the coupled 
equations, 

(:t + IJ. 22'( +1) lJ!(x, lJ.,t) =(")-1/2! 00 [Q(IJ.)Q(IJ.') 

+ P( IJ. )P(IJ. ') ]lJ!(x, IJ. " t) e-" '2 d)J. , . (2) 

Here, the elements of the two-vector lJ!(x, )J.,t) are re­
lated1 to the denSity and temperature of the gas, and 
x,)J., and t represent, respectively, the position, veloc­
ity component, and time, in dimensionless units. In 
addition, 

and 

[

%)1 / 2()J.2 -~) IJ 
Q()J.) = 

(~)1/2 0 

P(/l)=(2)1 / 2)J. 1 0 
o 0 

(3a) 

(3b) 

We note that the time-independent version of Eq. (2) has 
been studied extensively by Kriese, Chang, and 
Siewert. 2 

Since we wish ultimately to solve initial and boundary­
value problems relevant to Eq. (2), we first will estab­
lish the required elementary solutions. 

II. ELEMENTARY SOLUTIONS 

We seek solutions of Eq. (2) of the form 

"(t(x, )J., t) = exp(st)~ (v, !l; s) exp[ - (s + 1) x/ v 1 , (4) 
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where, in general, S is complex, but s'" -1, and v is 
to be determined" Equation (4) can be entered into Eq. 
(2) to yield, after some elementary analysis has been 
carried out, 

where 
y=2s/(s +1), 

and the normalization vector is given by 

M(v; s) = J.: Q()J.) ~ (v, )J.; s) e-" 2 d)J.. 

(5) 

(6a) 

(6b) 

(7) 

(8) 

Since the velocity component )J. E (- 00, 00), we can solve 
Eq. (5) for v EO (- co, 00) by writing 

~(v,)J.; s) = W ~P1J(v ~ 11) +5..(v) Ii(v - )J.f(ll) 

xCI +yv)J. D)M(v; s). (9) 

Here PI1(I/x) denotes the Cauchy principal-value distri­
bution, and Ii(x) represents the Dirac delta distribution. 
We note that Eq. (9) is a generalization of the "singular 
eigenfunction" introduced in 1960 by Case3 and discussed 
extensively in the text by Case and Zweifel. 4 In Eq. (9) 
the function ~(v) is conSidered, at this point, "arbi­
trary"; however, if we multiply Eq. (9) by Q()J.)exp(- ,u 2

) 

and integrate over i1, we find 

[xCV; s) -A(v)W(V; s)lM(v; s)=O, (10) 

where 

w()J.; s) = we-,,2 Q()J.)Q()J.)(I +Y/l 2D), (11) 

and 

(12) 

From Eqo (10) we deduce that det[~(v; s) - A(v)W(V; s») = 0 
and hence that there exist two A'S, Leo, ?"l(V) and ?"2(V). 
We thus write our so-called continuum solutions as 

~",(v, )J.; s)=w ~P1JC ~)J.) +?.,,(v) Ii(v - )J.)] 

xQ(/l)(I+yv)J.D)M",(v;s), a=1 and 2. 

(13 ) 
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In regard to the discrete spectrum, we consider now 
v tf (- 00, 00) and write 

where 

A(± v",; s)M(v",; s) =0, (15 ) 

f ro d 
A(z;s)=I+z W(J..!;s)--J..!-, 

J..! -z 
(16) 

and v", is used to denote each of the "positive" zeros of 
A(z; s) = detA(z; s). 

As we have discussed in a previous paper, 5 the dis­
persion function can be written as 

A(z;s)= (s ~1)3Hs2z2 +(s +1)(s -t)(s +~) 

+ [%s2 Z4 +tz2(4s 2 -1) +Hs +1)(¥-s +1)]A(z) 

+1{8 +1 +2s 2 )A 2(z)}, (17) 

where 

A(z)=1 +-z e-" --. 1 f ~ 2 dJ..! 
~ J..!-z 

(18) 

We have shown5 that A(z; s) has K(S) pairs of zeros, 
where K(S) can be either 0, 1,2, or 3 when s is contained 
respectively in So, S1> S2' or S3' as previously 
defined. 5 

Having established the required elementary solutions 
of Eq. (2), we now formally write our general solution 
(with 8 as a parameter) as 

~I( (s) 

w(x, J..!, I; s) = est /].;.1 (A (v ",)q,(v"" J..!; 8) exp[ - (s + l)x/v '" J 

+A(- v",)<I>(- v"" fl;s)exp[(s +1)x/v",]J 

+ fro tl A ",(V)'P",(v, J..!;S) 

x ~:P[-(8+1)X/V]dV~. (19) 

Here A(± vJ, A1(v), and A 2(v) are the expansion coeffi­
cients to be determined from the boundary and initial 
conditions. If we let A(IJ) denote the expansion vector 

(20) 

then Eq. (19) can be written as 

{

dS) 

w(x, J..!,l;s)=e,t k [A(v",) <I> (v", , J..!;s)exp[-(s +1)x/v",] 

+A(- v",)<I>(- v"" J..!; s) exp[(s + l)x/v", JJ 

+ r~ <I>(v, J..!; 8) A(v) exp[ - (s + l)x/v ldv}, 

(21 ) 

where the continuum matrix is 

+(v, J..!;s)= wvpvl-
1

-)Q(J..!)(I +yvJ..!D) \v -J..! 
+o(v - fl)e v2 Q-l(v).\(v;s). 

III. HALF-RANGE ANALYSIS 

(22) 

We wish now to show that the "eigenvectors" estab-
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lished in the previous section have an important prop­
erty that allows us to write 

~ds) 00 

I(J..!) = 2:A(v",)'P(v"" J..!;s) + J <I>(v, J..!;s)A(v)dv, 
a=l 0 

J..! E (0,00), (23) 

where I(fl) is an arbitrary two-vector which is Holder 
continuous on any bounded interval of the positive real 
axis and further satisfies 

jI",(J..!)j <CeIL, 0'=1,2, J..!E(O,oo), 

where C is a positive constant. 

(24) 

Equation (23) is the statement equivalent to Case's3 
half-range completeness theorem for the one-speed 
neutron problem and clearly will be required when we 
wish to solve explicitly a typical half-space problem. 

In order to illustrate explicitly the analySiS required 
to prove Eq. (23), we consider currently only those 
values of s E So, so we can allow K(S) to be zero. By 
introducing the sectionally analytic vector function 

1 fro d N(z) = -2' v(I +yvzD) A(v) _v_ , 
7fZ v-z 

o 

(25) 

with limiting values 

1 fro dv N·(t) = -2 . P v(I +yvtD)A(v)-
7fZ v-t 

o 

(26) 

we can express the equation 

I(fl)=J~'P(v,J..!;s)A(v)dv, J..!E(O,oo) and SESo, (27) 
o 

in the form 

J..!II(J..!)Q(J..!) e-""I(J..!) =O+(J..!; s) rr-l(_ J..!)N+(J..!) 

- O-(fl; s) rr-l( - fl) N-(J..!). (28) 

Here we have introduced 

and 

O·(J..!; s) = Il( fl)[.\( J..!; s) ± ITi J..! w( fl; s) 1 Il-1 (J..!). 

It can easily be shown that the matrix 

O(z; s) = lI(z) A(z; s) 1I-1 (z) 

has the limiting values given by Eq. (30) and can be 
written as 

where 

(29) 

(30) 

(31) 

(32) 

(33) 

The O(z; s) matrix has other important properties that 
we will soon require, 

0(2"; s) =' (2(z; s) = 0(- z; s) =O(z; s). (34) 

If now we let X(z; s) denote a canonical solution, of 
ordered normal form at infinity, 5.6 to the matrix 
Riemann problem defined by 
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(35) 

where 

G(/J.; S) =O+(/J.; S )[O-(/J.; S )]-1, (36) 

then we can write the solution to Eq. (28) as 

- 1 (f~ d ~ X(z;S)II- 1(-z)N(z)=-2 . r(/J.)-JJ.-+R(z) , 
7fZ /J.-Z 

o 

(37) 

where 

r(/J.) = /J.X+(/J.; s) [W(/J.; S) ]-1 II(/J.)Q(/J.) e-~2 I( /J.). (38) 

In Eq. (37) we use R(z) to denote a vector of rational 
functions. At this point we wish to make use of the fact 
(proved in the next section) that the partial indices, 
Kl and K2, basic to the Riemann problem defined by Eqs. 
(35) and (36), are nonnegative, Since we are consider­
ing here the case K = 0, then clearly Kl = K2 = K = 0, and 
thus we can normalize our canonical solution by taking 

(39) 

On investigating Eq. (37) for large z and noting that 
R(z) can be singular only at z = - z1> we conclude, after 
examining the form of Eq, (25) for large I z I, that 
R(z) = (ZI + Z)-1 R, (40) 

where the constant vector R can be expressed as 

R = .fo~ r(Jl) d /J. - (I - D) .f
o
" vA(v) dv - yz ID .fo~ A(v)v2 dv. 

(41) 

Thus we can now write Eq. (37) as 

-1 '" 1 [f~ dJl 1 II (-z)N(Z)=X-I(Z;S)~ r(/J.)-- +--
1f/ 0 /J. - z z + z 1 

If now we notice that Eq. (26) yields 

N+(t) - N-(t) = tIT(t) II( - t) A(t), 

we can obtain from Eq. (42) the expression 

(43) 

tIT(t)A(t)= ~~(U(t)/J.~t +V(t)O(/J.-t))X(-t;s)O(oO;S) 

xr(/J.)d/J. +U(t)X(-t;s)O(oo;s)~. (44) 
ZI +t 

In developing Eq. (44) we have used the fact that the X 
matrix factors O(z; s) in the following manner: 

si(z; s) = X(z; s) 0(00; s) X(- z; s), K= 0. (45) 

Here we have defined 

(46a) 

and 

(46b) 

We can find from Eq. (44) the moments of A(v) required 
in Eq. (41) to establish R. After using the integral 
representation 

a-1(z; s) X(- z; s) =0-1(00; s) + f" U(t) X( - t; s) ~ 
t - z 

o 

K=O, (47) 

to help simplify our result, we find 
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xX(-zl;s)DX-1(ZI;S) j" r(/J.)--.!!.L. 
/J. - ZI 

o 

(48) 

Since R is now established explicitly, we consider the 
proof that I{/J.) can be represented as given by Eq. (23) 
completed for the case K = 0. 

IV. PARTIAL INDICES 

As mentioned in the previous section, we require in 
our proof of "half-range completeness" the knowledge 
that the partial indices basic to the matrix Riemann 
problem defined by Eqs. (35) and (36) are nonnegative. 
The proof that we will develop here is similar to the one 
given previously7 for a problem relating to the scatter­
ing of polarized light; however, because O(z; s) is not 
symmetric and because the problem contains a complex 
parameter s, some additional work is required. We 
conside r in this section the total index K to be 0, 1, 2, or 
3. 

First of all, we note that 

cP (z;s)"'O(z; S)X-I(- z; s) 

is a solution of the Riemann problem defined by 

cp'(/J.;s) =G(/J.;s)W-(/J.; s), /J. E: [0, 00), 

(49) 

(50) 

where G(/J.; s) is given by Eq. (36), and thus6 +(z; s) can 
be expressed as 

cp(z; s) = X(z; s) p(z), (51 ) 

where P(z) is a matrix of polynomials. It is clear that 
Eqs. (49) and (51) yield the factorization 

O(z;s)=X(z;s)P(z)X(-z;s). (52) 

We note that by definition6 a canonical solution of 
ordered normal form at infinity is such that 

limX(z;s) =K, detK*O, 
[

ZKl ° J 
1.1·.. ° ZK 2 

(53) 

where K1 "" K2 and K2 are the partial indices and Kl + K2 
= K. If we use Eq. (53) in Eq. (52), as I z I - 00, we can 
readily deduce that K1 '" ° unless P u (z) '" 0. Thus to show 
that K2 '" K1 '" 0, we need to prove that P u (z) * 0. 

If we now change s to sin Eqs. (35) and (36) and take 
the complex conjugate of the resulting equations, we 
can use Eq. (34) to deduce that 

where 

and we have defined 

X(z; s) = X(z; s). 

(54) 

(55) 

(56) 

Using the fact that W(z;s)=II(z)II(-z)A(z;s) is sym~ 
metric, we can deduce a convenient relationship, 

B(/J.) G*(/J.; s) = G(/J.; s) B(/J.), (57) 

where 

(58) 
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It is not difficult now to deduce that 

X(z; s) = B-1(z) X(z; s) ~(z), (59) 

where ~(z) is a matrix of rational functions. Further, 
we observe from Eq. (59) that ~(z) must be of the form 

~(z) =(_1_) Az), 
Z1 - z 

(60) 

where P{z) has polynomial elements. If we let 

X(';')-K(st' :_.,] I'I-~, (61) 

then we can find the general form of Rz) by investigat­
ing Eqs. (59) and (60) as 1 zl - O(): 

(62) 

where 

(63) 

We assume here that K1 *- K2 , for otherwise no proof that 
K1 and K2 are nonnegative is required, and thus we can 
consider 

K(S)~~ :J (64.) 

or 

[

1 b(S)J 
K(s)= 

o 1 
(64b) 

and deduce that the most general form of Az) is 

(65) 

- -where P u and P 22 are constants. If now we use Eqs. 
(65) and (60) and evaluate Eq. (59) at z=O, we obtain 

(66a) 

and 

(66b) 

Equations (66) allow us to prove the required state­
ment that the polynomial P u (z) appearing in Eq. (52) is 
not identically zero. Since 0(0; s) = I, we can solve Eq. 
(52) to obtain 

Pll (0) =X-2 (O; s) [Xf2(0; s) + ~2(O; s)j, (67) 

where X(O; s) = detX(O; s). To allow P u (0) = 0 yields 

(68) 

which contradicts Eqs. (66). Since P u (0) *- 0 it follows 
that the partial indices basic to the Riemann problem 
defined by Eqs. (35) and (36) are nonnegative. 
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V. THE H MATRIX 

If we go back to Eq. (52) and use the normalization 
X(oo;s)=I, K=O, we can write 

'1(z; s) = X(z; s) X-leO; s) X-leo; s) x(- z; s). (69) 

Therefore, if we define the H matrix by 

H(z; s) = Xl(_ z; s) X(O; s), 

then a factorization of O(z; s) becomes 

'1(z; s) = H-I
( - z; s) H-1(z; s). 

(70) 

(71) 

Since ultimately we wish to express all of our results 
in terms of the convenient H matrix, we can use 

f 0 - - - dt 
x _~ H(-t;s)[O+(t;s)-n-(t;s)]t_z (72) 

or 

f
~ - - dt 

H-1(z;s)=I-z H(t;s)ii"(t;s)t+z 
o 

(73) 

to compute H(z;s) for z<l(O,oo) after we have solved 

H-1(iJ.;s)=I-iJ. H(t;s)ii"(t;s)--' iJ.E[O,oo), f ~ - , dt 

1+iJ. 
o (74) 

iteratively. It is clear that Eq. (74) has a solution since 
we know that X(z; s) exists and the subsequent definition 
of H(z; s) in terms of X(z; s); however, the recent work 
of Zweifel and co-workers8

,9 could prove very useful for 
showing that an iterative solution of Eq. (74) converges 
to the desired result, 

VI. SOUND-WAVE PROPAGATION 

It is evident that we can readily solve half-space 
problems based on Eq. (2) subject to a free-surface 
boundary condition of the form 

(75) 

and a specified condition as x- 00. Here, we consider 
F(iJ.) to be, in general, an arbitrary Holder function. 
For example, for sound-wave propagation in a half­
space defined by >v(x, f.l,t)- 0 as x- 00, and 

(76) 

we Simply let s = iw and write the desired solution as 

ii"(x, iJ., t) = exp~wt{ tl A (v,,) <I>(v", , iJ.; iw) exp( - (iw + 1) x/v",] 

+ ~ <I>(V,iJ.;iw)A(v)exP[-(iW+l)X/V]dV] . 

(77) 

If we constrain Eq. (77) to meet Eqo (76), we get 

F(Il)=t A(v",)<I>(v",iJ.;iw) + r<I>(v,iJ.;iw)A(v)dv, 
O! =1 0 

Il ?- o. (78) 

The solution of Eq. (78) is given in Sec o III for the case 
K = 0; we note from our previous work5 that w 
> 2.14517··· =2> K= O. We are confident that explicit 
solutions of Eq. (78) for a general index will soon be 
forthcoming. 
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A lattice of verifiable propositions Lv for a spin-l system is constructed by admitting only propositions 
which correspond to appropriate Stem-Gerlach filters. Lv is a complete, orthocomplemented, weakly 
modular lattice, and it satisfies the first part of the atomicity axiom of Jauch and Piron, but not the second 
part (the covering law) nor related axioms of Zierler and MacLaren. Doubt is therefore thrown upon the 
program of recovering the Hilbert space formulation of quantum mechanics from empirically justified 
axioms. The class of admissible states on Lv is exhaustively characterized, and it is shown that there exist 
some nonquantal states but none that are dispersion free. 

I. INTRODUCTION 
In spite of the innumerable confirmations of quantum 

mechanics, it is still far from clear how completely 
the standard formulation of the theory, namely, the 
Hilbert space formulation, is justified empirically. Con­
ceptual difficulties, such as the problem of measure­
ment, can be taken as indications that the Hilbert space 
formulation of quantum mechanics is an excessive ex­
trapolation beyond the empirical evidence. The dis­
covery of supers election rules, 1 moreover, shows that 
certain features of the Hilbert space formulation can be 
modified without loss, and indeed with increase of ex­
planatory power. Understandably, therefore, much of 
the recent work in the foundations of quantum mechan­
ics has been devoted to attempts to formulate the theory 
in a stepwise axiomatic manner, Z-8 with hopes of exhib­
iting the empirical support of each axiom. We are 
rather skeptical on general methodological grounds 
about the likelihood that such programs will yield 
definitive results, because of the difficulty of assessing 
the empirical consequences of individual axioms. Fur­
thermore, it seems probable to us that the solutions to 
the problems of the foundations of quantum mechanics 
will be inseparable from new discoveries in such areas 
as elementary particle theory and space-time theory. 
We nevertheless feel that a careful examination of the 
various reformulations of quantum mechanics which 
have recently been proposed can be illuminating, and 
at the least can yield interesting negative results con­
cerning some of the programs in the foundations of 
quantum mechanics. 

The purpose of this paper is to develop an instrument 
which will be useful in the enterprise of examining re­
formulations of quantum mechanics. The instrument 
is the set Lv, consisting of those propositions which may 
reasonably be regarded to be empirically testable 
concerning a spin-l system (with nonzero rest mass). 
A precise characterization of Lv will be given in Sec. 
IV. It suffices for the present to say that a proposition 
is in Lv if its truth value can be determined by means of 
a suitable spin measuring device, such as a Stern­
Gerlach apparatus. If the standard formulation of quan­
tum mechanics (summarized in Sec. II and Sec. III) 
is applied to the spin-l system, there is a projection 
operator (or equivalently, a closed linear subspace of 
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a three-dimensional Hilbert space) corresponding to 
each proposition in Lv, but there are also proj ection 
operators which do not correspond to members of Lv 
and which in fact do not seem to correspond in any 
natural way to testable propositions. It is not our inten­
tion, in paying special attention to Lv, to insist that 
every term in an acceptable physical theory be suscep­
tible of an operational interpretation. 9 However, the 
availability of an operational interpretation of a term 
does provide prima facie evidence that there is an ele­
ment of physical reality correlated with the term, and 
in the absence of other evidence about the physical sig­
nificance of the proj ection operators in the Hilbert space 
formulation it is a good working hypothesis that those 
operators corresponding to members of Lv have a defi­
nite physical status which the others do not have. 

In Sec. V we establish exhaustively the structure of 
Lv. In principle this could be done quite directly from 
experiments, using reasonable interpolations and induc­
tive generalizations. Our procedure, however, will be 
to draw upon the quantum mechanical predictions for the 
spin-l system, relying upon the assumption that the 
quantum mechanical predictions concerning actual ob­
servations of spin are all correct. Thus, even though 
we are engaged in a critical investigation of the Hilbert 
space formulation of quantum mechanics, we may make 
free use of the consequences of this formulation in any 
domain in which it has been successful. There is no 
inconsistency in this procedure, for one can suspect 
that some parts of a formalism lack physical content 
and nevertheless believe that the formalism is correct 
whenever it is physically significant. 

Once the structure of Lv is determined we check in 
Sec. VI whether the axioms proposed in several alterna­
tive formulations of quantum mechanics are valid in 
Lv. We are particularly interested in the axioms of 
Jauch and Piron, 4,5 because of the remarkable mathe­
matical work of Piron,4 showing that the Hilbert space 
formulation of quantum mechanics can be essentially 
recovered (with small modifications, such as allowance 
for superselection rules) from these axioms. We find 
that all the axioms of Jauch and Piron are satisfied by 
Lv except one, the" covering law. " The failure of this 
axiom for a system as simple, well-understood, and 
unimpeachably physical as Lv throws doubt upon the 
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validity of the axiom and makes it appear that the axiom 
is motivated by a goal, the recovery of the Hilbert space 
formulation, rather than by physical evidence. We also 
show that two of the axioms of Zierler B and one of 
MacLaren,7 both with programs similar to that of Jauch 
and Piron, fail to hold in Lv. These negative results 
constitute, in our opinion, a serious obstacle to the 
program of recovery the Hilbert space formulation 
of quantum mechanics from empirically well justified 
principles. 

In Sec. VII we study the states (in the sense of a­
additive measures) defined on Lv. We prove a theorem 
which essentially exhibits all the possible states on Lv. 
We also prove in a new way a result previously obtained 
by Kochen and Specker10 and by Belinfante,l1 that there 
exists no dispersion-free state on Lv. This result is 
philosophically very significant. It might be conjectured 
that the nonexistence of a dispersion-free state on the 
standard quantum mechanical lattice of propositions for 
the spin-system is due to the occurrence of propositions 
having no physical significance; but such a conjecture 
would obviously not be true of Lv, because of the undeni­
ably physical character of all of its propositions. Thus, 
restricting attention to propositions which have definite 
physical significance does not suffice to save one impor­
tant class of hidden-variable theories" 

II. THE CONCEPTS OF PROPOSITION AND STATE 

The fundamental concept in our investigation is a 
proposition concerning a physical system. The precise 
explanation of this concept cannot be given without 
solving some of the deep problems of the foundations of 
quantum mechanics (including the measurement problem, 
which is essentially the problem of determining exactly 
when and how a potentiality is realized). We never­
theless can convey the intended meaning in a preliminary 
manner, sufficient for the structural investigation of 
this paper. A proposition is-with two convenient ex­
ceptions-a bivalent potentiality of the system, one 
realization of it being identified as the truth of the prop­
osition and the other as its falsity. The two exceptions 
are the "impossible" proposition 0, which can only be 
false, and the "necessary" proposition 1, which can 
only be true. There is no a priori assurance that in an 
arbitrary state of the system a given proposition has a 
definite truth value, and indeed according to the usual 
interpretation of quantum mechanics every proposition, 
except 0 and 1, is unrealized in some states of the 
system. We do not take the facts about the constitution 
of a system, such as its mass or charge or composition 
out of more elementary parts, to be propositions, al­
though one could consider them to be associated in a 
many-one manner with the necessary proposition. 

Another way of conveying the intended meaning of 
"proposition" is to say that an ideal test for a proposi­
tion would be an experiment with only two possible out­
comes, such that one outcome is a sufficient condition for 
correctly saying that the proposition is true and the 
other outcome is a sufficient condition for correctly 
saying that it is false. Such a bivalent experiment can be 

'schematically represented by a filter, through which the 
system can either pass or not pass, passage being a 
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sufficient condition for the truth of the proposition at 
the moment of completion of the experiment and non­
passage for its falsity at that momenL 

Several cautionary remarks are essential to prevent 
misunderstanding at this poinL 

(i) It is a great idealization to suppose that a definite 
bivalent experiment can be performed upon a system 
regardless of the state prior to the experiment. A 
minimum, though usually far from suffiCient, condition 
in practice is that the system enter the forward aperture 
of the filter; but this condition implies approximate 
localization and would not be satisfied, for example, if 
the system were in a state of nearly exact linear momen­
tum. (The condition of approximate localization imposed 
upon the initial state is fortunately not troublesome in 
the investigations of the present paper, since proposi­
tions about spin are compatible with those about posi­
tion" ) 

(ii) Even if we disregard the first difficulty, we stiii 
would not be justified in associating a proposition with 
a specific experimental procedure, but only with an 
equivalence class of bivalent procedures, such that if 
anyone yields the outcome "true" (or "false") regard­
ing the proposition in question, so will any other. The 
equivalence class of procedures is an "open" class, in 
the sense that a physical apparatus as yet uninvented 
could conceivably interact with the system in a manner 
adequate for a bivalent experimental test of the proposi­
tion of interest. 

(iii) In actual experimental situations it is an idealiza­
tion to say that one outcome is a sufficient condition for 
the truth of the propOSition and the other outcome for 
its falsity. Almost always there is a nonnegligible 
probability of an erroneous correlation of experimental 
outcomes with truth values of the propositions, not only 
because of technical difficulties or perturbations, but 
sometimes also for reasons of principle. 12-14 

Remarks (i), (ii), and (iii) are strong reasons against 
an operationalist interpretation either of specific pro­
positions or of the concept of propOSition (see Fig. 9, 
pp, 371-3, 408-9, and 425). Nevertheless, these 
cautionary remarks do not preclude laboratory experi­
ments which yield realizations of propositions, and 
indeed in enough situations to provide weighty evidence 
regarding relations among propositions and hence re­
garding the structure of the set of propositions. 

We shall suppose that every proposition p has a unique 
orthocomplement p', which is always realized when 
p is realized, but in such a way that when realized p 
and p I have opposite truth values, Let us consider any 
one of the equivalence class of yes-or-no experiments 
associated with p, but idealized so as to be performable 
whatever the initial state of the system may be. Then 
p' is that proposition which is realized by the same ex­
periment, but such that a sufficient condition for its 
truth (respectively, falsity) is the outcome which is 
sufficient for the falsity (respectively, truth) of i). In 
this way, the bivalence of an arbitrary experimental 
realization of p can be used to indicate a sense in which 
j) and p' are exhaustive. It must be emphasized, how­
ever, that in spite of the exhaustiveness of p and p', 
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there are many states in which both p and p' are un­
realized potentialities (unless p is either (/1 or 1). 

The fundamental relation between propositions is 
implication. A necessary and sufficient condition for 
p to imply q, symbolized by P <> q, is that in every 
state in which p is true, q is also true. A bivalent ex­
perimental test of p cannot be considered without further 
information to be a test of q, since q may not be realized 
if p is false. 

We shall assume the following axioms concerning the 
set of propositions (henceforth designated by L), the 
operation of orthocomplementation, and the relation of 
implication: 

P (partial ordering): (a) a <> a for all a E L, 

(b) if a <>b and b<>a, then a=b, 

(c) if a <> band b <> c, then a <;; c. 

B (boundedness from below): There exists a proposi­
tion (/1 in L such that r/J <> a for all a E L. 

o (orthocomplementation): For every a E L there 
exists a unique proposition a' E L such that 

(a) (a')' = a, 

(b) for any x E L, if x <> a and x <> a', then x = (/1, 

(c)ifa<>b, then b' <;; a'. 

We regard these axioms as analytic, in the sense of 
being implicit in the concepts of proposition, orthocom­
plementation, and implication, and experimental evidence 
for them is not needed. 

Some derivative concepts can now be introduced. 

If {al I i belonging to an index set I} is a subset of L 
(assumed for the moment to be partially ordered, but 
with no assumption of boundedness from below or of 
orthocomplementation), and if there exists a proposi­
tion x such that 

(i) x <;; al for all i E I, 

(ii) y <> a l for all i E I implies y <> x, 

then x is the greatest lower bound or g.l. b. or the gen­
eralized conjunction of the {al}, and it is denoted by 
IIIEI aj. If I consists of two indices 1 and 2, then a 
more convenient notation for the g. 1. b. is alII a2' 

If a partially ordered set of propositions L is such 
that for every pair a, b their g.1. b. exists, then the set 
is a lattice. If any subset {aj liE I} has a g. 1. b., then L 
is a complete lattice. If any denumerable subset 
{aj Ii = 1,2, ... } h as a g. 1. b., then L is a a-lattice. 
(The statement of these definitions does not presuppose 
that L is bounded from below or orthocomplemented. ) 

If {ajl i E I} is a subset of L such that illEr a: exists, 
then (II/Ela!)' is the least upper bound or l. u. b. or 
generalized disjunction of the {aj}, and it is denoted by 
VjEraj. If I consists of two indices 1 and 2, then a more 
convenient notation for the 1. u. b. is a1 Va2' Caution is 
needed to avoid misconceptions suggested by the name 
"generalized disjunction. " The concept as defined per­
mits the possibility-which indeed obtains in quantum 
mechanics and is contrary to the ordinary notion of 
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disjunction-that VjEla/ is realized and true while not 
a Single one of the aj is realized. 

If a <> b', then a and b are disjoint. (Note that dis­
jointness is not defined as a lib = (/1. ) 

The proposition 1 is defined as 0'. [It follows from 
axioms Band O(b) that for all a E L, a <> 1, so that the 
existence of the necessary proposition need not be sepa­
rately postulated.] 

In our informal discussion of the concept of proposi­
tion we spoke several times of the state of the system, 
without explaining the locution. Weare primarily 
interested in pure states, which can roughly be char­
acterized as maximal specifications of the system. In 
classical physics a maximal specification essentially 
consists in the simultaneous assignment of truth values 
to all propOSitions concerning the system. The struc­
ture of the set of propositions postulated by quantum 
mechanics precludes the existence of pure states in the 
classical sense (results of Gleasonl5 and others) and 
motivates a probabilistic conception of state. (If the 
logical difference between certainty and 100% prob­
ability is set aside, then the classical conception of pure 
state is subsumed under the probabilistic conception. ) 
We therefore adopt Mackey's conception of a state3

: 

namely, a real-valued function defined on the set of 
propOSitions L such that 

(i) m(a)? 0, for all a E L, 

(ii) m(l) = 1, 

(iii) if {at Ii = 1,2, ... } is a finite or denumerable sub­
set of L such that a/ <>aj for i*j, then (if vai exists) 
m(Vaj) =z)n(aj)' 

Mackey's conception seems to catch as much of the 
classical conception of a probability measure on the set 
of propositions as could be expected, given the physical 
evidence that not all propositions are realizable together. 
In particular, according to condition (iii) complete 
additivity of 111 holds for a denumerable set of pairwise 
disjoint propositions. Although his conception might be 
weakened or generalized, it so elegantly combines con­
servatism regarding probability theory with recogni-
tion of the exigencies of microphysics that departures 
from it would be reasonable only if they led to substan­
tial theoretical extension or clarification. States in 
Mackey's sense can be classified as mixed or pure by 
the following criterion: III is a mixed state if there exist 
two distinct states 1111 and 1112 and two positive real num­
bers Cl and C2 with CI + c2 = 1, such that for all a E L 
m(a) =cl1111(a) + c2m2(a). [Distinctness of 1171 and 1Ji2 is 
equivalent to the existence of some bEL such that n11(b) 
=m2(b).] If no such decomposition of m exists, then 
m is pure. 

The criterion of purity has the virtue of not referring 
to simultaneous assignment of truth values to 
propositions. 

We shall have little occasion in this paper to use the 
concept of observable (as it is commonly called, though 
the usage is misleading, since most instances of the 
concept are not associated with actual procedures of 
observation or even with Gedanken experiments). It 
will suffice to say that the conc ept can reasonaly be 
defined in terms of the set of propositions (see Ref. 3, 
p. 63, and Ref. 5, pp. 97-9). 
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III. THE HILBERT SPACE FORMULATION OF 
QUANTUM MECHANICS 

One needs to add a single strong axiom H to the 
axioms P, E, and 0 of the preceding section in order 
to obtain the standard formulation of the kinematics of 
nonrelativistic quantum mechanics (not including, how­
ever, some of the principles concerning composite 
systems, notably symmetrization and antisymmetriza­
tion). Moreover, with very modest additional assump­
tions about temporal evolution the dynamics of quantum 
mechanics (the time-dependent Schrodinger equation) is 
also derivable from axioms P, E, 0, and H (Ref. 3, 
pp. 81-3). Axiom H is as follows: 

Axiom H: The partially ordered, orthocomplemented 
set of propositions (now to be called L H ) has the struc­
ture of the lattice L of closed linear subspaces of a 
separable complex Hilbert space H. Specifically, there 
is a 1-1 mappingj:LH - L (onto) such that 

(i) j(a/) = (j(a»~ (where 1 denotes orthogonal comple­
mentation in H), and 

(ii) a·~ b iffj(a) sj(b). 

[N ote that since j(a) and j(b) both belong to L, the set 
theoretical inclusion j(a) kj(b) implies that j(a) is a 
subspace of j(b).] 

Adjoining axiom H to the preceding axioms has im­
portant consequences, which can easily be demonstrated, 
for all the derivative concepts defined in Sec. II. The 
impossible proposition corresponds to the empty sub­
space of H: j(rfi) = O. The necessary proposition corre­
sponds to H itself: j(I)=H, the generalized conjunction l6 

a /\ Hb corresponds to the intersection of the subspaces 
matched with a and b: j(a/\Hb) =j(a) ~lj(b). Moreover, 
since L is a a lattice so is L H, andj(/\i=IHai) =ni=t!(aj)' 
The generalized disjunction of a and ,) corresponds to 
the subspace spanned by j(a) and j(b), and more gener­
ally j('l i =IHa;) equals the subspace spanned by 
Ui=t!(a;). That generalized disjunction does not corre­
spond to set theoretical union is one of the crucial ways 
in which LH is nonclassical. One consequence is that 
distributivity does not generally hold in L H • Moreover, 
modularity does not hold if H is infinite dimensional 
(Ref. 5, p. 85). The following principles hOld, whether 
H is finite or infinite dimensional: 

Weak modularity: ifx<z, thenx=cz/\H(Z/vHX). 

Atomicity: 1. (existence of atoms) For every x (.c: LH 
there exists an atom p such that p ""x. (p is an atom iff 
foraUqrcL, q""P iffq=0orq=!).) 

2. (covering law) If q is an atom, then a"" x "" a V H q 
=3;>X=([ or x=aVHq. It is easy to see that the atoms in 
L H correspond under the mapping j to one-dimensional 
subspaces, or rays, of II. 

The mappingj permits the construction of a set of 
states on L H, which will be recognized as the usual 
pure states of quantum mechanics. Let I/! be a normal­
ized vector in H, and let P a be the projection operator 
associated with the subspace j(a) which corresponds to 
the proposition a. Then we define the measure m" on 
LH as follows: for all aELH, m,,(a) = (l/!,p.I/!). It is easily 
checked that 1Jl" satisfies Mackey's conditions for being 
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a state. A deep theorem of Gleasonl5 aSserts that (with 
an almost trivial exception) aU states on LH are convex 
combinations of states of this type. Specifically, if L H 

satisfies axioms P, E, 0, and H, and dim(!1) is greater 
than two, and if m is a state on L H , then there exists 
a denumerable set of normalized vectors {</J;}(:;H and a 
set of positive real numbers {wi} such that L,w; = 1 and 
m(a) ='2, Wj 111"i (a) for all aELH. 

For future reference it is useful to note that Gleason's 
theorem holds whether H is a real or a complex Hilbert 
space, i. e., whether the scalars are the real or the 
complex numbers. 

It is evident that Axiom H is a very strong assump­
tion about the s truc ture of the propOSitions of a physical 
system. Piron has demonstrated, however, that much 
of the content of Axiom H is contained in the assumptions 
that the set of propOSitions is an orthocomplemented 
a-lattice (so that axioms P, B, and 0 hold ajortiori) 
and satisfies the conditions of weak modularity and 
atomici ty. The exac t content of Piron' s theorem is 
rather complicated to state, and we refer to the original 
publication4 and to the careful statement by 
Varadarajan. 11 Our concern in the present paper is with 
the validity of the assumptions of Piron's theorem, and 
our main result in Sec. V is that the second part of the 
atomicity condition (the "covering law") does not hold in 
the lattice Lv of verifiable propositions of the spin-l 
system. 

As preparation for the discussion of the lattice Lv it 
will be valuable to write down some details about the 
lattice LH for the spin-l system. We shall restrict our 
attention to the spin properties of the system, and 
abstract from properties defined in terms of position 
and linear momentum. The quantum mechanical formal­
ism facilitates such a restriction of attention, since the 
complete Hilbert space H appropriate to the spin-l 
system is H =L2 (E3 )0H3 , which is the tensor product 
of the Hilbert space L2(£3) of (equivalence classes of) 
square integrable functions on three-dimensional 
Euclidean space, with the three-dimensional complex 
Hilbert space H3 • Formally, the spin-l system can be 
treated as a composite system, of which one component 
is spinless and the other lacks the properties defined 
in terms of position and linear momentum. It is the 
second component in this formal decomposition which 
we shall henceforth refer to by the expression "the 
spin-l system". 

The propositions of L H, in the case of the spin-l 
system, correspond to linear subspaces of H3• (The 
condition of closure on these subspaces mentioned in 
Axiom H is automatically satisfied, because of the 
finite dimensionality of H3). The atoms of LH corre­
spond to one-dimensional linear subspaces, or rays, 
of H3• We shall use the notation (<p) to designate the ray 
spanned by the vector <p. A direct physical interpreta­
tion can be given to a ray spanned by a vector I/! such 
that (s . il)1/! = A4!, where s . n is the spin operator in the 
direction n (ii a unit vector in Euclidean three-space), 
and A is 1 or 0 or - 1, which are the three possible 
eigenvalues of s .?'i in units of Ii. The proposition in L H 

corresponding to this ray will be designated by a(ii, A), 
and the ray itself can be designated, in a manner which 
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does not single out any of its vectors, as <ii, A), 

j(a(n, A)) = <ii, A) = (1jJ). 

The intuitive meaning of a(n, A) is the proposition that 
the spin of the system in the direction n is A (in units of 
If). There are also some propositions in LH correspond­
ing to two-dimensional subspaces of H3 which have clear 
intuitive content: namely (a(n, A))', hereafter designated 
as b(n,A), which corresponds under the mappingj to 
<ii, A)l. The content of b(n, A) is that the spin of the systen 
in the direction n is (in units of If) unequal to A. 

It is of the greatest importance for our subsequent 
discussion to notice that not every ray of H3 is spanned 
by an eigenvector of s . n for any direction n. (In the 
case of the spin-i system, by contrast, every vector is 
an eigenvector of s . n for some n-a fact which makes 
the spin-i system unsuitable for the purposes of this 
paper.) Our assertion is proved by considering the 
effect of the standard rotation matrix 

n2(a,I'l,0) 

(

i(.1 + cosl'lle-I" - (l/v'2) sinl'l e- I
" 

= (1/12) sinl'l cosl'l 

i(1- cosl'lle;" (1/12) sinl'l el
" 

upon the column vectors 

i(1 - cosl'lle-;,,) 
- (1/12) sinl'l 

i(1 + cosl'll ei
" 

(a, I'l, and 0 are the Euler angles of a rotation. ) It is 
easily seen that if n is obtained from z by the rotation 
(a,I'l,O), then 

ljJ(n, A) '" n1(a, I'l, 0)1jJ(Z, A) 

is an eigenvec tor of s . 11, and because of nondegeneracy 
any eigenvector of s . i'i is a scalar multiple of ljJ(ii, A). 
[In particular, for any 1', n 1 (a,l'l,y)IjJ(Z,A) is a scalar 
multiple of ljJ(ii, A), and therefore there is no loss of gen­
erality in taking the third Euler angle to be 0.] The 
vectors 4'(i"i, 1), ljJ(fi,O), and ljJ(fi, -1) are respectively the 
first, second, and third columns of the matrix n1(a, I'l, 0). 
It is evident upon inspection that there are vectors which 
are not scalar multiples of any of these columns, for any 
n, e. g .• 

~=~;~). 
\:/12 

Nevertheless, there is a proposition in L H correspond­
ing to ~, namely rl«cp»), and from the standpoint of 
Axiom H there is no difference in physical status be­
tween this proposition and a (n, A). 

IV. THE VERI FIABLE PROPOSITIONS OF THE 
SPIN-1 SYSTEM 

Since spin is both measurable and theoretically well­
understood, and since each spin component of the 
(massive) spin-l system is known to have a spectrum 
consisting of the three points n, 0, and - n, it is clear 
that the propositions concerning this system of the form 
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"the spin in direction n is A (A = 1,0, or - 1 in units of 
fT)" are physically significant. 

A strict operationalist might contend that the evidence 
for the quantization of spin does not suffice to endow 
every proposition a(ii, A) with physical significance. The 
usual method of determining the value of a component 
of spin is that of Stern and Gerlach, in which a beam of 
particles passes through an inhomogeneous magnetic 
field perpendicular to the propagation direction. Con­
sequently, the operationalist might object that once 
the direction of beam propagation is fixed, the only 
physically significant a(n, A) are those such that ii is in 
the direction of a field H capable of splitting the beam­
a direction which cannot in practice be far from per­
pendicular to the propagation direction even if the 
Stern-Gerlach procedure is generalized, and in prin­
ciple cannot be along the propagation direction. 

We can give two answers to this objection. First, 
as discussed in Sec. II, a strictly operationalist under­
standing of the propositions concerning a physical system 
is implausible on several grounds. Consequently, if for 
some n propositions of the form a(il, 1), a(n,O), and 
a(ii, - 1) are physically significant, as indicated by the 
practicality of Stern-Gerlach experiments, and if 
space is isotropic, as a great variety of considerations 
indicate, then there is no reason to deny physical signifi­
cance to any a(ii, A). Second, we can actually go a long 
way toward satisfying the demands of the operationalist 
concerning the entire set a(n, A), though at the price of 
imposing some experimental complications. If ions 
rather than neutral atoms are used as the particles for 
the experiment, the direction of the beam may be 
adiabatically changed (slowly enough to make spin flips 
improbable), 18 so that the final beam direction is 
perpendicular to any preassigned axis 11 along which one 
desires to measure the spin. In this way, even when the 
initial beam direction is specified, there is no proposi­
tion alii, A) which could not be tested by a Stern-Gerlach 
measurement. More precisely, a filter appropriate for 
testing a(n, A) is prepared by blocking the two output 
channels of the Stern-Gerlach apparatus corresponding 
to spin values unequal to A, so that the particle will pass 
through the filter only if its spin component in the direc­
tion n has the value A (in units of rz). (See Fig. 1.) 

By opening two channels and blocking one on a suitably 
oriented Stern-Gerlach apparatus. one prepares a 
filter appropriate for testing b(11, A). (See Fig. 2.) Fil­
ters for the impossible proposition 0 and the necessary 
proposition 1 are prepared, respectively, by closing 
all channels and by opening all channels of an arbitrarily 
oriented Stern-Gerlach apparatus (the operational con-

...... _-. 

FIG. 1. Filter for the propo­
sition a(;;, 1). 
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FIG. 2. Filter for the propo­
sition b(n, 1). 

straint, of course, being that the beam has been guided 
so as to enter the forward aperture of the filter). As 
discussed in Sec. II, the operation of orthocomplemen­
tation can be understood in a natural manner by refer­
enc e to filters, even if one does not adopt an operation­
alist point of view. Specifically, if u is a verifiable 
proposition and i1 is a Stern-Gerlach apparatus adapted 
by closing some channels and keeping others open 
so as to be a filter for u, then u' is the proposition 
corresponding to the u' filter which is obtained by 
closing the open channels of u and opening its closed 
channels. Obviously, b(n,~) = (a(n, ~))' and ¢' = 1. The 
relation of implication between verifiable propositions 
can be similarly understood, following the general 
discussion of Sec. II. We shall designate by Lv the set 
of verifiable propositions, together with the operation 
of orthocomplementation and the relation of implication 
which have been indicated. The structure of Lv will be 
fully stated in Sec. V. 

We cannot dismiss a priori the possibility that there 
are other physically significant propositions concerning 
the spin-1 system than the members of L v, and it is 
even possible that reasonable experimental procedures 
can be devised for testing these propositions, in which 
case our usage of the term "verifiable" would be too 
narrow. Proposals for classifying a set of propositions 
larger than Lv as physically significant will have to 
be examined on their merits when they are set forth. 
There have been, apparently, very few such proposals 
for systems of any kind. In this section we shall discuss 
one due to Jauch, and two other proposals will be con­
sidered in Appendices Band C. 

Jauch (Ref. 5, p. 75) essentially proposes the follow­
ing method for extending any set So of propositions with 
unequivocal physical significance to a larger set 5 
which derivately acquires physical significance. Let So 
be the set of (equivalence classes of) filters correspond­
ing to members of So. Then a composite device can be 
constructed by connecting in series finitely or denum­
~rably many filters (with replicas allowed) from So. Let 
S be the set of (equivalence classes of) devices so con­
structible and satisfying sufficient cond itions to function 
as filters. Passage or nonpassage through a filter in 5 
is a bivalent physical test in an idealized sense. Hence 
S determines a set of propositions S which may be con­
sidered to be physically significant. 

If Jauch's procedure is legitimate, then it seems 
possible to extend Lv. Appendix A shows that for all 
atoms aE(LH-L v) there exist projection operators Al 
and A z on ff3 which correspond to propositions al and 
a2 in Lv, such that A corresponding to a is the limit 
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(in the sense of uniform convergence) of the sequence 
AjA~lA~j' • '. If aj and a2 are filters associated with 
aj and a2, then the composite device QjQ2QjQ2aj' " seems 
to be the kind of admissible filter envisaged in Jauch's 
proposal, and it is reasonably associated with the prop­
osition a. j9 

Clearly, Jauch's proposal admits highly nonopera­
tional procedures as tests for propositions. We do not 
condemn it on this account, since we have previously 
expressed skepticism about operationalist programs. 
What we do find disturbing about his proposal is the 
absence of clearly articulated and adequately justified 
rules governing the admission of filters with infinitely 
many components. Even more troublesome is the fact 
that in the case of systems other than the spin-l 
system there are very plausible constructions of filters 
with a denumerable infinity of components which gen­
erate propositions not contained in the Hilbert space 
lattice, as we shall now show. 

To see the difficulty, consider a spinless particle 
restricted to one dimension, and therefore quantum 
mechanically describable in the Hilbert space of 
square-integrable functions of a single variable L2(E). 
Let [CI' djl be a nested sequence of intervals on the real 
line (Cj <S Cj+j, limci = e, d j ?- d j +!> limdj = e) the inter­
section of which consists of exactly the one point e. Let 
Sj be the proposition that the particle is located in the 
ith interval, and let 5j be the corresponding projection 
operator on L 2 (E). There is no obj ection in prinCiple 
to imagining a filter Sj corresponding to each S j. Now 
consider the filter with infinitely many components 
S =$1$283' . '. (Note that there is no need to resort to a 
complicated inter leafing of the Sj in order to obtain 
a filter, as in Ref. 19, since the propositions S j are 
compatible with one another.) Quantum mechanics 
predicts that any particle which passes through a device 
consisting of '~j, ••• ,s" in series will pass through any 
replica of one of these filters. It is reasonable then to 
extrapolate to the idealized filter s and assert $ <S S i, 
for i = 1,2, .. '. The proposition S tested by S is intuitive­
ly the conjunction of the Sj, and its content is that the 
system is located at the point e. By contrast, the g.l. b. 
of the projection operators SI onff is the null projection 
operator, which corresponds to the impossible propo­
sition rather than to the proposition s. There is, of 
course, no projection operator on II corresponding to a 
proposition about the point location of particle. Thus, 
if Jauch's admission of filters with infinitely many 
components is intended to enrich the set of operation-
ally defined propositions, it does so too well, for it 
appears to lead to propositions which are not repre­
sented in the Hilbert space formulation of quantum 
mechanics. 

We do not wish to draw the conclusion that nothing 
can be salvaged from Jauch's ingenious proposal. It is 
possible that a reasonable set of operations upon physi­
cally unimpeachable filters may indeed generate a set 
of ideal filters with precisely the structure supposed 
by the Hilbert space formulation of quantum mechanics. 
We only contend that this program has not been achieved 
and is not likely to be easy. In the absence of satisfac­
tory methods for treating filters with infinitely many 
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b(ri"'.I) b(ri"'.O)b(n· ... -1) b(n.l)b(n,o)b(Ii.-I) b(n·.I)b(n·.O)b(n·.-1) b(Ii".l)b(iI·"O) b(n".-I) 

0(,;· ... 1) o(iI".O) 0(1i"'. -I) o(iI.1) o(ii.O) o(R.-1l o(iI·.I)o(n·.O) o(iI·.-1) 0(,,".1)0(0'''0) 0(,,".-1) 

FIG. 3. A representative sample of propositions of Lv and 
their relations. A line (solid or dotted) indicates that the 
proposition represented by the lower dot implies the proposi­
tion represented by the higher dot. The absence of a line be­
tween two dots indicates that no implication relation holds 
between the corresponding propositions. The direction n' is 
orthogonal both to n and to nil, but n is not parallel, anti­
parallel, or orthogonal to n"; and n'" is not parallel or anti­
parallel ororthogonal to any of the other directions. 

components, we can continue to explore the conse­
quences of the working hypothesis of this paper: That 
those propositions of LH which belong to Lv have a 
physical significance which other propositions in LH 
do not possess. 

V. THE STRUCTURE OF Lv 

Since the orthocomplement of each verifiable propo­
sition is immediately determined, the structure of Lv 
is completely known when one knows which propositions 
are related by the implication relation. The only inter­
esting instances of the relation are those involving 
a(ii, x) for some ii, x, and b(ii', x') for some ii', x', be­
cause it is evident that 

do "" x and x""l for all x E: Lv, 

a (ii, x)"" a(ii', x') iffn=ii' and x=x', 

orn=-ii'andX=-X', 

b(ii, x)"" b(ii', x') iff ii = ii' and X = X' , 

or 11 = - ii' and X = - X'. 

(1) 

(2) 

(3) 

The implication a(ii, x) "" b(ii', x') holds iff (fi, x) 
r;;,<n',X')\ or equivalently, iff the rays (fi,x) and (fi',X') 
are mutually orthogonal. The complete set of possi­
bilities for obtaining mutual orthogonality can be found 
by first taking ii' to be z and afterwards performing the 
appropriate rotations to achieve generality. Using the 
columns of D(a,{3,O) as the expressions for 1/i(ii,l), 
1/i(fl,O), and 1/i(fl,-l) respectively, we see that (i,O) 
is orthogonal to (fi, x) iff x = 0 and cos{3 = 0 (i. e., ii is 
perpendicular to z), and that <i, ± 1) is orthogonal to 
<tt,x) if X='f1 and {3=O (i.e., fl=z) or X=±l and 
{3 = 7f (i. e., n = - z). Generalizing, we obtain the 
following: a(n, x) "" b(n', x') iff either 
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ii=-ii' and A1'-X', 

or 

(4a) 

(4b) 

(4c) 

All instances of implication in Lv are comprised in 
Eqs. (1)-(4). We illustrate the implications in Lv in 
Fig. 3, using solid lines to indicate implications of types 
(1)-(3), (4a), and (4b), and dotted lines to indicate 
implications of type (4c). 

It is evident that axioms P, B, and 0 hold of Lv. 
Furthermore, an examination of Fig. 3 makes it clear 
that any two propositions in Lv have a greatest lower 
bound, so that Lv is an orthocomplemented lattice. 
(Indeed, Lv is a complete lattice, but this is a fact that 
we shall not use.) Since x AvY and x VvY exist for all 
x,Y E: Lv, it will be very useful to compile an essentially 
exhaustive list of them (Tables I and II), and this can 
be done almost immediately from (1), (2), (3), and (4) 
or from inspection of Fig. 3. The most interesting en­
tries in Tables I and II are those such that x AvY 
1'xAHy or xVvY 1'xVHy. In several cases b(ii, x) 
Avb(n', x') =¢, whereas b(ii, X)t'Hb(ii', x') =r1«(fi, X)L 
n <il', X'/) * ¢, since the intersection of two two-dimen­
sional subspaces of a three-dimensional Hilbert space 
is a subspace of dimension at least one (a ray), but this 
ray may not be spanned by an eigenvector of s . ii for 
any n and hence may not correspond to a verifiable 
proposition. If so, then the g.1. b. of b(n, x) and 
b(ii', x') in Lv is !D. Likewise, there are several cases 

TABLE I. Generalized conjunctions. 

~, =n 
a(n, X) A ya (n, X') =a(n, X) if X' = X, 

= 1)\ if X' ;" X. 

a (n, X)Avb(n, X') =a (n, X) if X' ;" X, 
= (II if X' = x. 

b(n, X)Avb(n, X') = b(n, X) irA' = X, 
=a(n, X·) if X' ;" X, where X" ;" X, X";" X'. 

n'=-n 
a (;1. X)Aya(-fi,X')=a(n, X) ifx'=-X 

=0 if X';" - x. 
a(n,X)Avb(-n,X')=a(n,X) if X' ;,,-X 

= (II if X' = - x. 
b(n, X) Avb(- n, X') = b(n, X) if X' = - X 

=a(n",X') ifX';,,-x whereX';"X, X";,,_X. 

a(n, X) Aya(n, X')= (II. 

a(n,X)Avb(n',X')=a(n,X) ifX=O and X'=O, 
=(11 if X;" 0 and X' ;" o. 

b(n, X)Avb(n. x') =a(n", 0) if X' = X= 0, where n'1. n" 1. n 
= 0 if neither X' nor X = O. 

If nand n' are neither parallel, antiparallel, nor 
perpendicular: 
b(fi, O)Avb(n', 0) =a(n", 0), where n 1. nIt 1. n'. 

a(n, x) Ayb(n' ,X') =¢, a(n, X)Aya(fi' , X') =¢. 

b(n, X)Ayb(fi', X') = '/J if X' ;" 0 or X;" O. 
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TABLE II. Generalized disjunctions. 

bin, A)Vvb(n, A')=b(n, A) 
=1, 

ben, A)Vya(n, A')= ben, A), 
= I, 

a(n, A)Vya(n, A')=a(n, A), 
= bin, A"), 

if A' =A, 
if A' ,,' A. 

if A' '" A, 
if A' =A. 

if A' = A, 
if A' '" A, where X' '" A, A" '" A' • 

n':.::-n 
bin, A)Vvb(- n., A') = ben, A), if A' c - .:\., 

= I, if A' '" - A. 
bin, A)Vya(- n, A') = b (n, A), if A';L - A, 

=1, if ALe_A. 
a(n,A)Vya(-n,A')=a(n,A), if A'~-A, 

=b(n,A"), ifA''''-A, where A"'" A, A"",-X 

Ji'ln 
b(n, A)V vb(n', A') = l. 

ben, A)V ya(n', A') = b(n, A), 
= I, 

a(n, A)V ya (n', A') = b(n", 0), 
= 1. 

if A' = A= 0, 
otherwise. 

ifA=A'=O, wherenln'ln', 
otherwise. 

If nand 11' are neither parallel, antiparallel, nor 
perpendicular: 

a(;;,A)vya(n',A')=l, if A'''' 0 or A;cO O. 

a(n, O)Vya(;;', O)=b(n", 0), where ii 1 n" 1 fi'. 

a(n, A)V vb(n', A') = 1, bin, A)\/vb(n', A') = 1. 

in which a(ii, A) Vva(n', A') = 1, whereas a(n, A) v Ha (Fl I , A') 
can never be 1 since the subspace spanned by two rays 
has dimension of at most two. But again this subspace 
may not correspond to a verifiable proposition, and 
if so, the 1. u. b. of a(ii, A) and a(n', A') in Lv is 1. 

VI. THE VALIDITY OF VARIOUS AXIOMS IN Lv 

In this section we use Lv as an instrument for 
examining several crucial axioms proposed in programs 
which aim at establishing the Hilbert space formulation 
on a firm basis. We find that all of Piron's axioms are 
satisfied by Lv except the second part of the atomicity 
axiom (the "covering law"). We do not examine other 
axiomatizations in detail, but we do show that two of 
Zierler's axioms and one axiom of MacLaren fail to 
hold in Lv. Also we find that modularity (which is 
assumed in the pioneering work of Birkhoff and von 
Neumann, though not in recent axiomizations) does not 
hold in Lv. 

That Lv is an orthocomplemented a lattice has al­
ready been pointed out in Sec. V. Consequently, the 
only axioms of Piron which must be checked for Lv are 
weak modularity and atomicity. 

Lv is weakly modular if for all x, Z EO Lv such that x 
""z, x=zlIv(z'Vvx). Evidently, the equation holds if 
either x or Z is 0 or 1. If both x and Z are of the form 
a(n, A), or both x and Z are of the form b(n, A), then x 
=Z, and again the equation holds. Hence, the only in­
teresting cases are those in which x = ll(n, A) and Z 
=b(fi,A'). But by Sec. V, a(fi,A) ""b(fi', A') iff (i)fi=fi' 
and A'* A', or (ii) fi = - fi' and A'* - A', or (iii) fi 1 fi' and 
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A = A' = 0. Using Tables I and II one sees that the equa­
tion holds in each of these cases. 

The first part of Piron's axiom of atomicity asserts 
that for every x EO Lv except 0 there exists an atom p 
such that p "" x. The validity of this assertion is evident 
from Eqs. (1)-(4) of Sec. V or from Fig. 3. 

If Lv satisfies the second part of the axiom of atomi­
city (the "covering law"), then for every atom q of Lv 

the following holds: If x ,; y ~ x V yq, then either y = x or 
y =X Vvq. A counterexample is provided by choosing q 
c..a(fi,l), x=a(fi',-l), y=b(fi',I), withfi,*±I1'. Then by 
Table II xV vq = 1, so that y equals neither x nor xV vq. 
The hreakdown of the covering law in this case is clear­
ly due to the fact that the 1. u. b. of x and q in L H is a 
proposition not associated with spin in any direction, 
and therefore their 1. u. b. in Lv does not equal the 
1. u. b. in L H • 

Two axioms of Zierler8 which we shall now consider 
use the concept of afinite proposition, i. e., a proposi­
tion which is a generalized disjunction of a finite num­
ber of atoms. The dimension of a proposition x is the 
1. u. b. of the number of implications in chains (consist­
ing of distinct elements) of the form Ii> "" XI"" X2 "" ••• "" x. 
It is clear from Sec. V that every proposition in Lv is 
finite, the dimension of {/ (11, A) being 1, of b (n, A) being 
2, and of the nec essary proposi lion being 3. The two 
axioms in question are the following: 

1. If Ii, c, and d are elements of the sublattice of ele­
ments ,; a (where a is finite), and if d,,; c and bile = 0, 
then (dvb)i\c=d. 

2. If a and b are finite elements of the same dimen­
.sian, then the sublattices La and L b , which consist re­
spectively of elements"" a and elements"" b, are 
isomorphic. 

That the first of these fails to hold in Lv is shown by 
taking the operations V and II to be Vv and i\v, and letting 
d '-a(fi, A), b =a(I1', A'), c =b(l1, A':), where fi,* ±fi, fi is 
notorthogoual ton', 10..*0, and X",*:>.. Then (dV vb)=l, 
so that (dvvlJ)!\vc=c. That the second fails can be seen 
by taking a and b to be b(fi, 0) and b(iz, 1) respectively 
and looking at Fig. 3. 

MacLaren 7 proposes the semimodularity axion, which 
can be stated as follows: 

If x and yare propositions such that for all z with x 
,; 2:, (x V Y)!I z =xJ ty liZ), then for all z such that y ~ z, 

(y v z) II z =)' v (x M:). 

A counterexample in Lv is provided by taking x 
= b(n, A) and y =a(I1", A'), where fi,* ±fi" and n is not 
orthogonal to fi". Then xVvy =1, so that (xVv.V)lIvz =Z. 
The only values of z such that x ~ z are b(l1, A) and 1, 
and for each of these alternatives x Vv(y IIvZ) is seen to 
be z. Thus, the antecedent of the semimodularity axiom 
is satisfied for this choice of x and y. However, the con­
sequent is not satisfied, since.y "" z holds when z is 
chosen to be b(I1", A") where A",*A'. Then (yVvx)lIvz 
= Illvz = b(fi", A"), while y Vv~'X" IIvz) = a(fi", A') Vv Q\ 
=a(I1",A'). 

A lattice is modular if x V (y II z) = (x V y) II Z whenever 
x ~ z. That Lv is not modular is seen by taking x 
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=a(ii,1), y=a(ii',1), z=b(ii,O), withii*±ii'. As seen 
from Fig. 1, a(ii, 1) "" b(ii, 0). From Tables I and II we 
have 

a(ii, 1) v v[a(ii', 1) J\vb (ii , 0) 1 = a(ii, 1) Vv0 =a(ii, 1), 

whereas 

[a (ii , 1) Vva(ii', 1) 1 J\vb(ii, 0) = 1 J\vb (ii , 0) = b(ii, 0). 

The failure of modularity for Lv is an interesting 
curiosity, since Lv can be embedded in L H , which is 
modular. (Modularity does not hold for the lattice of 
closed linear subspaces of an infinite dimensional Hil­
bert space, but it does hold if the Hilbert space is 
finite dimensional. See Ref. 5, p. 85.) 

VII. STATES ON Lv 

It is well known that if fI has dimension greater than 
or equal to three, then there are no dispersion-free 
states on L H, or equivalently, no states m such that 
m (a) is either ° or 1 for each a E L H (Gleason, 15 Kochen 
and Specker, 10 Bell, 20 Belinfantel1 ). This mathematical 
fact precludes interpreting the usual quantum mechani­
cal states as probability distributions over a space of 
classically pure states, for these latter would have to 
be dispersion-free. However, someone might conjec­
ture that Lv-which is the "physically significant" part 
of LH-does admit dispersion-free states, and that L H 
does not admit them just because it is laden with non­
physical elements. The conjecture is false, and its 
falsity is philosophically significant, for it shows that 
one of the most important nonclassical features of quan­
tum mechanical states cannot be blamed upon the 
admission of nonphysical elements into the lattice of 
proposi tions. 

The nonexistence of dispersion-free states on Lv can 
be read immediately from the arguments given by 
Kochen and Specker, and Belinfante concerning L H • In 
this section we shall present a new proof of the nonexis­
tence of dispersion-free states on Lv, by taking Glea­
son's theorem as applied to a real Hilbert space as 
our starting point. An advantage of this procedure is 
that it enables us to exhibit all the possible states on 
Lv. 

Consider the orthocomplemented sublattice Lo of Lv 
generated by all the propositions of the form a(ii, 0) for 
arbitrary ii, i. e., closed under the operations of ortho­
complementation and g. 1. b. Tables I and II show that 
Lo consists only of {a(ii, OJ}, {b(ii, OJ}, riJ, and 1. We shall 
now show that Lo is isomorphic to the lattice of sub­
spaces of a real three-dimensional Hilbert space. We do 
this by constructing a concrete realization fI(R) of the 
space, consisting of all real multiples of the column 
vectors 

A ~ 2-
112 

sin!3 exp( - iJ) </J(n, 0) = cos!3 . 

2-1/2 sin!3 exp(iQl) 

fI(R) is closed under real linear combinations, as can 
be shown by checking that c</J(ii, 0) + d</J(ii', 0) is a real 
multiple of </J(ii", 0) for some direction ii". Because of 
rotational invariance it suffices to check this fact by 
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choosing the polar axis perpendicular to both ii and ii', 
so that !3 = i3' = 'IT/2. Then 

~ 
2-1/2[C exp(- iQl) +d exp(- iQl'jl 

c</J(n, 0) +d</J(n', 0)== ° 
2-1 12[C exp(iQl) + d exp(iQl ') 1 

and since the third row in this column vector is the 
complex conjugate of the negative of the first row 

~
2-112 exp(- iQl'j) 

c</J(ii, 0) +d</J(n', 0) =k ° 
2112 exp(iQl") 

for some real k and QI". 

If the inner product of two vectors of fI(R) is taken to 
be the ma trix product of the Hermitian adjoint of the 
first with the second, then it can be checked that the 
conditions for an inner product of a real Hilbert space 
are satisfied. It is clear that fI(R) is three-dimen­
sional. The correspondence between the atomic proposi­
tions {a (ii, OJ} of Lo and the rays of fI(R) is now obvious, 
and it then follows that the lattice Lo is isomorphic to 
the lattice of subspaces of fI(R). If a dispersion-free 
state existed on Lv, it would automatically define a 
dispersion-free state on the sublattice L o, and by the 
isomorphism just exhibited one would also be defined on 
the lattice of subspaces of a three-dimensional real 
Hilbert space. Since that would be in conflict with 
Gleason's theorem (see Sec. III), we conclude that there 
is no dispersion-free state on Lv. 

Any state on Lv must be an extension of one of the 
class /}JR of states which are definable on Lo in accor­
dance with Gleason's theorem, i. e. , m E/}JR if for all 
a ELo 

tn(a) = 6WI(</JI,Pa</JI), 

where the </JI are normalized vectors in fI(R), the WI are 
positive real numbers summing to 1, and Pais the pro­
jection operator on fI(R) corresponding to the proposi­
tion a according to the isomorphism indicated in the 
preceding paragraph. The following theorem gives an 
exhaustive compilation of the states on Lv. 

Theorem: For m to be a state on Lv it is necessary 
and sufficient that there exists a state m E/}JR and a non­
negative function QI (ii) such that 

(i) m(x)=m(x) if xELo, 

(ii) QI(ii) "" 1- m(a(ii, 0)), 

(iii) QI(-ii) =1- m(a(ii, 0)) - QI(ii) , 

(iv) m(a(ii, 1)) ==QI(ii), 

(v) m(a(ii, -l))=QI(-ii), 

(vi) m(b(ii, ± 1)) == 1- m(a(ii, ± 1)). 

To prove this theorem note that the only relations among 
the a(ii, ± 1), the b(ii, ± 1), and Lo which impose con­
straints upon the function m(x) are the following (as 
can be seen by examining Tables II and III): 

a(ii, 1) =a(- ii, - 1), 
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TABLE III. Disjointness relations in Lv. 

n'=n 
a(n, A) 1 a(n, A'), iff A 7 A'. 

a(n, A)1 b(n', A'), iff A= A'. 

~/=-n 
a(n, All a(n', A'), iffA7-A'. 

a(iz,A)1b(n',A'), iffA=-A'. 

fi' 1 n 
a(n, A) 1 a(n', A'), iff A=A' = O. 

otherwise, a(n, A) is not disjoint to a(n,', A) or b(n', A). 

b(ii, 1) = b(- ii, -1), 

a(ii,A)la(n,A') for At-A', and a(n,A)Vva(ii,A') 

=b(ii, A") if A, A', A" are all unequal, 

a(n,A)lb(n,A), and a(ii,A)Vvb(n, A) =1. 

Hence, by the general conditions on states, if m is a 
state on Lv, then 

m(a(n, 1)) =m(a(-n, -1)), 

m(b(n, 1)) =m(b(-n, -1)), 

m(b(ii, A)) =m(a(ii, A')) +m(a(ii, A")) for 

A, A', A" unequal, 

m(a(n, A)) + m(b(ii, A)) =m(a(ii, 1)) + m(a(ii, 0)) 

+ m(a(n, - 1)) = 1. 

These constraints and the previously noted constraint 
concerning states on Lo, as well as the general condi­
tions on states, are clearly satisfied if conditions (i)­
(vi) are fulfilled, thus proving the theorem. 

All the quantum mechanical states on Lv (i. e., states 
of the form m(x)='L,wj(¢j,PX¢i), where the ¢i belong to 
the complex Hilbert space H3, and P x is a projection 
operator on this space) are included in the compilation 
given in the foregoing theorem. However, in this com­
pilation there exist some nonquantum mechanical states. 
For example, let 

m(x) = (<J;,Px<J;), 

where s'z<J;=O, and let a(n)=1-m(a(n,0) forii=.£ and 
ii = y, but otherwise let a (ii) have any value allowed by 
(ii) and (iii). Then 

m(a(x, 0)) =m(a(y, 0)) =0, 

and by (iv) of the theorem, 

m(a(x, 1))=m(a(y, 1))=1. 

But no pure quantum mechanical states assign the val­
ue 1 to two distinct atomic propositions, and hence no 
convex combination of quantum mechanical states would 
do so. Therefore m is not a quantum mechanical state, 
although it is a well-defined state on Lv when a (n) is ful­
ly specified. 

VIII. CONCLUSIONS 
The concept of a verifiable proposition of the spin-1 
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system has been examined, and it has been argued that 
the members of the lattice Lv have a preferred status 
which other propositions concerning the spin-1 system 
lack. The structure of Lv has been exhaustively 
investigated. 

The results concerning Lv are not decisive evidence 
that the Hilbert space formulation of quantum mechan­
ics cannot be fully justified. Nevertheless, the fact that 
the lattice of verifiable propositions of a specific physi­
cal system fail~ to satisfy some of the crucial axioms 
proposed in programs which aim at recovering the 
Hilbert space formulation does constitute a serious 
challenge to these programs. An obligation is placed 
upon advocates of such programs to exhibit the physical 
significance of propositions concerning the spin-1 sys­
tem which are not elements of Lv, or at least to show 
that there are great mathematical advantages in extend­
ing Lv by admitting "ideal" elements. The possibility 
remains open that a structure somewhat different from 
the standard one would be adequate for deriving the 
well-known physically significant consequences of 
standard quantum theory, and may even be superior for 
the purpose of handling hitherto unsolved problems. 

The fact that Lv does not admit a dispersion-free 
state is an interesting contribution to the evidence 
which has been gathered recently against hidden-variable 
theories. 

APPENDIX A 

Let ~ be a vector in H3, but suppose that <0 does not 
belong to Lv. A composite filter 111112111112111' •• will be 
associated with <~) in accordance with Jauch's proposal 
if ~ lies in the intersection of the two subspaces 
j(b (ii , A)), j(b(n', A')). Then 111 and 112 can be taken to be 
the filters associated respectively with the propositions 
b(ii,A) and b(n',A') of Lv. Clearly, then, a necessary 
and sufficient condition for a composite filter of the indi­
cated kind to be constructible for <~) is that ~ be ortho­
gonal to two nonparallel vectors <J;(n,A), <J;(ii,A'). We 
shall now show that for any ~ it is possible to find a 
vector <J;(ii,O) and a vector <J;(n', 1) orthogonal to ~. 

We first write 

- sin!3 exp( - ia) -x+iy 

Hz 

sin!3 exp(ia) x +iy 

If ~ is orthogonal to <J;(n, 0), then the real and imaginary 
parts of (~, <J;(ii, 0)) must both vanish, imposing two con­
ditions on the real vector (x,y,z), which can always be 
simultaneously satisfied, and except in degenerate cases 
essentially only in one way. 

In order to investigate orthogonality to <J;(ii, 1) we 
rewrite 

(

1 + cos!3l exp(- ia) 
2<J;(n,1)= v2sin!3 

(1 - cos!3) exp(ia) 

and multiply ~ by a scalar to yield a vector of the form 
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where each Cj is real and nonnegative. If either Cl or 

C3 is 0, then ~ is orthogonal to either (g) or 0), and 

the required orthogonality is achieved. Hence, in the 
following argument both cl and C3 will be assumed 
nonzero. I/J(n, 1) is orthogonal to ~' (and hence to ~) iff 

0= cl (1 + cos(3) exp[i(Y + K)] + c2 v2s in {3 

+ c3(1- cos(3) exp[i(- y + K)], (AI) 

where y = Ci - o. Take the real and imaginary parts of 
(AI), 

0= Cl (1 + cos(3) cos(y + K) + i2C2 sin{3 

+ C3(1- cos(3) cos(- y + K), (A2) 

and 

0= Cl (1 + cos(3) sin(y + K) + C3(1- cos(3) sin(- y + K). 

(A3) 

Hence, 

= (3 - cl sin(y + K) + C3 sin(- y + K) 
x - cos - . ( ) . ( ) . - Cl sm y + K + C3 sm - y + K 

(A4) 

Since cl and c3 are nonzero, a sufficient condition for 
- 1 "" cos{3 "" 1 is that sin(y + K) and sin(- y + K) have op­
posite signs, which will be the case if the direction of 
y is closer to the y axis than is the direction of K, or 
equivalently if cos2y is less than COS 2K. We shall now 
show that except in special cases, which will be inves­
tigated separately, the equation resulting from the sub­
stitution of Eq. (A4) into Eq. (A2) has a solution y for 
which cos2y < COS2

K, so that (3 is a real angle. 

From Eqs. (A2) and A4) and the assumptions made 
so far concerning Cl' c3' y, and K, one obtains by a 
straightforward calculation 

0=2C1C3U2- (2C1C3+d)u+dw, 

where u=cos2y and W=COS2K. Hence 

u=t +r±H1 +4r(1- 2w) +4r2j1/2, 

wherer=cV4clC3' Since O""w""l, we have 

r - t "" HI + 4r(1- 2w) +4r2]1/2 ""r +t. 

(A5) 

(A6) 

Hence, choOSing the negative sign in Eq. (A6) we have 
0"" u "" 1, which is a necessary and sufficient condition 
for y to be a real angle. In order to check whether 
cos

2y is less than COS2K, we fix wand seek an r which 
maximizes u. It is easily shown that du/dr=O implies 
that w equals either 0 or 1. Hence, except for these two 
extreme values of w, u is monotonic in r, and therefore 
to check whether u is less than w we need only look at 
r = 0 and r - 00. At r = 0, Eq. (A6) (with the negative 
sign) yields u = 0, so that u is less than w unless w = O. 
For r- 00, 

u =t +r- r[l + (1- 2w)/r + 1/4r2j1/2=w - (w -w2)/2r, 

by keeping only terms to first order in 1/r. Therefore, 
if w does not equal 0, u is less than w for large but 
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finite r. (The case of infinite r has been eXCluded, since 
we have assumed that Cl and c3 are nonzero. ) We have 
established, therefore, that COS2y is less than COS

2
K 

except if w equals ° or 1, which we now investigate 
separately. 

If w equals 0, then K is 71/2 or 371/2. If the former, 
let y be 71/2; if the latter, let y be - 71/2. In either case 
Eq. (A3) is satisfied and Eq. (A2) becomes 

o =(cl - C3)2 - 2c~] + 2(d - d) cos{3 + [(cl + CS)2 + 2cH 

X cos2{3. 

With the proper choice of the root we obtain 

2 222 2 22 22 C3 - cl + Cz '" {3 '" C3 - cl + clC3 + C2 
2 2 2 2 2 ~ cos ~ 1 2 2 2 2 , Cl + Clc 3 +C3 + C2 Cl + Cl c 3 +C3 + C2 

so that - 1 "" cos{3 "" 1. Hence both Eq. (A2) and Eq. (A3) 
are satisfied by some real angles {3 and y. 

If w equals 1, we distinguish two cases, 2C1CS"" d 
and 2C1C3 > d. In the former case let y be O. Then Eq. 
(A3) is satisfied, and Eq. (A2) yields (for proper choice 
of the sign of the radical) 

2 2 2[( 2 )2 ( )2]112 
(3 _C3-Cl+ C2-C1C~ -C1C3 cos - 2 2 

Cs - 2C1CS + Cl + 2C2 

Therefore, 

2 2 2 2 2( 2 ) 
C3 - Cl '" (3 '" Cs - Cl + C2 - C1 C3 

d-2clC3+d+2d ~cos ~ C§- 2C1C3+d+2d 

so that -1 ""cos{3"" 1. If, however, 2C1C3 is greater than 
d we return to Eq. (A5) but take the positive sign of 
the radical. Then 

u =t +r +tc2r-l):= 2r = 2cV4ctC3 < 1. 

Hence, 0"" COS2y < 1 =COS2K, and therefore real angles 
{3 and y can be found so as to satisfy Eqs. (A2) and 
(A3). 

All cases have now been covered, and the proof is 
complete. 

APPENDIX B 

One may try to use a suggestion of Stein (Ref. 9, p. 
390) for the purpose of finding physically significant 
propositions outside Lv. Let x be a proposition in Lv 
and define x(t) as the proposition which is realized at 
time 0 by virtue of realizing x at time t, the truth value 
of the former being the same as that of the latter in 
case of realization. Clearly, the expression "x(t)" is 
elliptical, since its content depends upon the dynamics 
of the system. We shall restric t our attention to the 
only physically realistic Hamiltonian of which we are 
aware for the nonrelativistic spin-1 system, H = - J.LB 
• s, where B is in general a time-dependent magnetic 
induction. With this choice of the Hamiltonian it can be 
shown that x E Lv implies x(t) E Lv, so that no extension 
of the class of physically significant propositions has 
been accomplished. 

It suffices to give the proof for an infinitesimal time 
interval At (which the advantage that B can be taken to 
be effectively constant), since the result for finite t 
follows by iteration and passing to the limit. If Px is the 
projection operator on the Hilbert space corresponding 
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to x, then the Hilbert space corresponding to x, then 
the projection operator corresponding to x(t) is 

PX(l>.t) = exp(i/-lB· SD..t/n)Px exp(- i/-lB' SD..t/n). 

With no loss of generality B can be taken in the z direc­
tion, so that 

pX(l>.t) = exp (iQs z)Px exp(- iQsz), 

where Q is defined as /-lBD..t/h. If x is a(fl, 1), with fl 
given polar coordinates 8, <p, then 

exp(iQs z) 2-1/2 sine 
(

i(1 +cose)eXP(_i<P)) 

t (1 - cose) exp(i<p) 

(

eXP(iQn) 0 0 ) (i(1 + cose) exp(- i<P) 

o 1 0 2-1/2 sine 

o 0 exp(-iQn) t(l-cose)exp(i<p) 

(

t(1 + cose) exp[ - i(<P - Qn)]) 

= 2- 1/2 sine 

i (1 - cose) exp[i(<p - Qn)] 

is an eigenvector of pX(l>.t> and it also has the form of 
an eigenvector (with eigenvalue 1) of the spin operator 
in some direction ii' . Consequently, x(D..t) equals 
a(fi', 1) and hence belongs to Lv. A similar argument 
holds for x =a(fl, -1) or a(fl, 0), and no further argu­
ment is needed for x=b(fl,X). 

APPENDIX C 

In 1969, Jauch and Piron6 published a formulation of 
quantum logic with differs radically from their earlier 
work. Two features of the new formulation are especial­
ly relevant to our argument: (a) They propose a new 
definition of conjunction, which may permit the exten­
sion of Lv to a larger set of physically significant pro­
positions; (b) They claim to prove the covering law. 

In order to make judgments on both of these points we 
must summarize their salient definitions and (since 
there are some obscurities) make some comments on 
how they should be construed. 

(i) A yes-no experiment a is said to be true if a 
performance of a will necessarily give the result yes. 

(ii) A partial ordering < is defined on the class of 
yes-no experiments as follows: If a true ~ {3 true, 
then a < (3. 

(iii) The proposition {a} determined by the yes-no 
experiment a is WI (3 < a and a < (3}. 

(iv) If for each i in an index set I, aj is a yes-no 
experiment, then n at is the experiment which consists 
of randomly choosing and measuring one of the aj with 
the result yes (no) being ascribed to n a j if the result 
yes (no) is obtained for ai- If a j is the proposition 
given by at = {aj}, then n aj is the proposition {n at}. 
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(If i= 1,2, we can write n aj as a1 n a2') 

(v) The state of a system is the set 5 of all true pro­
positions of the system. 

Definition (i) is clearly elliptical, and some phrase 
like "when the system is in state 5" ought to be inserted 
between the words "true" and "if. " Without such a 
qualification the predicate truth would be reserved only 
for necessary yes-no experiments, which surely is 
not the authors' intention. Instead of the phrase "when 
the system is in state 5" one might suggest "when the 
system is prepared in manner X," but we suppose that 
the difference is probably not very important. 

If the elliptical definition (i) is expanded as we have 
just suggested, there are important consequences for 
definitions (ii) and (iii): Specifically, whether or not the 
relation < holds depends not only upon the experiments 
a and {3, but also upon the extension of the set 5 of 
states. The reason is that the phrase "ex true ~ {3 
true" is elliptical and means something like "in every 
state in which a is true {3 is also true. " It follows that 
the concept of a proposition, defined in (iii), also de­
pends upon the extension of 5, since a proposition is 
defined as an equivalence class of yes-no experiments 
symmetrically related by <. As an example, consider 
a = {ex }, a suppose that there is no state in which the 
measurement of a is certain to yield yes. In that case 
we have a < r/J, where 0 is the impossible experiment, 
and a then equals the impossible proposition. We see, 
therefore, that the new quantum logic of Jauch and 
Piron differs radically from their own earlier formula­
tion, in which the structure of the lattice of propositions 
was in prinCiple specified without reference to the set 
of possible states of the system; in fact, as we saw in 
Sec. II, the set of states was explicitly defined in terms 
of the lattice of propositions. We do not wish to condemn 
the new procedure of Jauch and Piron, since it is legiti­
mate and often very fruitful to axiomatize several con­
cepts in tandem. What is unsatisfactory in their pro­
cedure is first that they do not seem to recognize that 
the concept of state is involved in their definition of 
implication, and second that their characterization of 
the set of states consists of nothing more than their 
definition (v), which is insufficient to fix the structure 
of either the set of states or the set of propositions. 

We now inquire whether definition (iv) of n Gj provides 
a reasonable extension of the set of physically signifi­
cant propositions. Let b(fl, X) and b(i'i', X') be two propo­
sitions in Lv suc h that 

fb =b(n, X)/\vb(n', ;\,')* b(n, X)/\Hb(n', X'). 

What is the content of the proposition b(fl,X)n b(fl', X'), 
in the sense of definition (iv)? It is the proposition which 
is true in those and only those states in which b(fi, X) 
and bUl', X') are both true. Now suppose that the set of 
states contains the state which is represented in the 
Hilbert space formulation by the one-dimensional inter­
section of the two two-dimensional subspaces 
j(b(fi, X)) and j(b(n, X')). (This is a reasonable supposition 
to ascribe to Jauch and Piron even though, as noted, 
they say little about the set of states. ) Then b(fl, X) 
n b(~l', X') is not identical to the impossible proposition. 
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Primajacie, then, we have obtained a physically signi­
ficant proposition outside of Lv by performing an opera­
tion upon members of Lv. But has anything significant 
been achieved thereby? The only way that we can check 
whether b(n,A)n b(n',A') is true of a physical system at 
time t is to equip oneself with an ensemble of systems 
which are somehow guaranteed to be identical with the 
system of interest (perhaps because of identical pre­
paration), and then to check b(n, A) on an arbitrarily 
large subensemble and b(fi', A') on another arbitrarily 
large subensemble. The two subensembles must be dis­
joint, because of the non-corealizability of b(n, A) and 
b(n', Ar). There appears to be no way of checking 
b(n,A)n b(fl', A') other than by investigating the features 
of an ensemble. But the ensemble in question can be 
characterized perfectly well in terms of the lattice Lv, 
and therefore only a verbal maneuver seems to have 
been performed in attributing physical significance to 
the proposition bUl, A) n ')(il', A'). 

We shall not discuss the covering law in detail, be­
cause the argument of Jauch and Piron is rather lengthy 
and has to be made even lengthier in order to achieve 
rigor. 21 It suffices for our purpose to note that their 
argument depends crucially upon the following assump­
tion: For any state S of a system and any proposition a, 
there exists an ideal measurement of the first kind of 
a. (A measurement of a is of the first kind if an answer 
"yes" implies that a is true immediately after the mea­
surement. A measurement of a is ideal if and only if 
any proposition which is both corealizable with a and 
true prior to the measurement is true immediately after 
the measurement. ) The assumption of Jauch and Piron 
is hard to judge without much more information about 
the physically allowable states and the physically possi­
ble measurements. It appears to us to be at least as 
strong an assumption as the covering law itself, and as 
difficult to judge a priori. 

One judgment which we can make confidently is that 
ideal measurements of the first kind cannot be ac­
complished by measuring propositions which are con­
junctions in the sense discussed in the preceding para­
graph. Suppose that a particular system of interest is 
in a state S in which neither q=b(n,A)n bVi',A') nor its 
orthocomplement q' is true. Measurement of q con­
sists, as we have seen, in carrying out experimental 
tests of b(fi, A) and b(fi', A') in subensembles selected 
from an ensemble of systems in state S; in one or both 
of these subensembles the answers obtained will be a 
mixture of yes and no. This procedure obviously does 
not affect the system of interest, and in particular it 
does not throw that system into a new state in which 
either q is true or q' is true. In fact, the procedure 
does not have this effect for any of the systems of the 
original ensemble, whether chosen to be tested in one 
of the two ways or not. In short, even if the new con­
ception of conjunction of Jauch and Piron is accepted, 
it does not seem to advance their proposal to establish 
the covering law via the performability of ideal mea­
surements of the first kind. 
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We conclude with a brief philosophical comment on 
the new conception of a state proposed by Jauch and 
Piron: that a state is the set of all true propositions 
(in their sense of "true") of the system. Since neither 
potentiality nor probability enters explicitly into this 
conception, it is much closer to the concept of state in 
classical physics than to the usual quantum mechanical 
conception. Only the circumstance that in standard quan­
tum mechanics there is a one-one correspondence be­
tween pure states and atomic propositions-both being 
represented by rays-prevents outright discrepancy 
between the two conceptions, but it would be a mistake 
to rely heavily upon this circumstance, because (as 
argued in the present paper) the physical significance 
~f many atomic propositions is doubtful. (Also see 
Stein's argument in Ref. 9, p. 431, that states cannot 
properly be regarded as subject to yes-or-no tests. ) 
Even if it turns out that quantum mechanics can formally 
be cast into the new formulation of Jauch and Piron, we 
believe that their conception of state would neverthe­
less disguise one of the profound philosophical implica­
tions of quantum mechanics: that potentialities constitute 
an essential aspect of what a physical system is. (On 
this point we agree with Heisenberg, Ref. 22, p. 53.) 
Finally, Jauch himself recognizes 23 that the new concep­
tion of state is problematic when applied to one part of 
a system consisting of several correlated parts, as in 
the example of Einstein, Podolsky, and Rosen. 
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A scattering matrix function is defined, which obeys a nonlinear (Riccati) matrix differential equation, 
containing two coupling potential matrices U and W, which are slowly vanishing, and which are mildly 
oscillatory and rapidly oscillatory, respectively. The scattering matrix is the limiting value of this scattering 
function. The equation is first transformed to separate the effects of U and W, thereby yielding separate 
equations in each. The long range effects of U and Ware included in approximations for the scattering 
matrix, errors are assessed, and a prescription is outlined for the numerical computation of these 
approximations. In the case where the effect of W is entirely neglected beyond a certain point, the 
approximation obtained by Alder and Pauli [Nuc!. Phys. 128, 193 (1969)] is recovered. An assessment of 
the error in this approximation is obtained. 

1. INTRODUCTION 

Numerical solution of the coupled radial equations 
which occur in the partial wave description of Coulomb 
excitation is very cumbersome in practice because of 
the slow decrease wth distance of the coupling potentials. 
This problem already occurs in the distorted wave Born 
approximation to the solution, in that DWBA integrals 
whose integrands are oscillatory, have to be carried out 
to prohibitively large distances. When coupling between 
the various inelastic channels is to be included to all 
orders, the difficulty is compounded, and inclusion of 
more than five or six channels becomes prohibitive using 
the conventional algorithms for solving coupled equa­
tions. A similar situation is encountered in atomic phy­
sics, where polarization potentials between atoms per­
sist to large distances. Approximate methods of solution 
have been devised in both the nuclear l -4 and in the atom­
ic 5• 6 cases. These methods exploit the fact that at large 
distances the coupling potentials become very small and 
either asymptotic expansions of the radial functions in 
powers of (l/r) are presented, or else iterative solu­
tions in orders of the coupling potentials are devised. 
The approximate solutions thus obtained are then match­
ed to the solution obtained by the conventional numerical 
solut.ion of the coupled equations carried out from the 
origin to the matching pOint. None of these studies, 
however, systematically explore errors incurred due 
to neglecting the higher order terms. In the present 
paper we investigate the long range behavior of the solu­
tions of coupled radial equations in the presence of 
coupling potentials which decrease like the sum of in­
verse powers of the radial distance of r, r-1.-1 with A ~ 1. 
The purpose is to examine the leading terms in the solu­
tion, and the order of magnitude of the associated cor­
rections so as to guide future numerical approximation 
methods. In particular, a scattering matrix S(r) is de­
fined as a function of r, whose limit at infinity is the 
scattering matrix S, from which the scattering cross 
sections are derived. Approximations to S are obtained 
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and examined by integrating a Riccati equation for S(r). 
The zeroth order is identical to an approximate solution 
first proposed by Alder and Pauli, and the higher order 
terms provide a method for obtaining the asymptotic 
behavior of the corrections. 

The first order correction terms provide a practical 
method for improving upon the method of Alder and 
Pauli, as is shown in a companion paper. 7 In that paper, 
methods for computing the correction terms are pro­
posed and numerical examples are given. 

Solutions of the coupled equations involving asymptotic 
series in powers of l/r have been employed. 3.6 However, 
as used, the applicability of this method depends on the 
requirement that the differences between the wavenum­
bers in the various scattering channels are not too 
small. The smaller these differences, the larger the 
radius r has to be chosen at which the series gives a 
desired accuracy. This difficulty was circumvented by 
Mercer and Ravenha1l3 by setting all nuclear excitation 
energies equal to zero. Their method represents a sig­
nificant improvement over previous methods in that, 
once the excitation energies are set equal to zero, it 
includes the effect of coupling at large distances in an 
essentially exact fashion. In the present formulation the 
nuclear excitation energies need not be zero, yet the 
above mentioned difficulty is avoided. It is hoped that 
the method will provide a basiS for computation of dis­
perSion corrections for inelastic electron-nucleus scat­
tering where a large degree of accuracy is required. 

2. GENERAL FORMALISM 

The projectile is assumed to have no spin. The posi­
tion of the projectile relative to the center of mass of 
the nucleus is denoted by r, the spin of the nucleus in 
state i is 1fI;, and the orbital angular momentum of the 
motion relative to the center of mass is n. A given 
total angular momentum tiJ can be achieved by coupling 
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various ilL's to various 1fI/ s, and the corresponding 
radial projectile-target wavefunctions I/J(LIJJMJ(r) are 
coupled to each other through the equation 

[~-D""+K~,,J I/J,,(r) ='!}V"". (r)I/J". (r). (2.1) 

Here the index Ci denotes collectively the quantum num­
bers L, I, and J. The magnetic quantum number M J is 
suppressed because it is the same for all Ci' s. D is a 
diagonal matrix which contains the centripetal and mono­
pole Coulomb potentials and K is the diagonal matrix of 
the various wavenumbers k l . = [21J. (E - Ej )/112]1/2. Here , 
IJ. is the projectile-nucleus reduced mass, Ej are the 
nuclear excitation energies, and E is the total energy. 

For the case of a point nucleus, 

D",,(r) =L(L + ll/r2 + 21)l kr/r, 

where 1)1 are the Coulomb parameters ze2/llvj =lJ.ze2
/ 

Ilk l • The coupling potentials V""' have the same meaning 
as Viz. I' I' defined in Eq. (10) of Ref. 1. They are also 
equal to (2 1J./1l2)(Y " I V I Y ".), where the V is the sum 
over the nucleons in the nucleus of the proj ecticle­
nucleon potentials and Y(LIJJMJ(r, ~1 ••• ~A) is an eigen­
state of the angular momentum operators J z , J2, L2, 
and 12 and is also an eigenstate of the nuclear 
Hamiltonian HA(~1 '" ~A)' The potential V""' can be ex­
pressed in sums over multipole terms A, which at dis­
tances beyond the nuclear surface decrease as r-X

-
1

, 

with A ~ 1. The monopole term, A = 0, has been removed 
from V""' and included in D"". The value of Ci runs 
from 1 to n. 

There are n linearly independent solutions I/J~S), s 
= 1,2, ... ,n of Eq. (2.1) which are regular at the ori­
gin, but which may not yet obey the proper asymptotic 
boundary conditions. If all the components I/J~S), Ci 
= 1, ... ,n for a given s, are placed in a column, and if 
all the columns s = 1, ... ,n are placed next to each 
other, one obtains the matrix I/J(r) of the regular 
solutions, 

(1/J)"s=I/J~S)(r). 

In matrix form Eq. (2.1) then reads 

[I~- D(r) +K2] I/J(r) = V(r)l/J(r). (2.2) 

The matrices D(r), K2, and V(r) are real and symmetric. 
At large distances, say r~RM' the diagonal potential 
reduces to the usual point Coulomb form 

where 1)" are the Coulomb parameters z e2/llv" = IJ.z e2
/ 

iik", and the coupling potential matrix can be expanded 
in powers of l/r, 

V(r)=.0 Vxr-
X

-
1

, r?>R M , 
X,,1 

(2.3) 

with f; IV ",a(r) I dr < cO for each entry V"a(r) of V(r). 
M . 

The point Coulomb function8 which asymptotIcally con-
tains outgoing waves is denoted by h",(r), 

396 

h",(r) =h(l"" 1)"" k",r) 

= <p,,(r) exp(i8,,). 
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(2.4) 

In the above <p" is the amplitude which at large distances 
goes to unity and the phase is 

8"(r)=k"r-1J",ln(2k"r)-L,,,1T/2+oL ,n • (2.5) 
'" " 

A diagonal matrix H(r) can now be defined by 

H",,(r)=h,,(r)lz~1I2, Ci=I, ... ,n, (2.6) 

and the corresponding matrix of the ingoing point 
Coulomb waves, h~, is given by H~"=H~,,. (In what fol­
lows, Hermitian conjugation of a matrix M is denoted 
by Mt, complex conjugation by M*, transpose of a ma­
trix M by M T

, and M' denotes dM/dr.) Furthermore, 

H'(r)H*(r) - H(r)H*'(r) = 2iI. (2.7) 

Employing the method of variation of constants, matrix 
functionsA(r) andB(r) are defined by 

I/J(r) =H(r)A(r) +H*(r)B(r), 

I/J'(r) =H'(r)l1(r) +H*'(r)B (r), 

(2.8a) 

(2.8b) 

which, together with Eq. (2.2) and (2.7) yield for r 
?>RM, 

A'(r)=uA+WB, 

B'(r)=U*B +w*A. 

Here 

1 
U(r) = 2{l*(r)V(r)H(r) 

(2.9a) 

(2.9b) 

(2.10) 

is skew Hermitian, i. e., Ut =- U, and its elements are 
slowly oscillatory functions of r. The matrix 

1 
W(r) =2i H*(r)V(r)H*(r) (2.11) 

is symmetric, and its elements are rapidly varying 
functions of r. By means of Eq. (2.7), the "matching" 
equations for A and B in terms of I/J and I/J' are given as 

A(r) = - [H*'(r)l/J(r) - H*(r)I/J'(r)V(2i), (2. 12a) 

B (r) = [H'(r)l/J(r) - H(r)I/J'(r)V (2i). (2. 12b) 

If I/J(r) is real, which can always be chosen to be the 
case since the potentials are real (no complex optical 
potentials are present), then B (r) =A (r)*. 

Since the coupling potential V(r) has integrable entries 
for R M "; r < cO and the point Coulomb wavefunctions are 
uniformly bounded there, the elements of U and Ware 
also integrable for R M ,,; r < cO, in which case the solu­
tion matrices A and B of (2.9) tend to finite limits at 
00. Furthermore, since I/J is regular at the origin, and 
its columns are linearly independent solution vectors of 
Eq. (2.1), then A(r) and B (r) are nonsingular for RM 
,,; r < 00, even as r tends to cO, and we can define the 
matrix function S(r) by 

(2.13) 

and its limit 

5 =limS(r), 

both of which are unitary and symmetriC since I/J is reg­
ular and the potentials are real and symmetric. 5 rep­
resents the scattering matrix associated with Eq. 1. To 
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see that Sand S are well defined and unitary, note that 
since Ij! is regular and the potentials are Hermitian, 

Ij!tlj!'_lj!t'Ij!=O for all r, 

but 

Ij!tlj!' = (AtH* +BtH)(H'A +H*'B) 

=AtH*H'A +BtHH*'B +AtH*H*'B +BtHH'A 

so 

o =At(H*H' - H*'HlA +Bt(HH*'- H'H*)B 

=2ilAtA -BtB], 

where we have used (2.7) and the fact that H is diagonal 
and so commutes with H'. 

Therefore, At(rlA(r) =Bt(r)B (r) for all r. If B is sin­
gular at some point ro ?-RM, then for some nonzero con­
stant column vector ~, B(roH=O. But then O=eBt(ro) 
xB(ro)~=eAt(rolA(ro)~, so thatA(roH=O. But then 
from (2.8) we see that Ij!(ro)~ = 0 and i/!'(roH = 0, in which 
case the vector solution ¢ (r) = Ij!(r) ~ of (2. 2) is identical­
ly zero for all r, contradicting the linear independence 
of the columns of Ij!. Therefore, B (r) is nonsingular for 
all r?-R M. Similarly A(r) is also nonsingular for r?-R M. 

Thus S(r) is well defined, and since At(rlA(r) =Bt(r)B (r), 
1 = (j3tt:A tAB-1 =St(r)S(r), whence S(r) is unitary. Since 
A(r) andB(r) tend to definite limits at 00, and S(r) is 
unitary, S is well defined and unitary. 

Since in addition, the potentials are real, then 

Ij!TIj!'_Ij!T'Ij!=O for all r, 

in which case one obtains in a manner similar to the 
above that 

0= Ij!T Ij!' = 1j!1" Ij! = 2i[B TA - ATB] for all r ?-RM. 

Thus ST =- (j3TrlAT =-AB-1 =S, and S is symmetric. 
Making use of Eq. (2.9) one obtains for S a Riccati 
equation 

S'(r) = U(r)S(r) +S(r)UT(r) - W(r) +S(r)W*(r)S(r). 

(2.14) 

In view of Eqs. (2.10) and (2.11) the above equation can 
also be written as 

S'(r) = - (SH - H*)V(HS - H*)/2i. 

The integral form of Eq. (2.14) is 

S =S(R M) + JR:(UWSW +S(~)UTW]d~ 

- JR~W(~)d~ + JR~SWW*(~)S(~)d~, 
M M 

(2.15) 

(2.16) 

which can be iterated to yield successively better ap­
proximations for S. It will be seen later on, that in or­
der to obtain approximations to S, it is advantageous to 
first solve the system 

A'(r) = U(r)A (r), r?-RM, 

A(RM) =1. 

(2. 17a) 

(2. 17b) 

The solution matrix A(r) of Eq. (2.17) is unitary. This 
follows from the fact that A t(RM)A(RM) =1 and (A t(r) 
XA(r))' =AtUtA +AtUA =A t(Ut + U)A. The latter ex-
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pression vanishes since U is skew-Hermitian and A tA 
=1 for all r. 

3. COMPARISON WITH THE METHOD OF ALDER 
AND PAULI 

The authors of Refs. 1 and 2 solve the system of equa­
tions (2.9) approximately by dropping the rapidly oscil­
latory terms in Wand W*, 

A~(r) = U(r)Aa(r) , 

B~(r) = U* (r)Ba(r) , 

Ij!a(r) =HAa +H*Ba' r?-RM• 

(3.1a) 

(3.1b) 

(3.2) 

In order to maintain the continuity of ~) and Ij!' at the 
matching point R M' the initial conditions for Aa and Ba 
are determined by equating Ij!. and Ij!~, obtained from Eq. 
(3.3) in terms of A a, Ba, A~, and B~ to Ij! and Ij!' at r =RM. 
Making use of Eqs. (3.1) and (3.2), the resulting equa­
tions for Aa and B. at r =RM are 

(1 + iH*2W*)Aa=A - H*2HVI./J/4, 

(1 - iH2W)Ba=B - H2H*VIj!/4, 

(3.3) 

where all quantities are to be evaluated at r =RM , and 
where A and B are obtained from Eq. (2.12). Since W 
decreases with V on the order of r-Ao-1, AO?- 1, we see 
that for RM large enough these equations can be solved 
explicitly for Aa and B a , which will be nonsingular. 
Again, if Ij! is real then Ba(R M) =A:(RM). 

The solutions of Eq. (3.1) can be expressed in terms 
of A(r), defined by Eq. (2.17), according to 

Aa(r) =A(r)Aa(RM), 

Ba(r) =A*(r)Ba(RM) , 

and the scattering function analogous to (2.13) is 

Sa(r) = -Aa(r)B~l(r) 

=A(r)[ -Aa(RM)Ba(RM)}A T(r), 

Sa(r) =A(r)Sa(RM)AT(r). 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

The scattering matrix is again obtained in the limit of 
large distances 

(3.5) 

Code AROSA1 computes A(r), the solution of Eq. (2.17), 
for increasing r until, for r ?-R A , the values of Sa(r) 
change less than a predetermined amount. Thus Sa(oo) 
,:::Sa(R A ). 

Direct differentiation of the scattering function for 
this approximation yields 

(3.6a) 

Note that this can also be obtained from Eq. (2.14) by 
setting the oscillatory term W equal to zero. Further, 

(3.6b) 

This initial value is not exact, since at the matching 
point RM we have 

Ij!=HAa +H*Ba= (H* - HSa)Ba, 

and 
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1/i=HA +H*B =(H* -HS)B, 

so that 1/iB;l=H* -HSa and 1/iB-1=H*-HS, yielding, for 
r=R M, 

S -Sa=W11/i(B;1_B-1). 

This is not zero, since Ba*B. The error in AROSA' s 
scattering matrix function is 

A(r) =S(r) - Sa(r). 

In view of Eqs. (2.14) and (3. 6a) it satisfies 

A'(r) = U(r)A(r) + A (r)UT(r) 

- W(r) +S(r)W*(r)S(r), 

A(RM) =S(RM) - Sa(R M). 

Introducing the matrix 6(r) by means of the 
transformation 

A(r) =A (r)o(r)A T(r), 

(3.7) 

(3.8a) 

(3.8b) 

(3.9) 

one finds that the first two terms on the right- hand side 
of Eq. (3.8a) cancel in view of Eq. (2.17), and one has 

o'(r) =-AtWA* +A tSW*SA*, 

o(R M) =A(RM)· 

The integral of Eq. (3.10) is 

(3. lOa) 

(3. lOb) 

o(oo)=A(RM)- f,~ AtWA*d~+ (~AtSW*SA*d~. 
RM JRM 

(3.11) 

An integration by parts of the first integral yields 

f,R~ AtWA* d~ =- Y(RM) + JR~ At[UY +YUT)A*d~, 
M M 

(3.12) 

where 

Y(r) =- f.~W(~)d~. (3.13) 

Similarly, for the second integral in Eq. (3.11), one 
finds 

(3.14) 

The Euclidean vector norm 

for a vector 

induces a natural matrix norm 

IIMII =max{IIM~II; ~ a unit vector}. (3. 15a) 

Since IIM~1I2 = eMtM~ is a positive semidefinite, 
Hermitian, quadratic form, 9 we see that 

II Mil 2 = maximum eigenvalue of MtM. (3. 15b) 

We shall find this a convenient norm, since for U a uni­
tary matrix, II UII = 1, and 
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IIMUII =IIMII =IIUMII (3.16) 

for any matrix M. 

Recalling the expansion for V given in Eq. (2.3), we 
define 

VXo = max {kIIH(r)1I 211 V(r)lIrXo+l}, 
r~RM 

(3.17) 

where AO is the index of the leading term Vxor-Xo-l in that 
expansion, and k is the smallest of the wavenumbers 
k Ol , 1~ a ~n, in Eq. (2.1). 

Since RM is greater than the turning points of each of 
the point Coulomb functions hOl(r), 1 <;:: a ~n, then IhOl(r)1 
is nearly 1 for r?- R M' so that vXo is very nearly equal 
to IlVxoli. 

We, therefore, have for U and W defined in (2.10) 
and (2.11) that 

II U(r)11 = O(vxrlr-XO-l), 

II W(r)1I = O(vxok-lr-Xo-l). 

In Appendix A it is established that 

(3. 18a) 

(3. 18b) 

(3.18c) 

This result is due to the fact that the integrand W in 
Eq. (3.13) is a rapidly oscillating function of r, which 
is also responsible for the additional factor of k- 1 in 
(3.18c). Since S is a unitary matrix, it follows from Eq. 
(2.14) that the norm of S'(r) is of the same order of 
magnitude as that of the norms of U and W. Hence the 
norms of the integrands of all three integrals on the 
right-hand sides of Eqs. (3.12) and (3.14) are of the 
same order of magnitude, 0(viok-3r-2Xo-2). Thus all three 
integrals have norms of order O(viok-3r-2Xo-l). The above 
argument shows that 

Further, from Eq. (3.3), it can be seen that 

II A (RM)II = IIS(RM) - S A(RM)II 

= IIA(RM)B-1(RM) -Aa(R M)B;l(RM)1I 

= 0(v xOk-2R-;?0-1). 

(3.19) 

(3.20) 

It is not too surprising that (3.19) and (3.20) are of the 
same order of magnitude since the error in both was 
due to the neglect of W. Combining (3.9), (3.19), and 
(3.20) it is found that the error in the scattering matrix 
computed by AROSA is 

II A(oo)11 = 115 - Sa(ao)1I 

=O(v k-2R-XO-1) +0(v 2 k-3R-n O-1) Xo M Xo M • 

Since in practice k:::: 1, kR M » 1, this is just 

(3.21) 

From Eq. (3.4d) we see that since A is unitary, the 
unitarity and symmetry of Sa(r) depends on the unitarity 
and symmetry ofSa(RM)=-AaB;l. However, since the 
matching equations (3.3) show that in general Aa differs 
from A at R M, Sa(R M) is not in general unitary. Since V 
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and 1j! are real, we see that Ba=A:, and Sa(RM) 
= - (AaA:- l

) so that Sa(RM)S:(RM) =1, in which case Sa(RM) 
is unitary exactly when it is symmetric. 

The matching equations at RM yield 

and 

1j! =HAa +H*Ba = (H* - HSa)Ba 

1j!' =H'Aa +H*'Ba +HA~ +H*B~ 

=[(H*' +H*U*) - (H' +HU)Sa]Ba• 

(3. 22) 

(3.23) 

Using the regularity condition 1j!t1j!'_1j!t'1j!=O, and the 
invertibility of B a, we obtain 

[1j!t(H' +HU) - 1j!t' H]Sa = [1j!t(H*' +H*U*) _1j!t' H*]. 

(3.24) 

If Sa were unitary, then using the fact that U is skew­
Hermitian, V is real and symmetric, and 1j! is real, we 
would obtain from (3.24) the equation 

1j!T(H*H)V(H*HW _1j!T' (H*H)V(H*H)1j! 

+ i1j!T[(H*H)'V(H*H) - (H*H)V(H*H)']1j!= O. (3.25) 

Certainly, if we were dealing with a single scalar equa­
tion, or if by some other means V commuted with H, 
then this equation would be correct. But there is no 
reason to expect that it is an identity for all cases. 
Hence, in general Sa(r) is neither unitary nor symmetric 

4. SUCCESSIVE APPROXIMATIONS FOR THE 
SCATTERING MATRIX 

The starting point of the present considerations is the 
observation that the equation for the exact S(r) matrix 
function, Eq. (2.14), and that for Sa(r) , Eq. (3.6a), 
differ only by the terms in the rapidly oscillatory ma­
trix W. 

In the spirit of Alder and Pauli, it is possible to sepa­
rate the effect of the slowly oscillating coupling matrix 
U from that of the rapidly oscillating matrix W by de­
fining a new matrix R(r) by the unitary transformation 

S(r) =A(r)R(r)AT(r), 

R(r) =A t(r)S (r)A* (r). 

Note that 

(4.1a) 

(4.1b) 

(4.2) 

sinceA(RM) =1. Eq. (2.14), with the help of Eq. (2.17), 
reduces to 

(4.3) 

According to Eq. (4.1b), R is symmetric and unitary 
since S is symmetric and unitary, and A is unitary. By 
integration of Eq. (4.3) one obtains 

R(r)=S(RM)-.hR
r AtWA*d~+ J,r R(ATW*A)Rd~. 
M RM 

(4.4) 

Integration by parts, recalling Eq. (3.13), yields 
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and 

- JR~ RA T[UTy* + Y*U]AR d~. 
M 

(4.6) 

Collecting terms, using Eq. (4.1a), and defining 

51 =A(oo)[S(RM) + Y(RM) - S(RM)Y*(RM)S(RM)]A T(oo), 

(4.7) 

one obtains 

5 =51 -A (00) {fR:A t[UY + YUT]A* d~ 

+ J,~ [R'ATY*AR +RATY*AR']d~ 
RM 

+ JR~ RAT[UTy* + Y*U]AR d~}A T(oo). 
M 

(4.8) 

The above equation is exact. However, each of the inte­
grals above is of order O(v~ok-3R;}~O-I) as can be seen by 
arguments similar to those made in connection with Eqs. 
(3.18)-(3.21), and hence 

(4.9) 

The above represents a considerable improvement over 
the error in the approximation of Alder et al, given by 
Eq. (3.21). It requires the computation of Y(RM) 
= - JiM W(O d~ as the only addition to what is calculated 
in AROSA. Numerical methods for the calculation of 
Y in terms of a continued fraction method are described 
in Ref. 7. Since S(RM) and Y(RM) are symmetric matrices, 
it is clear from Eq. (4.7) that 51 also is symmetric. 
Furthermore, direct calculation shows that 

5151 =1 +A *[y*y +Syy*S - (Sy)2 _ (Y*S)2]A T 

and, therefore, 

(4.10) 

which shows that 51 is unitary to a higher order than its 
error given in (4.9). If a better approximation to 5 than 
51 is desired, a further examination of the integrals in 
(4.5) and (4.6) is required. By means of an additional 
integration by parts, and by defining the matrix 

(4.11) 

one obtains as a higher order approximation of 5 the 
result 

52 is obviously symmetric. 

Since X(RM) +Xt(RM) = Ji [Wy* + y*w] d~ = J; (YY*)' d~ 
M M 

=- Y(RM)Y*(RM)' one sees that 

(4.13) 
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U sing this result together with the assumption that kR M and 
»1, one can show that 

(4.14) 

Note that the unitarity of 52 is not better than that of 51' 
However, the accuracy of 52 is better than that of 5 l' 
Examining the integrals in (4.5) and (4.6) and an addi­
tional integration by parts performed by means of the 
introduction of X(r) , one finds 

(4.15) 

This is better than (4.9) by another power of (kRMtl. 

The calculation of X(r) is not easy, because first Y 
has to be computed at all integration points in (4.11). 
However, Since, as shown in the Appendix, Y*(r) 
'" - (i/2k)W*(r), the integrand WY*", (- i/2k)WW* is a 
slowly varying function of r, and the integration steps 
could be widely spaced. The merit of computing Y and 
X as compared to only computing Y and using a larger 
value of RII should be decided in each particular case. 
In the numerical example given in Ref. 7, it is shown 
that the inclusion of only Y, i. e., the use of 51 rather 
than Sa(oo) of Ref. 1 enables one to reduce RM from 70 to 
30 fm. The inclusion of both Y and X would reduce RM 
further to 20 fm. However, this may not seem worth 
the extra effort of calculating X. 

5. CALCULATION OF A (r) 

It is tempting to solve Eq. (2.17) for A by using an 
asymptotic expansion in powers of (l/r) of the elements 
of A. This method is essentially the one used by Burke 
et al, 6 and by Mercer and Ravenhall,3 in the solution of 
Eq. (2.1). However, the matrix elements Uij contain 
phase factors Bj - B j which make them slowly varying 
functions of r. This in turn leads to the requirement 
that 

(5.1a) 

where 

t.k= min Ik i - k j I, (5.1b) 
Rj#kj 

in order that the error in the asymptotic series is to be 
kept small. 10 If all the wavenumbers are equal, this dif­
ficulty does not arise and the asymptotic expansion can 
be used. On the other hand, numerical evaluation of 
Y(RM) by the methods discussed in Ref. 7 only requires 
that Rlf ?- (k j + k j)"!. This is much less stringent than 
(5.1) . 

Defining A(r) by 

A'(r)=UA, 

we have, by successive iteration, that 

A(r) =1 - I/' U(s)A(s)ds =:BAv(r), 
v=o 

where 
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(5.2a) 

(5.2b) 

(5.3a) 

(5.3b) 

(5.3c) 

Since II U(r) II ,,; vXo (2krxo+l)"1 for r '? R II , one readily 
obtains 

(5.4) 

which implies absolute and uniform convergence of the 
series (5.3) for r?-R M • 

For any point R A'? R M , we have that the solution A(r) 
of (2.17) is given by 

(5.5) 

In particular 

Since A(r) is also unitary, we see that 
00 

A -l(r) =At(r) =6 A~(r). 
v =0 

Furthermore, since U is skew-Hermitian, we see that 

Therefore, defining the matrix AI(DO), by 

Al (00) = [1 +AI(RA)]A(RA) = [I + fR: U(s) ds ]A(R A), 

(5.6) 

we see that 

A(oo) -Al(DO) =[EA~(RA)J A(R A) =O([vx/(21?AoR~0) F). 
(5.7) 

If we approximate A(oo) in (4.7), by Al (00) and define 
SF by 

SF =Al (DO)[S(RM) + Y(RM) - S(RM)Y*(RM)S(RM)]A[(oo), 

(5.8) 

then we have 

115 - 5FII =O(v~/(k3R~xO+l» + O(vV(k2A~::0». (5.9) 

The first term on the right in (5.9) reflects the error in 
5 due to truncation in W, and the second reflects that 
due to truncation in U. It is clear that SF is symmetric, 
and is unitary up to the order given by (5.9). 

If we represent the actual errors in 5 due to the two 
truncations as EW(RM) and Eu(R A ), so that 

(5.10) 

then the numerical prescription for computing the ap­
proximate scattering matrix 5 F to a given accuracy E 

is as follows. 

One solves (2.1) numerically on some interval [o,RMl 
for a regular solution matrix Ij! and its derivative IJ!' at 
R M' One then solves (2. 17) numerically on some interval 
[RM,RA1. In addition one computes the integrals 
Ii W(s)ds and Ii U(s)ds. These quantities suffice to 

M A 
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construct SF, given by (5.8). Methods for computing the 
integrals are discussed in Ref. 7. The pOints RM and 
RA are determined by requiring that the numerical 
roundoff error, plus the truncation error IIEw(RM)11 
+ IIEu(R A ) II be bounded by E. 

Since the error in 51 due to truncation in W is given 
to leading order by (4.12), we see that 

115 - 5dl =\lEw(RM)11 '$2I\X{RM)11 

< v 2 /(4k 3(2A + l)Rn o+l) - ~o 0 M' 

Furthermore, 

1151 - 5 FII =/IEu(R A)1I '" 2I1A(co) - AI (cO) 

'" 2I1A2(R A )1I ~vi/(4k2A5R1AO). 

(5.11) 

(5.12) 

Therefore, assuming that RM is beyond the turning points 
of the point Coulomb functions h",(r), and that roundoff 
error is negligible compared to the truncation error, 
one can estimate RM and RA by requiring that 

(5.13) 

If one wishes simply to balance the two truncation er­
rors, then one obtains an approximate relation between 
RA and RM given by 

RA ;::RM[kRM(2Ao + 1)/A5]~o!2. (5.14) 

In the numerical example discussed in Ref. 7, R A has 
the approximate value 60 fm, as compared with 400 fm 
in Ref. 1, in order to obtain an accuracy of 10-4• In Ref. 
7 a series method for evaluating AI (R A) is presented, 
which does require that R A be larger than the turning 
pOints of the point Coulomb wavefunctions in all the 
channels involved, but does not require that AkRA > 1. 

6. SUMMARY AND CONCLUSIONS 

An r dependent scattering matrix, S(r), is defined 
which approaches the scattering matrix 5 as r - co. The 
way in which S(r) approaches 5 is studied by means of 
a first order nonlinear (Riccati) equation satisfied by 
S. This equation contains the matrices U(r) and W(r), 
both of which are obtained from the coupling potential 
VCr) by multiplication by the matrix of point Coulomb 
functions. The former, U(r), is a slowly varying func­
tion of r, the latter a rapidly varying function, since 
they contain factors exp[i(k j - kJr] and exp[i(k j +kj)r], 
respectively (k;, i= 1, ... ,11, being the wavenumbers). 
Both U and W decrease in magnitude as r increases, 
the leading term being of the order r-Ao - 1, AO'" 1. As a 
consequence of the difference in the oscillatory behavior 
of U and W, S(r) can be advantageously transformed so 
as to separate the effects of the two. Transforming 
S(r) by S(r) =A (r)R(r)A T(r), where 

A'=UA, A(RM)=l, 

A is unitary, and where 

(6.1) 

R'=-AtWA*+R(ATW*A)R, R(RM)==-S(RM)' (6.2) 

R is symmetric and unitary, the effect of the matrices 
U and W on S can be separately analyzed. An assess­
ment is made of the error introduced in S due to the 
approximation made in Ref. 1 of neglecting W beyond 
Rw More refined approximations for 5 are obtained by 
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including W to various orders beyond RM and by approxi­
mating A beyond a pOintRA>RM by iterating (6.1). The 
errors due to the truncation in Wand in U are assessed 
and compared. The final result SF given in (5.8) re­
quires the calculation of S(RM)' Y(RM), and AI(co) given 
in (2.12), (2.13), (3.13), and (5.6). Methods of comput­
ing the latter two are described in Ref. 7. The numeri­
cal example discussed there shows that SF provides an 
approximation for the scattering matrix for the problem 
discussed in Ref. 1, accurate to 10-4

, while reducing 
RM from 70 fm to about 30 fm, and redUCing RA from 
500 fm to about 60 fm. 

APPENDIX A 

Set/(a, tl;r)==-exp(- iar)r-6
, Q! of 0 real, Retl> O. Set 

l(a,{3; rl=fr~/(a,{3;s)ds. Then (AI) 

l(a,f3;r)~ f~exp(-iQ!s)s-8ds 
r 

~_ exp(-:-ias)s_IlI~_~ 
tQ! r tQ! 

~ 

J exp(- iQ!s) 
r 

X S-I3-1 ds, 

1 (3 
l(a, ;3; r) =-:=-f(Q!, {3; r) - ~1(Q!, (3 + 1; r), 

u:l ta 
(A2) 

1 ;3 
l(a,tl;r)~-:-/(Q!,;3;r)-p. ) /(a,;3+1; r) 

ta ta 

13(13+ 1) 
+ (ia)2 1(a,;3+2;r). (A3) 

From these we have 

iial(a,;3;r)_ll = il.t(a,;3+1;r)+;3({:l+1) 1(a,i3+ 2;r)/ 
I f(a,i3;r) lia f(a,{:l;r) ia f(a, {3;r) 

"" !L! + i{:l({:l+l)r
ll i f~s-Re6-2dS 

iar i ia I r 

= _ + r e8 ___ ~ I 
(:l I \ ;3(;3 + 1) I R r-Rell-l 

ar Q! (Re{3 + 1) 

=(1+ I~/)I.LI_ (I~I) Re{:l + 1 ar - 0 I ar . 

Thus 

(A4) 

The matrix W(r) ==- (1/2i)H*(r)V(r)H*(r) has entries of 
the form 

where v"a(r) is the a,{3 entry in Vir), and where 

B,,(r) ~k"r -17",lnr + const"" 

¢",(r)~l + ¢~j)r-l + O(r-2) , 

va/l(r) =v~c;Jr-]o,o~l +v~~r-Ao-2 + ... ='E v~)r-Ao-l-jJ.. 
,,=0 
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<p" has an asymptotic series representations in r, and 
v"s(r) is analytic in l/r, with AD 3-1. Consequently 

2i.fk;.k;, (W(r»"s =f (k" + ks, Ao + 1 -- i(7)" + 7)13); r}w~OJ 

+ f(k" + ks, AD + 2 -- i (7)", + 7)13); r}w~~ 

+ f(k", + ks, AO + 3 -- i(7)" + 7)8); r)w~2J 

+f(k", +ks, Ao + 4 -- i(7)", + 7)13); r)O",s(l) , 

(A6) 

wherew~oJ, W~1J, w~Vareconstants, lw~oll=lv~OJI, and 
0"'13(1) is uniformly bounded as r- "". Heref is the func­
tion defined in (AI). 

From (A6) it is clear that 

I 
iv(O) I 

2N k",ks(W(r»"s I =-::fn~r<1 + O(I/r» for r 3- R", 
r 0 '. 

in which case 

where 

k=min k", and vx
Q

=max[kIlH(r)1I 211V(r)lIr>-o+1]. 
1~~~n r~RM 

Integrating (A6) throughout and using (A4) we have 

2Nk",ks f (W(s))"sds 
r 

. w~Oj 
= f(k" + ks, Ao + 1 -- z(7)", + 7)8); r) i(k", + k

s
) 

(A7) 

(A8) 

x [1 + 0(1 (k" ! ks)r I)}f(k", + ks, Ao+ 2 -- i (7)", + 7)13); r) 

x i (~:~ ks)r [1 + 0(\ (k", ! ks)r \)] 

. . W~2J 
+ f (k", + ks, Ao + 3 -- z(7)" + 7)13), r) i(ko: + k

s
) 

x [1 + 0(1 (k", : ks)r 1)]+ ! f(ko: + ks, Ao + 4 

-- i(7)o: + 7)13); s)O 0:13(1) ds 

f(k q + kB,. AQ + 1 -- (7)q + 7)s)j r){w~oJ [1 + 0 (I 1 I)] 
z(k", + ks) (ko: + ks)r 

I 

Since the last term in braces is O( I k", + ks I /r2) , which 
is negligible compared with O( Il/(ko: + ks)r I), we have 
that 

This yields the result that 

II i W(s)dsll =0(k2~~~+i)' r3-RM • (AIO) 

A similar argument applies to U(r) = (1/2i)H*VH, yielding 

. Iv~O) I [ (1) ] \2rJ k",ks (U(r))",B \ = rXo~1 1 + 0 r ' (All) 

IIU(r)11 =0 (k:foO+i) , r3-RM, (A12) 

j (U(s))o:sds f(kq -- ks, AD + 1- i(7)q - 7)s)j r) 
r - 2~ks(k", -- ks) 

xu~OJ [1 +0(1 Yk~ks(k: -- ks)r I)] ' 
(A13) 

so 

(A14) 

where Ak=mino:"slk",-ksl. The Eqs. (A13) and (A14) 
are valid for t:..kr» 1. 

Set Y(r)=- fr"'W(s)ds. Then, since in analogy with 
(A6) 

(U(r))~. f(k a -- ks, ~Q + 1- i(7)", -- 7)8); r)u(O) [1 + O(.!)] 
~~ + 2zlkaks 0:13 r' 

(A15) 

(A16) 

We see by arguments similar to those for fr"'(W(s))",sds, that 

(A17) 
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Consequently, 

II ! U(S)Y(S)dsll=O[(k2~~~+rJ r~RM' (AlB) 

(WY*) _(.p.. f(k", + kl+' Ao + 1 - i(11", + 1)1+); r) f(- kl+ - ka, AO + 1 - i(- 1)1+ - 1)a); r) w(O) w*(O~ ~1 + o( 1 )] 
",a - L.J 2'; (k k )172 2(k k )172(k + k ) "'1+ .. a llr 

.. =1 • "'.. .. a .. a 

=(Ef(k", - k8' 2Ao + 2 - i(1)", -1)8); r) 4i(k",~~orl~2W: + k8») [1 + 0 fr ] 
f(k", - k8' 2Ao + 2 - i(1)", - 1)8); r) [1 + o( 1)] (t w~oJ wW») 

4i(k",k8)1!2 llr .. =1 k .. (k .. +k8) • 
(A19) 

Equation (A19) shows that (WY*)",8 is a slowly varying function of r compared with say (UY)"'8' since I k", - k81 is 
small compared with k", + k 8• 
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Ordering of the expo.nential of a quadratic in boson 
operators. I. Single mode case 
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The Weyl ordered form of the operator exp[aa 2+13 a 2+ +y(a + a + aa +)] is derived in a very simple way. 
Using this result, we also obtain the normal and antinormal ordered forms as well as the diagonal coherent 
states repre~entation of this operator. 

1. INTRODUCTION 

Very often one is interested in writing a given opera­
tor in a well-ordered form. Consider an arbitrary oper­
ator function G(a, a+) of single mode Boson annihilation 
and creation operators satisfying the commutation 
relation 

(1. 1) 

One may use this commutation relation to rearrange the 
operators (i and (i+ occuring in G and write it in a de­
sired form. When all powers of creation operator occur 
to the left of all powers of the annihilation operator, we 
say that the given expression is in the normal ordered 
form. Thus for example the normal ordered form of 
ait is rtli + 1. The expression is in the antinormal or­
dered form, if all powers of the annihilation operator 
occur to the left of all powers of the creation operator. 
If on the other hand the form is completely symmetric 
in the ordering of a and a+, such as (act + ft a) or 
(((2a + (ta(t + ([(l+2) etc., we say that the operator is in 
the Weyl ordered form. Several other orderings have 
also been discussed in the literatUre. 1-3 The operator 
ordering plays an important role in phase space de­
scription of quantum mechanics,4 quantum C-number 
correspondence,l etc. 

We shall denote by G N the normal ordered form of G. 
On the other hand :G: will denote an operator obtained 
from e by arranging all powers of Ii+ to the left of all 
powers of ?i withollt making use of the commutation re­
lation (1.1). Thus, for example, if c:; = an+, then 6.", 
=a+a+1 and :G:o=(ti7. By definition 

GN(i'i,a+)=-o:GN(a,Ii+):. (1.2) 

In a similar way we shall denote by G A the antinormal 
ordered form of G and by Gw the Weyl ordered form of 
C. We also use the notation "6" and lG}w to denote op­
erators obtained from G by simply putting it in the anti­
normal or Weyl ordered form, respectively, without 
making use of the commutation relation (1. 1). It is to 
be noted that, in general, g *"6" etc. However, we 
always have C = eN = 6 A = Gw, and hence 

(1. 3) 

We also note that GN(v, 1'*), GA(v, v*} and Gw(v, v*) are 
the classical functions corresponding to the operator 
G in the normal ordering, antinormal ordering and 
Weyl's rules of association respectively5 (cf. also Ref. 
1). 
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Several methods are available to obtain a given or­
dered form of the operator. These include parametric 
differentiation,6 Fourier transform algebra, use of co­
herent states, 1 etc. In particular, if 1 a) denotes a co­
herent state, i. e., a normalized eigenstate of (i with 
eigenvalue a, 

(1. 4) 

(a being in general a complex number), and if GN(a, Ii') 
is the normal ordered form of G(fi, a+), we readily find 
that 

(1. 5) 

The antinormal ordered form of 6 is closely related to 
its diagonal coherent state representation. We have the 
relation 

G(o, a+) = (1/1T).r GA(a, a*) I a)(al d2a, 

from which we find that7 

G A (1',1'*) = (1/1T) exp( H 2)[ (- al c:; I a) 

(1. 6) 

x exp( I a1 2
) exp( a*v - av*) d2 a. (1. 7) 

An expression similar !o (1. 7) is also known8
,2 for the 

Weyl ordered form of G: 

Gw(n, 1'*) = (2/lT) exp(2Iz' 12)j (- al G I a) 

(1. 8) 

The Fourier transforms of G"" G A> and Gw are related 
in the following manner. If r( Cl', O!*) denotes the Fourier 
transform of G(I', L'*), 

r(a, a*) =.r G(lJ, 1'*) exp(al'* - a*v) d2
1', (1. 9) 

then 

r w(O', 0'*) = exp( 10' 12 /2)r N (a, 0'*) 

= exp(- 1 0' 12 /2)r A (0', 0'*). (1. 10) 

Since the inverse Fourier transform of exp(-I 0' 12/2) 
is exp(- 2111 12), we find from the convolution theorem 
that 

GN(V, v*) = (2/1T) J Gw(v', v'*) exp(- 21v - v' 12) d2v'. 

(1. 11) 

We also have the relations 

Gw(l', 1'*) = (2/1T)J GA(l", v'*) exp(- 211' -1" 12d2
1.", 

(1. 12) 

Copyright © 1977 American Institute of Physics 404 



                                                                                                                                    

GN(v, V*) = (1/71) f GA(v', v'*) exp(- 1 v - v' 12) d2v'. 

(1. 13) 

The various ordered forms of the operator exp(- Aa+a) 
are well known1

•8 •9 and are easily derived using coherent 
states. We have 

exp(- Ail'a) = :exp[(e-A -lla'a}: 

= "exp{A - (e~ -1l~ +a}" 

(1.14) 

(1. 15) 

(1. 16) 

In the following we derive the various ordered forms 
of the exponential of a general quadratic: 

exp[ aaz + (3a+ 2 + y(a' a + aa')]. (1. 17) 

2. WEYL ORDERED FORM 

In order to obtain the Weyl ordered form of the op­
erator expl aaz + (3a'z + y(a+ a + aa')], we first consider 
the special case when a = (3 = O. The Weyl ordered form 
of the operator 

(2.1) 

may readily be written down using (1. 16): 

exp[y(a+a + aa')] ={sechyexp(2a'iitanhY)}w. (2.2) 

It may be observed that, even through the fact ~, is 
Hermitian adjoint of a has been used in deriving (2.2), 
the result, being a consequence of rearranging powers 
of a and ii', only depends on the commutation relation 
(1.1). Thus, for any two operators a and c for which 
[d, c] = 1, we find that 

expl y(cd + de)] =tsechyexp(2edtanhY}w, (2.3) 

where the right-hand side is a completely symmetric 
ordered (Weyl ordered) form in c and d. 

We now consider the general case 

G = exp[ aa2 + (3a'z + y(a+ a + aen]. (2.4) 

We introduce two operators d and e which are linear 
combinations of a and (j+, 

d=xa+ya+, 

c=za + ta., 

(2.5a) 

(2.5b) 

such that x, y, z, tare e-number quantities, such that 
the commutator 

and such that 

aa2 + (3a'z + y«(j(j' + ii+a) = A(cd + de). 

It may readily be seen that A is proportional to the 
discriminant of the quadratic, 

A=(r- a(3)1/Z. 

(2.6) 

(2.7) 

(2.8) 

When A oF 0, it is always pOSSible to find x, y, z, and t 
which satisfy the above conditions. They are, however, 
not unique. A possible choice is given by 

405 J. Math. Phys., Vol. 18, No.3, March 1977 

We now use (2.3) to obtain a completely symmetric or­
dered form of exp[A(Cd+de») in e and a. We also observe 
that since c and a are both linear combinations of a and a., the resulting expression is also completely sym­
metric in the ordering of a and tt. Hence we find that 

exp[ aa2 + (3a+2 + y(a+a + (ja+) J = exp[A(a + de)] 

= s echA t exp(2ca tanhArw 

= sechA{ exp [ ta~hA (aaZ + (3a+z + 2YO+O)]} w' (2.10) 

The case A= 0 does not present any difficulty, since 
in this case we may write 

(2.11) 

The operator exp[ aaz + (3a+z + y(a+a + aa+)] when expanded 
is then given by 

f (..latH {(3a+)zn 
~o n! 

(2.12) 

Each term of this expansion is already in the Weyl or­
dered form. Hence we find, when y2 = a{3, that 

expl aa2 + (3a+ 2 + y(a+ i + aa+) J 

={ expl aa2 + (3a2 + y(a+ a + aa+) ]}w. (2.13) 

Equation (2.13) is in agreement with (2.10) in the limit 
.\= O. Hence we find, in general, that 

exp[ aa2 + (3a+2 + y(a+ a + aa+) J 

= sechA {exp [ta~hA (aa2 + (3a+2 + 2ya+il) ]}w, 
where A is given by (2.8). 

3. NORMAL ORDERED FORM 

(2.14) 

The normal ordered form of the exponential of a gen­
eral quadratic has been derived earlier, using param­
etric differentiation6 (cf. also Ref. 10). We may also 
derive this form by making use of Eqs. (2.14) and 
(1. 11). 

From (2.14) and (1. 11), we find that 

2sech.\ ( I 'I G N (v,l'*)= 71 J exp(-2 v-v 2) 

(3.1) 

We assume that a, (3, Yare such that the integral on the 
right hand side of (3.1) is well defined. The evaluation 
of the integral is long, but straightforward, and we ob­
tain on simplification the following expression for GN : 

( 

Y )_1/2 
GN(v,v*)= cosh2A->,:sinh2.\ 

[
av2 + (3V*2 + 2(y _ A tanhA) 1 t' 12] xexp . 

2(.\coth2.\- y) 
(3.2) 

Hence we write 

exp[ a~2 + {3a+2 + y(a+ a + (la+)] 

( 
Y )_1/2 

= cosh2.\ - >,: sinh2A 

[
aa2 + {3a+z + 2(y- .\tanh.\)a+a] 

x :exp 2(Acoth2A- y) :. (3.3) 
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It may be remarked that, even though (3.2) was obtained 
from (3.1), under certain restrictions, the final result, 
being analytic in a, {3, ')I, is valid for all values of a, 
{3, ')I, even in the limit as A approaches zero except for 
the singular case when Acosh2A= Ysinh2A. 

4. ANTI NORMAL ORDERED FORM 

The antinormal ordered form of (1. 17) may be ob­
tained from Eqs. (1. 10) and (2.14) or from Eqs. (1. 7) 
and (3.3). Alternatively, one may obtain this expression 
also directly from (3.3). We rewrite (3.3) in the follow­
ing form. Let a and c be any two operators with [d, c] 
= 1, then from (3.3) we find that 

exp[ ad2 + (3c2 + y(cd + de)] 

( 
')I )_1/2 

= coshZA - >; sinhZA 

{ 
a~j2 + {3c 2 + 2(')1 - A tanhA)2d} x exp , 

2(A coth2A - ')I) cd 
(4.1) 

where { ... td denotes the ordering such that c always 
occurs to the left of d. We now write 

(4.2) 

so that [d, c] = 1 is still satisfied. Hence from (4.1) we 
obtain 

Redefining the constants a, {3, and A, we find that 

exp[ aa2 + (3~+2 + y(a+a + nn+)] 

= (COSh2 A +~ sinh2A)-1 /2 

" [aa2 + (3a+2 + 2(y+ A tanhA)a+a]" 
x exp 2(A coth2A + ')I) . 

(4.3) 

(4.4) 

As before, the result is valid for all values of a, {3, and 
y except for the singular case when A cosh2A + ysinh2A 
=0. 

Whenever the operator expt aa2 + {3a+ 2 + ')I(a+ a + (ia+)} 
is a bounded operator, we may write its diagonal co­
herent state representation using Eqs. (4.4) and (1.6): 

1 ( Y )-112 
= 7i cosh2A + ~ sinh2A 

x/ex (Q'Z,2 + (3V*2 + 2(y + A tanh A) [v [2) 
P 2(A coth2A + y) 

5. SOME GENERALIZATIONS 

In this section we derive some generalizations of Eqs. 
(2.14), (3.3), and (4.4). 

We rewrite Eq. (2.14) in the form 

exp[ ad2 + (3c2 + y(cd + de)] 

= {sechA exp [ta~hA (ad2 + (3c2 + 2YCd)J}w, (5.1) 

where d and C are any two operators for which [d, c] 
= 1 and A = (y - a(3)1/2. We now consider a general poly­
nomial 

P = a{i2 + (3(i+2 + y(a+a + art) + 26& + 2Ea+ 

and write it in the form 

P = a(a + X)2 + (3(a+ + \,)2 

+ y[(a+ + y)(a +x) + (a +x)(a+ + ~v)] + 8. 

One may readily verify, when A'* 0, that 

x=A-2(Ey-i36), 

y = A-2(')I6 - aE), 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

By identifying d = a + x, c = ij+ + y, we then obtain, from 
(5. 1), the relation 

- {[tanhA - l} c = e8 sechA exp ~A~ (p - 8)J W· (5.7) 

Proceeding in a strictly analogous manner, we obtain 
the following generalizations of (3.3) and (4.4) (cf. Ref. 
6): 

p e8 

e =[cosh2A- (Y/A) sinh2AJl/ 2 

x [P - 2A((t + y)(a +x) tanhA- 8] . 
:exp - 2(A coth2>' _ y) . (5.8) 

=(cosh2A + y/A sinh~ 

" [P + 2>.(;7+ + \'(& +i:) tanh A - 8] " x exp - . 
2(>' coth2>' + ')I) , 

(5.9) 

where x, v, 8, and A are given by Eqs. (5.4)-(5.6) 
and (2.8). Equations (5.7)-(5.9) are valid even in the 
limit as >. approaches zero. 

We introduce a parameter a and rewrite (5.7) in the 
form 

exp(crP) = exp(a8) sechaA {exp [tan~Aa (p - 8)] }w. 
(5.10) 

On differentiating (5.10) with respect to a a number of 
times and then setting a= 0, we may obtain the Weyl 
ordered form of any power of P. In fact we may formal­
ly write for any arbitrary function of P, 

f(P) = { ~( :a) exp(a8) sechaA 

(4.5) x exp(tanhAa (P - 8))] l. (5.11) 
A o=o} w 
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Similar expressions may be written for the normal and 
antinormal ordered forms of f{P). 
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We derive the Weyl, the normal, and the antinormal ordered forms of the exponential of a multimode 
quadratic expression in boson operators. The trace of this exponential operator is also evaluated. 

1. INTRODUCTION 

In Paper 1,1 one of us obtained the various ordered 
forms of the exponential of a quadratic in single mode 
boson operators. It is of interest to consider the more 
general multimode case, and derive the various ordered 
forms of the exponential of the general quadratic. 

Let {ai' an be a set of boson annihilation and creation 
operators, satisfying the usual commutation relations 

(i,j=1,2, ... ,n). 

(1. 1) 

(1. 2) 

It is convenient to express the set as a 2n-dimensional 
column vector..4:, 

(1. 3) 

The commutation relations (1. 1) and (1. 2) may now be 
expressed in the form 

(1.4a) 

or 

Ai- U=z, (1. 4b) 

where z is the (2n x 2n) matrix 

(1. 5) 

-
R denotes the transpose of the matrix R, and 0 and 1 
are (nXn) null and unit matrices, respectively. The 
general second order monomial in boson operators 
(ignoring the constant term) 

n 

+ 26 (<Siai + Eiai) (1. 6) 
i~l 

may be written in the form 

p = A~A + 21jA, (1. 7) 

where ~ is the (2n x 2n) symmetric matrix 

(1. 8) 

and 1] is the column vector 

(1. 9) 
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Matrices a, {3, yare each (n xn), of which a and {3 are 
symmetric. 

In this paper we derive the Weyl, the normal, and 
the antinormal ordered forms of the operator eP. We 
use the notation Gw for the Weyl ordered form of G. 
Similarly GN and GA denote the normal and the anti­
normal ordered forms, respectively, of C. On the 
other hand, {C}w will denote the operator obtained from 
{; by putting it in the Weyl ordered form without making 
use of communtation relations (1. 4). Similarly {C}N 

= : G : and {C}A '" HG" denote the normal and the antinor­
mal ordering operations on C. Thus we have 

G(A) = {C,JA)},. , Jl=W,N, orA. (1.10) 

Our results derived in Secs. 2-4 may be summarized 
as follows: 

eP =KI'{exp(i~TI'A + 21jTI'A)}." (1. 11) 

where Jl= W,N, or A, KI' is a constant, 

KI' = I Si~~Z~ 1-1/21TI' 1112 exp[1j (TI'-l)~-l1]], (1. 12) 

(I R I denotes the determinant of R) and T I' is the matrix 

(1. 13) 

Here z is the antisymmetric matrix defined in (1. 5), y 
is the symmetric matrix 

(1.14) 

and kw=O, 1.?N=l, "A=-1. 

It may readily be verified that Eq. (1. 11) agrees with 
previously known special cases. For the single mode 
case (n = 1), Eq. (1.11) reduces to the results derived 
in Paper I (cf. also Refs. 2 and 3). For the case when 
a = f3 = 0, the normal and the antinormal ordered forms 
agree with those obtained in Ref. 4. Using methods in­
volving group theory and parametric differentiation, 
Berezin5 has also obtained the normal ordered form of 
exp(P) when P is Hermitian (i. e., when a = (3*, 1) =E* 
and y = y*). Equation (1. 11) in this special case is in 
agreement with his result. 

We also obtain in Sec. 4, the trace of exp(P), when­
ever it is a trace class operator. We find that 

Tr(eP) = (1/2)n 1 y sinhzi; 1-112 exp(-1]i;-l1]). (1. 15) 

Copyright © 1977 American Institute of Physics 408 



                                                                                                                                    

2. WEYL ORDERED FORM 

We first consider the homogeneous quadratic 

Q =A1;A. (2.1) 

Let us make a linear symplectic transformation 

B={d1, ... ,dn , cl, ... ,cn}=SA, (2.2) 

which reduces the quadratic Q to a simpler form 

Q=6Aj(cjdj +JjCj)=~AB. (2.3) 
j=l 

The symplectic transformation S satisfies the identity 

(2.4) 

so that the components of B satisfy the same commuta­
tion relations as those of A: 

[B;, Bj ] =z/J' (2.5) 

The matrices 1; and A are related according as 

1;=SAS (2.6) 

or 

A=S·I1;S·l. (2.7) 

From (2.3) we find that A is of the form 

(2.8) 

where the n Xn matrix X is diagonal 

Aij = Aj oiJ. (2.9) 

Thus the required symplectic transformation (S·I) is 
the one which reduces 1; to the form (2.8). The existence 
of such a generalized Bogoliubov transformation can be 
established, since 1; is symmetric. We shall, however, 
not require an explicit expression for S. 

We now proceed to obtain the Weyl ordered form of 
the exponential 

G=/J. (2.10) 

From (2.3) we can write 

G =n exp[Ai(cidj +Jic;)]. (2.11) 
; ~ 

The operators c! and d j satisfy 

[dj ,cj]=I, i=I,2, ... ,n; (2.12) 

whereas those with different subscripts commute with 
each other. From Eq. 1(2.3) (of Paper I) we may then 
write 

G =n {sechAj exp(2 tanhAj djcj)}w, (2.13) 
i 

where the subscript W stands for the Weyl ordering 
operation in c and J. However, since c and J are linear 
combinations of a and a+, the Weyl ordered form in c 
and d is also the Weyl ordered form in a and a+. We re­
write (2.13) in the matrix notation 

~ {/ /1/2 :; ~} G = Al exp(BA2B) w, (2.14) 

where Al and A2 are given by 

A _ (sechA 0) 
1- 0 sechX' (2.15) 
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( 
a tanhX\ 

Az= tanhX O)' (2.16) 

and I All stands for the determinant of AI. Using Eqs. 
(2.8) and (1. 5) and observing the fact that sechX is an 
even function of X, we can rewrite (2.15) in the form 

Al=sech(~ _~)=seCh(ZA). (2.17) 

Further from Eqs. (2.8) and (2.16) we also find that 

ZA2 = tanh(zA). (2.18) 

From Eqs. (2.14), (2.17), and (2.18) we obtain 

G = I sechzA jl/2{ exp[~z tanh(zA)B]}w. (2.19) 

Using the properties of the symplectic matrices dis­
cussed in the Appendix [cf. Eqs. (A7)], we finally re­
write (2.19) in a form which does not contain S 
explicitly: 

G= I sechz1; 11I2{exp(i~TwA)}w, (2.20) 

where 

(2. 21) 

It is of interest to observe that we may also write 

G== Isechz~j1/2{exp(iTw~A)}w, (2.22) 

or more symmetrically as 

G == I sechz1; 11 IZ{exp(iTV21;T~/2A)}w. (2.23) 

Hence, if we define 

A'==TV 2A, (2.24) 

we find that 

exp(X~A) = I sechz1; II 12{exp(X'1;A')}w, (2.25) 

1. e., the Weyl ordered form of the exponential of a 
homogeneous quadratic is apart from a multiplicative 
constant, the exponential of the same quadratic in trans­
formed operators. 

The transformation matrix TV 2 is an even function 
of z1;. Also from Eqs. (1. 5) and (1. 8) we find that 

(Z~)2 =(512 - !3Q
_ yJ3- 13"Y). (2.26) 

"YQ - Q'Y y2 - Q (3 

Hence, when !3" and "Q are both symmetriC, (Z1;)2 is 
diagonal and in this case the transformation (2.24) is 
equivalent to multiplying different components of A by 
constants (no mixing of the components). Of course, 
further simplification occurs when (Z1;)2 is a multiple 
of unit matrix. 

In the speCial case when ,,2 = Q!3 and both !3'Y and 'YQ 
symmetric, the matrix (Z1;)2 = O. In this singular case 

(tanhz~)/z1; = sechz1; == 1, (2.27) 

and the exponential is already in the Weyl ordered 
form. 

W«;. noW include the linear terms also in the quadratic. 
Let P be the general second order monomial [Eq. 
(1. 7)] 

P = A1;A + 2ijA, 
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which may be written as 

p = (A +~~-IWA + ~-I7J) _11~-I7J. (2.28) 

Since ~-I7J is a c-number matrix, the components of 
A + ~-I7J satisfy the same commutation relations as 
those of A, and hence, using (2.20), we obtain the 
following expression for the Weyl ordered form of 
eP

: 

i = I sechz~ 1112 exp(1j(Tw - 1)~-17J) 
x {exp(A~TwA + 2ijTwA)}w, (2.29) 

where the matrix Tw depends only on ~ and is given by 
Eq. (2.21). 

3. NORMAL ORDERED FORM 

The method employed for obtaining the normal or­
dered form of the exponential in the single-mode case 
may readily be generalized for the multimode case. 
The relation [Eq. 1(1. 11)] 

GN(v, v*) = (2/7r) J Gw(v, v*') exp(- 21v - v' 12 d2v' 
(3.1) 

valid for the single mode case now generalizes to 

GN(V) = (2/7r)n J Gw(V') exp[ - (V. - V'·)(V - V')]d2nV', 

(3.2) 

where GN(A) and Gw(A) are the normal and the Weyl 
ordered forms respectively of G. V is the column 
vector 

(3.3a) 

y+ its Hermitian adjoint (row vector), 

(3.3b) 

and d2nV stands for 

n n 

d2nV =TI d2v i = TI d(Revj) d(lmv i ). (3.4) 
1=1 hi 

If we take G to be that given by Eq. (2.10) and use 
also Eqs. (2.20) and (2.21), we find from (3.2) that 

GN(V) = (2/7r)n I sechz~ 1112 exp(- V·V) 

x J exp{V'Wtanhz~)/z~]V' - V'·V' 

+ V'·V + Y+V'}d2nV'. (3.5) 

Observing that 

V'=V'·y, (3.6) 
where y is the matrix defined in Eq. (1. 14), and using 
the Fourier transform result6 

J exp(- V'+xV' + V'·V + V·V') d2nV' 

= (7r/2)n IX 1-112 exp(V·X-1V), (3.7) 

we obtain from (3.5), after simplification, the following 
expression for GN(V): 

GN(V) = I coshz~ - zy sinhz~ 1-1/2 

xexp[V~TNV], (3.8) 

where 

TN =T NW =(tanhz~) (z~ - y~ tanhz~tl. (3.9) 
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We rewrite (3.8) in terms of the annihilation and 
creation operators to obtain the required normal 
ordered form 7 

exp(A~A) = I coshz~ - zy sinhz~ 1-1/2 

X: exp(X~TNA) :. (3.10) 

In analogy with the case of Weyl ordering, we may 
also include the linear terms in the quadratic. Thus we 
obtain [cL Eqo (2.28)] 

exp(A~A + 211A) 

= I coshZ~~ - zy sinhz~ 1-1/2 exp[Ti(T N - 1)~-17J] 

x : exp(A~T NA + 21)T NA):. (3. 11) 

It is to be observed that, even though Eq. (3. 10) and 
(3.11) have been obtained under certain restrictions, 6 

these, being analytic expressions, are valid for all ~ 
and 7J except in the singular case when 

I coshz~ - zy sinhzy I = o. (3.12) 

In this case, the normal ordered form does not exist. 
It may, however, be noted that the Weyl ordered form 
[Eq. (2.29)] always exists. 

4. ANTI NORMAL ORDERED FORM 

As in the single mode case, we may directly use Eq. 
(3.10) for obtaining the antinormal ordered form. Since 
only the commutation relations are of Significance in 
obtaining a particularly ordered form of an operator, 
Eq. (3.10), viz., 

exp(Bd~) = I cosh zt - zy sinhzt 1-1/2 

x{exp[~t tanhzt(zt - yt tanhztr1B]L (4.1) 

is valid for any operator column vector 

B={dj, ... ,ein' ~j, ••• ,en}, (4.2) 

where [Bj,Bjl=zjj and {}Cd denotes the ordering such 
that all c-operators appear to the left of all J operators. 
We now take 

(4.3) 

and 

(4.4) 

From (1.1) we then obtain the antinormal ordered form 
of exp(A~A): 

exp(A~A) 

= IcoshZ~+Zysinhz~I-1/2"exp(A~TAA)", (4.5) 

where 

(4.6) 

As before, if we also include the linear terms, we ob­
tain 

exp(A~A + 21jA) 

= I cosh z~ + zy sinz~ 1-112 exp(1j(T:A.l W1'17) 
A A 

x" exp(A~TAA +2ijTAA)". (4.7) 

Expressions (4.5) and (4.7) are valid for all cases ex-
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cept for the singular case 

I coshz1; + zy sinhz1; I = O. 

If we introduce a parameter kj).' such that 

kw = 0, k N = 1, and k A = - 1, 

(4.8) 

(4.9) 

we may express the Weyl, the normal, and the anti-
.0 A A 

normal ordered forms of exp(A1;A + 2ijA) [Eqs. (2.29), 
(3.11), and (4.7)] in a single equation, (1.11), given 
before. 

We may use any of the ordered forms of an operator 
to obtain its trace. For example, if we make use of the 
identity operator 

(4.10) 

where I V) is the (n-mode) coherent state, 8 we find that 

TrG=(1/7T")J<vI6IV)d2nV. (4.11) 

Hence, if GN is the normal ordered form of 6, we obtain 

(4.12) 

Similar results also hold for the Weyl and the anti­
normal ordered forms as well. In fact, one may readily 
verify that9 

(l/7Tn) J Gj). (V) d 2nV 

does not depend on whether !l = W,N, or A. 

Thus, whenever exp(A1;A + 2i'/A) is a trace class 
operator, we find from Eqs. (1.11) that 

Tr exp(A1;A + 2~A) 

(4.13) 

One may use a result analogous to Eq. (3.7) to carry 
out the integration on the right-hand side. We find on 
simplification that 

Tr exp(K1;A + 21iA) 

= (1/2n ) I y sinhz1; 1-1/2 exp(- i'/1;-I1/). 

In particular, for a single mode case we obtain 

Tr exp[Q!a2 + (3a+2 + y(a+~ + aa+) + 2(oa + Ea+)] 

(4.14) 

=t(sinhAt1 exp[A-2(Q!E2 + (302 - 2EOY)], (4.15) 

where A 2 = Y - Q!{3, It is being assumed that the exponen­
tial operator on the left-hand side is of trace class, 
which will certainly be so if Q!, {3, yare real, y < 0, and 
y2 > Q!{3. 

APPENDIX: SOME PROPERTIES OF SYMPLECTIC 
MATRICES 

In this appendix, we consider some properties of 
symplectic matrices. A (2n X 2n) matrix S is said to be 
symplectic if it satisfies the relation 

SzS =z, (AI) 

where S denotes the transpose of S and z is defined by 
Eq, (1. 5), i. e, 

(A2) 

From (AI) we find that Sis nonsingular (lSI =±1) and 
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that 

(A3) 

so that S-1 is also symplectic. In fact, one may readily 
show from (AI) that Sand S+ (the Hermitian adjoint) are 
also symplectic. 

If t is any (2n x 2n) symmetric matrix, then exp(zl;) 
[or exp(l;z)] is symplectic. 

If 1; and A are any two matrices related by the sym­
plectic transformations 

(A4) 

then 

z1; =S-lzAS. (A5) 

Hence any function of z1; is related to the same function 
of zA as 

In particular we have 

tanh(zA) = S tanh(z1;)S-1 

and 

sech(zA) =S sech(z1;)S-I. 

(A6) 

(A7a) 

(A7b) 

Equations (A7) have been used in deriving Eq. (2.20). 

It has been noted in the text that the transformation 

(A8) 

leaves the commutation relation 
A A 

AA-AA=z, (A9) 

invariant if and only if S is symplectic. 

In classical dynamics, if we denote the set of position 
and momentum variables qj, ... ,qn' PI, . .. ,Pn by a 
column vector 

(A10) 

and if B j (i = 1,2,., ., 2n) are some functions of q's and 
p's, then one may readily verify that the transformation 

(All) 

is canonical if and only if the matrix S, where 

Sij= aB/aA j , (A12) 

is symplec tic. 

Analogous to symplectic matrices, one may also 
consider matrices which satisfy the relation 

RyR=y, (A13) 

where y is the symme tric matrix 

y=(~ ~). (A14) 

These matrices are useful while considering fermion 
operators, since the transformation 

leaves the anticommutation relation i.A + AA = y 
invariant. 
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Unitary, analytic representations of SL(3,R) are studied by operator formalism. It is found that SL(3,R) 
has two different principal series of representations. Analytic representations are labeled by an integer n 
and a real number a. The Hilbert space of analytic functions f(z,x) is constructed, and an invariant scalar 
product is formed. 

I. INTRODUCTION 

In this paper we determined two different series of 
principal representations of SL(3, R} by the operator 
formalism method which was applied to several groups 
before. 1 

The unitary representations of the complex group 
SL(3, C} was studied by Bars2 by the same method which 
we use. It is a known fact that unitary representations 
of real unimodular group exhibit some differences in 
comparison with complex unimodular groups. Real 
unimodular group admit several prinCipal series of 
representations. In their paper Gel'fand and Graev3 

showed that SL(n, R} has (n + 1 }/2 prinCipal series of 
representations if n is odd, and (n/2) +2 principal 
series of representations if n is even. Our aim is to 
label the analytic, unitary representations of SL(3, R) 
and to form the representation spaceo 

The unitary representations of SL(3, R} were used by 
various authors: Dothan, Gell-Mann, and Ne'eman4

,5 

used the ladder representations of SL(3, R} which are 
labeled by L=0,2,4, .. , to obtain the higher spinned 
meson and baryon states. They adjoined to three angular 
momentum operator L five components of a noncompact 
operator Q, such that Land Q generate an SL(3, R} 
algebra. Higher spins are excited using L == J - S (an 
internal orbital angular momentum). Change in the L 
values will cause a change in J. They suggested that 
these representations could be used as an algebraic 
model of Regge trajectories. Cusson6 used SL(3, R} 
symmetry in nuclear physics. Weaver and Biedenharn7 
studied the nuclear rotational motion assuming transi­
tion E2 operators generate SL(3, R} symmetry. Besides 
Dj. Sij acki 8 , 9 dete rmined the unitary representations of 
the covering group SL(3, R} of SL(3, R} and presented 
the group SU(6}@ SL(3,R) as a model unifying SU(6} 
quark model and the Regge classification. 

This paper is arranged as follows: 

In the first chapter the Lie algebra of SL(3,R} is re­
viewed and the matrix Q is constructed. In the second 
and third chapters the commuting operators Zl and Z2 
are determined in terms of the generators and the 
generators are expressed as functions of canonically 
conjugate operators Zk and ilk' In the fourth and fifth 
chapters representations are labeled and the Hilbert 
space of analytic functions f{z, x} is formed. 

413 Journal of Mathematical Physics, Vol. 18, No.3, March 1977 

II. THE LIE ALGEBRA OF SL (3, R) AND THE 
MATRIXn 

SL(3, R} is a simple group of rank two. It has eight 
generators which are given as the following in three 
dimensions: 

where EhJ (h,j=I,2,3) is a 3x3 matrix with a one in 
row h and column j. Y1, h, Y3 are the generators of 
SL(2, R} subgroup. In general EhJ satisfy the following 
commutation relation: 

Commutation relations of eight generators can easily 

(1 ) 

(2) 

be found USing Eq. (2). The metric matrix Fhj=ChklCjlk 
for SL(3, R) is an 8 x 8 nonsingular symmetric matrix 
with nonzero elements 

F55 = 12, F68 = 6. 

C "jk are the structure constants defined as 

[Yh' Yj]=C"iOYk' 

A matrix Q satisfying the equation 

UQU- 1 =AQA-1 

(3) 

(4) 

(5 ) 

is essential for the operator formalism of SL(3,R}. 
Here U is a representation of SL(3, R} and A is its 3 X3 
representation. Let us define S1 as 

It is a 3 X3 matrix with operator entries. Its explicit 
form is 

( 

2Tl - T5 

Q= 3T2 

3T4 

(6) 

(7) 

Let <P be the eigenvector of Q with eigenvalue 2.\. That 
is, 

By defining two Z operators ZI and Z2 as 

Zl = <PI <p;1 , Z2 = 'f2<P3-1 
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and using Eq. (5) the transformation law for the eigen­
vector, if! is obtained as 

(10) 

where if!1> i)!2' i)!3 are operator components of i)! and etA) 
is a diagonal matrix. Hence 

UZ1 U-1 = Z{ = (A~~ ZI + A~~Z2 + Al;)(Ai~ ZI + Ai~Z2 + A;;)-\ 
(11) 

UZ2U-l=Z;=(A;~ZI +A;~Z2 +A;;)(A;~ZI +A~Z2 +A;;)-I. 

III. DETERMINATION OF THE OPERATORSZ., Z2 

Operators ZI and Z2 are functions of the generators 
T j' The follOwing three homogenous equations which 
are obtained from the eigenvalue equation (8) are used 
to determine ZI and Z2' The procedure is the same as 
in the Ref. 2: 

(12a) 

(12b) 

(12c) 

Notice that the coefficients n hj are operators. There­
fore, one should be careful to determine ZI and Z2' The 
elements n hj satisfy the commutation relation 

[nhi' nkll = 3(Ohln kj - 0kjn hl ). (13) 

USing the above commutation relation and any pair of 
equations (12), one can eliminate one of the unknowns. 
As an example we will calculate Z2 USing Eq. (12a) and 
(12b). Multiplying Eq. (12a) by n 21 and Eq. (12b) by 
n ll - 2;\. - 3 from the left and subtracting (12b) from 
(12a) and using the commutation relation [nw nul 
= - 3Z21 , we obtain Z~a,b) as follows: 

Z~a,c) = [n31n 12 - (nll - 2;\. - 3)n32 1-1 

x [(nu - 2,\ - 3)(n33 - 2,\) - n 31n 131 , (14) 

Z~b,C) = [n31 (n22 - 2,\) - n 21n 32 1-1 [n21 (n33 - 2,\) - n 31 n 2) I , 
(15) 

zia, b) = [(n22 - 2,\ - 3)(nll - 2,\) - n I2n 21 1-1 

x [n12n 23 - (n22 - 2,\ - 3 )n131 , (16) 

zia,C) = [n32(n
U 

- 2,\) - n I2n 31 ]-1 [nI2 (n33 - 2,\) - n 32n 131 , 
(17) 

zib,C) = [n32n 21 - (n22 - 2,\ - 3)n31 ]-1 

x [(1122 - 2y - 3 )(1133 - 2,\) - n 32n 231 . (18) 

To show that all ZI'S and Z;s are compatible respec­
ti vely, let us write Z j in a compact form as in the 
Ref. 2. 

Define 

K Ii (2;\.) = (njj - 2,\ - 3)(I1"k - 2;\.) - nkjn jk , (19) 

or (20) 
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Here i ,j, k are in cylic or in anticylic order. In this 
notation Z j are obtained as 

Z2=K~(2'\)K2n(2'\), n=I,2,3. 

K ,j has the following property: 

KjJ(2,\)K ,m(2,\ +3)=K,j(2,\)K im(2,\ +3). 

Hence 

ZI =K;,;(2,\)K1n (2,\) =K1m(2,\ + 3)K;~(2'\ + 3), 

(21) 

(22) 

(23) 

(24) 

Z2 = K~(2'\)K2n(2'\) =K2m (2,\ + 3)K;~(2'\ + 3). (25) 

Equations (24) and (25) show that three Zj obtained using 
any two pairs of Eqs. (12a), (12b), (12c) are compati­
ble. Besides using the property of K ,/2,\) one can easily 
show that ZI and Z2 commute. In fact, 

Z1Z2 =K;~(2'\)Kln(2'\)K2m(2'\ +3)K;~(2'\ +3), 

Z2Z1 =K3~(2'\)K2n(2'\)Klm(2'\ +3)K3~(2'\ +3), (26) 

[Z 1> Z21 = K;~(2'\)[Kln(2'\)K2m (2,\ + 3) - K2n (2,\)K1m(2,\ +3)], 

K;~(2'\ +3)=0. 

IV. DETERMINATION OF GENERATORS IN TERMS 
OF THE CANONICALLY CONJUGATE OPERATORS 
Zk AND 11k 

l1/ j and Kim satisfy the following commutation 
relation: 

[nij,Klm]=3(oimKlj - 0ljK im ). (27) 

Hence the commutation relations of Zk (J?=1,2) with 11 1m 

are obtained as in the Ref. 2: 

[nll> z11 = [Z1> n331 = [nI2' Z2] = - 3Z1> 

[nw Z21 = [n I2 , zll = [n21 , Z2] = [1122' ZI] = 0, 
[n31> Z21 = [n32 , zJ = 0, 

[n21 , ZI] = [Z2' n331 = [1122, Z21 = - 3Z2, 

[nI3 , ZI]=3Zi, 

[n 31 , ZII= - 3, 

Now, let 

[n23 , Z2] = 3Z~, 

[11 32 ,z21=-3. 

l1u = 11 1Z1 - It, n12 = 112Z1> 

Trn = 0 gives n33 as 

n33 = - II 1 Z 1 - II2 Z 2 +21t. 

(28) 

(29) 

(30) 

(31) 

(32) 

The elements n 13 and n 23 are obtained using homogenous 
equations (12a) and (12b): 

(33) 

(34) 

Hence we determined the elements n~j in terms of the 
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canonically conjugate operators, II. and Zk' Using the 
commutation relations (28), one can easily check that 
the commutation relation 

(35) 

holds. The generators T. in terms of II. and Z. are as 
follows: 

V. LABELING OF REPRESENTATIONS 

(36a) 

(36b) 

(36c) 

(36d) 

(36e) 

(36f) 

(36k) 

(36l) 

We will label the unitary representations of SL(3, R) 
by the eigenvalues of two Casimir operators C1 and C2 • 

C1 and C2 are real multiples of the identity for unitary 
representations. Defining the second and third order 
Casimir operators C1 and C2 as 

(37) 

(38) 

one can label the unitary irreducible representations 
of SL(3, R) by the eigenvalues of the matrix n. By letting 
the eigenvalues AI' A2 be 

(39) 

and using the condition Trn = 0, the unitary condition 
gives 

Im(Trn2) =20'1,8, +20'2,82 +0'2,81 +O'd32=0' (40) 

Im(Trn3) 

= 2 0'1 0'2 ~ +20'10'2,82 +,8 1 (O'~ - J3~) + ,82(O'i - fm = 0, (41) 

Equation (40) gives 

,8 1/,82 = - (2 Ql2 + Qll)/(2Q11 + Ql2)' (42) 

Inserting ,82 in Eq. (41) and doing simple algebra, we 
obtain a final condition, 

(20'1 + 0'2){,81[0'2 - 0'11[(20'2 + O'J2 + MJ)= O. (43) 

This condition gives mainly two classes of 
representations: 

(a) Al = 0'1 +i{31 (complex), (b) A1 = 0'1 (real), 

.\2 = - 20'1 (real), A2 = Ql2 (real), (44) 

A3= 0'1 -i,81 (complex), A3= - Ql1 - Ql2 (real). 

Using the definitions of Z,(2A), Z2(2A) and the commuta­
tion relations [n hl , n.,l = 3(c\,n.j -o.jn hl ), one can 
easily show that ZI (2.\) and Z2(2.\) are Hermitian opera-
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tors if .\ is real. Besides 

Z .(2.\) = Z:(2A *) . 

Let us define a new operator Z(2.\) as 

Z(2A) = (1/ (3)[ A;tZ, (2A) + A;~Z2(2A)], 

(45) 

(46) 

where (3 is a real number. The transformation law of 
Z(2A) is determined from the transformation law of 
Z, (2.\) and Z2(2.\). In fact, 

Z'(2A) = (1/ (3)[A;tZ{(2A) + A;~Z~(2.\) l, 

Z'(2.\) =(l/,8)[(A;tAit +A;~A2~)ZI(2A) +(A;tA;:~ +A;~A2~) 

XZ2(2A) +A;tAi; + A;~A:i~][,8Z(2.\) +A;~J-l. (47) 

Letting 

(1/ ,B)[(A;tA~t + A;~A2Dzl (2A) + (A3tAi~ + A3~A2~)Z2(2A) 

= QI Z(2A) = (QI/ ,B)[A;tz 1 (2.\) + A;;Z2(2.\) 1, (48) 

one can define the real parameter QI in terms of A;], 
the real and imaginary parts of Zl (2A) and Z2(2A). In 
fact we will later show that real and imaginary parts 
of Z(2A) are functions of A i~. Hence QI is a rational 
function of A i~. Hence the transformation law of Z(2A) 
is obtained as 

where 

(3=arbitrary real number. 

VI. CONSTRUCTION OF THE REPRESENTATION 
SPACE 

(49) 

(50) 

Let us define the common eigenstates I z(2Ar>, z(2A3), 
z(2A2), AI, 1t2) of the commuting operators Z(2A1 ), 

Z(2A 3 ), Z(2A2), C1 and C2 as the basis of the representa­
tion space. Since we know the generators in terms of 
the canonically conjugate operators II. and Z., it is an 
easy job to find the transformation law of the eigen­
state. Using the case (a) of (44) and Eq. (45), we will 
notate z(2.\J as z and Z(2'\2) as 1). z(2AJ is z*. Hence 
the transformation law of the eigenstate I z, z* , 1) is 
determined as follows: 

U(A) I z, z*, 1) = exp (i~ bkT ,,(2A1») exp i tl Ii.Tk(2A 3 ) 

X~xp itlbkT,,(2A2»)lz,z*,1), (51) 

where b. are real parameters and T k (2A) are Hermitian 
infinitesimal generators of the unitary representation. 
Noting that IT k = - 0 /il Zk, we obtain the follOwing infini­
tesimal transformation: 

Uinf(A -1) I z, z*, 1) = (1 - i t bkT k(2AJ) ~ -i ~ bk T k (2A3 ») 

X(1 - i t b.T.(2'\2») I z, z*, 1), (52) 

U1nr(A -1) z, z*, TJ) 

=(1 +i~Zl:!- +i~Z2~) (1 +i~z: -;..- +i~Z:-;-) 
uZl OZ2 \ OZI OZ2 

X(l +i~TJla:, +iA172il~2) 1 +i'\1(b7z1 +bSz 2 +b5) 
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x I z, z* ,71), 

Uinr(A -1) I z, Z*, 71) 

= [1 +b7 z1 +bS z2 +bs JiA I [1 +b7 z1 +bS z2 +b
5

]iA3 

X [1 + b77)1 + bS7)2 + b5 1'A2 I z', z'*, 7)'), 

where 

t.Z2 = - bI z2 +b3 z1 - 2b5 z2 +bs - b7 z1 Z2 -bsz~. 

(53) 

(54) 

(55) 

On the other hand the infinitesimal form of 3 X3 rep­
resentation of SL(3, R) is as follows: 

Ai!! = (i::

b1 

1 _ ii:
12 

_ ib5 ;::). (56) 

ib 7 ibs 1 +ib 5 

Integrating Eq. (54) and uSing Eq. (56), one obtains 
transformation law for the eigenstate I z, z*, 7): 

U(A -1) I z, z*, 7) 

= [A;~ ZI + A3~ Z2 + A;~jiAl [A;~ ZI + A;f Z2 + A;~JiA3 

[A -1 +A-l +A-1jiA2 I' ,* ') X 31 7)1 32 7)2 33 Z , Z , 7) , 

U(A-1
) I z, z*, 7) 

= [tlz + 6] iAl [tlz* + 6] iAr [tl7J + 6 jl~2 I z', z'*, 7)'), 

where 

z'= [az +y][tlz +6]-\ 7)'=[0'71 +y][,s7) +6t1
• 

(57) 

(58) 

A wavepacket I K) is written in terms of the basis states 
I z, z* ,7) as 

(59) 

where dadn =dxdy/y2d71 is the right invariant measure 
and z = x + iy. The transformation law of the "compo­
nent" l(z, z*, 71) is obtained using the transformation law 
for the basis I z, z* , 71). In fact, 

U(A -1) IK) = IAz, z*, 7)U(A -1) I z, z*, 7) da d7), (60) 

U(A)f(z, z*, 7) = [tlz + 6]i~1 [tlz* + 6] iA
3 [tl71 + 6]i~2 

xf[(az +y)(tlz +6)-\ (az* +y)(tlz* +6rr, 

(0'71 +y)(/37) +6)-11. (61) 

By letting Al =Ha +ib) and using the condition (a) of 
(44), the transformation law (61) becomes 

* (tlz + 6 )-b ( (J7) + 6 ) - ia -1 
U(A)j(z, z ,71) = I tlz + 61 I tlz + 6 I j[(az +y)(tlz + 6) , 

(az* +y)(tlz* + 6t\ (0'7) +Y)(/37) + otl J. 
(62) 

VII. ANALYTIC REPRESENTATIONS 

In their paper Gel'fand and Graev2 determined the 
principal series of representations of SL(n,R) in the 
space of the analytic functions fiz, x). The real parame­
ters a, /3, y, and 6 appeared in the transformation law 
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of the functions j(z, x). BeSides, the real and the imagi­
nary parts of the complex variable z are obtained in 
terms of these parameters. Indeed z is obtained as 

z = (atl -y6/(tl2 + 62) +i(a6 - J3y)/(tl 2 + 62). (63) 

These real parameters appear in the subgroup Km with 
elements k given as 

(
a /3 e) 

k= y 6 f . 
o 0 m 

(64) 

On the other hand the canonical decomposition g = kx 
of GL(n, R) enables one to obtain the real parameters 
a, tl,y, and 6 in terms of the elements of g. Here the 
matrix x is the element of the subgroup X m • Its explicit 
form is 

(65) 

Hence, letting I {3z + 61 2 = I 0'6 - /3y I and (tl7) + 6)2 
= I 0'6 - (3y 13 , we can express the variables z and 7) in 
terms of A;; which is the case in Ref. 2. So the trans­
formation laws of functions j(z, z*, 71) becomes 

U(A)(z, z* ,71) =c:; ~;YII72) -b I a6 - tlyl-i a 

X fez', z'*,7)'). (66) 

Analyticity requires that analytic function f(z, z* , 71) 
should remain analytic after the transformation. Assum­
ing analytic continuation is pOSSible, one should remove 
the branch cuts on the real axis. This removal imposes 
the condition b is an integer n. The Hilbert space L2 of 
square integrable functionsf(z,z*,7) forms the repre­
sentation space. An invariant scalar product in this 
space is given as 

Ul, f2) = c J II (z, z*, 7))(2*(Z, z*, 7) I Imz I n-2 dxdy d71, 

(67) 

CONCLUSION 

Principal series of representations of SL(3, R) are 
determined by the operator formalism method. It is 
found that SL(3,R) has two series of principal repre­
sentations. Case (b) of (44) corresponds to the series 
do and (a) corresponds to the series d 1 of Ref. 3. 
Analytic representations are determined in the Hilbert 
space of functions fez, x) analytic in the upper or lower 
half plap.e. It is shown that they are labeled by an 
integer n and a real number a. 
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It is shown that if an additional symmetry, assumed part of the BMS group, is imposed in the Bondi 
formalism at one retarded time, and if gravitational radiation is absent, then the symmetry will evolve to 
fill the region of space-time where the Bondi metric is nonsingular. Furthermore, that region will admit a 
static Weyl metric. There is no necessary evolution if there is radiation present. The evolution of vector 
field which are nearly isometric is then examined: These evolve as small perturbations ofT a Weyl metric. A 
simple and nonlinear but approximate energy formula is written in terms of a quadrupole moment. 

I. INTRODUCTION 

Recent interest in relativistic stellar structure and 
black holes has been concentrated in the rotating case 
where the Kerr metric is, almost certainly, the end 
point of collapse. Nonrotating spherical stars and 
collapse had been previously worked on and basically 
understood. Nevertheless, nonrotating but nonspherical 
possibilities, except small perturbations off Schwarzs­
child, have been usually ignored. Essentially one would 
not expect high nonsphericity to maintain itself without 
rotation. Although this may be so, some nonlinearities 
in the perturbations may be more easily gotten by start­
ing with exact solutions. The axisymmetric static ex­
terior solutions would be part of a Weyl space-time; at 
least some of these should be able to be fitted to in­
terior solution generated by some source that somehow 
avoids sphericity through anisotropic pressures and 
stresses. Of course, the rotating cases are, probably, 
more important in astrophysics. 

A recent calculation1 of the effect of the quadrupole 
moment of the sun on the proposed gyroscope experi­
ment, using a Weyl metric, verified the previous lin­
earized approaches but showed various nonlinear ef­
fects, which in this case are too small to be measured. 
There is further recent interest2 in Weyl space-times. 
Perturbations of these may show radiation and other 
nonlinear effects, and recent interest3 in the non static 
case also exists o Fittings of Weyl space-time to an in­
ternal solutions are known,4 and recently a special case 
has been examined and fitted. 5 

We6 have previously examined a radiation formalism 
in an axially symmetric nonrotating (reflection sym­
metric) asymptotically flat space-time, due to Bondi, 
Van der Burg, and Metzner, 7 specifically as to restric­
tions imposed in the results by a further isometry, and 
found that the radiation was eliminated. Here the sym­
metry is weakened to an initial time: We impose an 
arbitrary isometry at one retarded time and see if it 
evolves and what it restricts. Previous evolution of non­
lightlike isometries off timelike hyper surfaces, assum­
ing analyticity, has been demonstrated, 8 and here those 
results will be complemented for lightlike hypersur­
faces. If there is gravitational radiation, it will be 
argued that the symmetry will not evolve. Otherwise, 
and if we assume that the initial isometry is part of the 
BMS group,7 and if certain smoothness conditions (see 
later) are assumed, it will be shown to evolve to fill 
out the space-time. Furthermore, previous results6 
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are strengthened by showing that the region of space­
time treated must necesarily be of Weyl type. Of 
course, results hold for large enough, but not necessari­
ly infinite, distances from the source where the coordi­
nate system used is well defined. 7 The initial cone used 
is actually the future light cone of a point: This causes 
no formal problems and is intuitively acceptable. 9 

The evolution of small asymmetries in axially sym­
metric nonrotating space-times is then studied. These 
evolve as arbitrary axially symmetric nonrotating per­
turbations off Weyl. Using the Bondi formalism, we 
get a radiated energy formula, which include nonlin­
earities, radiative wavetails, in terms of a quadrupole 
moment constructed from the field. The results are 
similar to those found previously10 using the Newman­
Penrose formalism. 11 

We use Bondi's formalism throughout. Reference 7 
will be called Paper B, and formulas from it will be 
preceded by a B and in parenthesis. Similarly for Ref. 
6, called BH, where the present notation is taken and 
for Ref. 15 denoted by S. Section II treats the main 
problem, with Sees. III and IV as special cases. Sec­
tion V treats the small asymmetries. Appendix A has 
equations (BH18). Appendix B is another special case. 

II. FIRST PART. INITIAL ISOMETRY IN BONDI: 
GENERAL CASE 

The region of interest M will be far enough from all 
bodies, and we will call it space-time. M is axially 
and reflection symmetric, and asymptotically flat. 7 An 
additional isometry is imposed on M at one "Bondi re­
tarded time," U =uo. 7 Absence of radiation is also im­
posed throughout M, Co = O. It will be shown that the 
initial isometry evolves off the light cone to fill out M. 
Furthermore, M will necessarily admit a static asymp­
totically flat Weyl metric. The problem of the evolution 
of symmetries was treated in other circumstances with 
different methods. 6,12,13 In Refs. 12 and 13 there was an 
assumed timelike isometry before a retarded time, 
U = Uo (but in a more general M) and no radiation after­
wards: They showed that the isometry evolved. Refer­
ence 6 is described in the Introduction. 

Here the timelike case is straightforward if the 
initial-Killing vector field is a/au, u the "Bondi retard­
ed time." For if it is so, taking, without loss of gen­
erality, Uo = 0, Killing's equations at u = 0 give Mo(O) 
= CoCO) = No(O) [j(0) =/(0, e, 1»], and all higher metric 
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coefficients have zero derivative at u = O. With co(u) = 0, 
(B35) gives Mo(u) = 0, (B36) gives Noo(u) = 0 so that 
No(u) = 0, (B34) gives Coo(u) = 0 so Co(u) = O. Similarly 
for the higher order terms so that a/au is Killing at 
all u. It is also easy to see that if co(u)"* 0 (but is analy­
tic in u, which tends to happen7) then it would not nec­
essarily evolve. For coo(O) could be unequal to zero and 
there would be no way to force Moo(O), from (B35), to be 
O. An isometry at u = 0 and at u =du will still leave 
Mooo(O) free. Thus, as in preceding studies, absence 
of radiation or shock waves are necessary for the 
evolution. 

A. Asymptotic conditions and 4> dependence 

With 1)(0) as our Killing vector field at u=O, A,B,j,g 
as the same functions they denoted on BH except now 
defined only at u = 0 so far, and since 0:, the axial 
rotation generator, is also Killing, [1)"', O:]B = 1)B, q, must 
also be Killing; hence its (A,B,j,g) is (Aq"Bq"jq"gq,), 
at u = O. u is taken to be 0 throughout this subsection 
(IlA). Assuming (A,B,f,g) smooth enough in 4> in [O,21T], 
a Fourier series expansion may be performed, e. g. , 
f = 2:.:0 f. exp(ik1» so that 1)'" = 2: ;=0 1)~ exp(ik1» and then 

c ~ 

Lng",B= .0 Ln eikq,g"'B= .0 exp(ik1>)(Ln g",B .=0' .=0 • 
(II. 1) 

where some known properties14 of 1>, the Lie derivative, 
have been used and where k will denote that k is not 
symmetrized. Since the exp{ik1» are linearly indepen­
dent on L2 (0, 21T, R) for each k, we have a Killing vector, 

exp(-ik1»L n eikq,g"'B=Ln g"'B+2ikOq,(",1)kB>=0. (II. 2) 
• k -

Now, as r - 00 the Killing vector field will be as­
sumed to be one of the generators of the BMS group. 
This is necessary if we are to remain in asymptotically 
flat space-time. Then, since the BMS group has its 
(A, B,j,g) independent of 1> except for spatial rotations 
where k = 1 terms come in,7,15 the k = 0 or k = 1 terms 
will appear, and we will take as our vectors the k = 0 
+ k = 1 components only. Since R(3) has Bq, = 0 and as 
will be seen in the next subsection, Br = 0, our B must 
be the same it is at r = 00 so we will take B q, = 0, 

f= oj(u, 8, r) + (_>f(u, 8, r) sin1> + (.>f(u, 8, r) cos1> 

and A,g similarly. However, in Appendix C it is shown 
that A may be taken independent of 1>, and so we will do 
so henceforth. 

B. Further asymptotic conditions 

1)(0) gives rise to an asymptotic vector field, as­
sumed nonzero, 1)(u=O, r- oo )=1) .. (O). 1) .. (0) is then 
part of the BMS group at all u. If 1)(u) exists, it will go 
to 1) .. (u) as r - 00 and so its (A, B, j, g) would have a 
known u dependence15 as r - "". 1)(u) will have to be 
defined with that dependence of u as r - 00. Thus, 
(Sm. 2) gives Br = 0 at all u and r; we will then define 
B off u = 0 such that Br = O. Similarly for all the other 
coefficients. Of course, the consistency of all these 
definitions will have to be shown. (SIII. 2) gives f (_N) 

=g(_N) = 0 for N> 1 and (BH1ge) and (BH19f) at all u 
and ro Were we to expand everything in (BH19a) in in-
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verse powers of r, the terms to 0(1) and below in r 
must give 0: at all u because of the first of (Sm. 3); at 
all r because the coefficients in the series are inde­
pendent of r. Similarly we get A (-N) = 0 for N> 1 Y u, r 
and for all the other equations in (BH19) we will get, 
for all u, 

Lngoo = 0 to 0(1), 

Lng 22 = 0 to OCr), 

Lng 33 = 0 to 0(r2), 

Lng 23 = 0 to OCr), 

(II.3a) 

(II.3c) 

(II. 3d) 

(II.3g) 

LngOl = 0 to O(r-l), (II.3h) 

Lng 02 = 0 to 0(1), (II. 3i) 

Lng 03 = 0 to 0(1), (II.3j) 

(II.3b) is Br= 0 'tf u, (n. 3e) and( n. 3f) are (BH1ge) and 
(BH19f) respectively, 'tf u. Of course, (II. 3) hold at 
u = 0 for all orders of r. The form of Lng"'B in (II. 3) are 
copied in Appendix A from (BH18). 

C. Solution for the vector field: General case 

The procedure will continue as follows: (A, B, f,g) 
will be defined so that (II. 3) hold and so that we get the 
vector field 1)(0). The higher orders necessary in (II. 3), 
to show that 1)(u) is Killing, i. e., the rest of (BH19), 
will be shown to hold. To start we will take B = 1. From 
the no-shock condition B will be a regular function of 
cos8 [including B(u = 0)]: In Appendix C it is shown that 
B is a constant. Without loss of generality this may be 
taken to be 0 or 1. If B = 0 and B = 1 occur at different 
regions in the same initial problem, we solve for each 
initial region separately. Since, as we will see later, 
in all cases the result is the same, namely evolution 
and a Weyl metric, this does not affect the result. 
B = 0 is treated later. LindH uses a coordinate- tetrad 
transformation to make B = 1 (or 0 if not timelike); this, 
however, could not directly be done here as it could 
change the metric conditions. 

Also notice that (BH24) through (BH39) hold at all u 
since they are gotten in accordance with (II. 3). Similar­
ly (BH40e), (BH40k), (BH40i) and (BH40j) also hold at 
all u. The rest of (BH40) hold only at u = O. 

NOW, (II. 3f) gives 

gr/g= - (eY /r)r/(eY /r) 

so that 

g=re-Ye-A: 

with 

exp(A) = exp«O) A) + exp«_)A sin1» + exp«.) A cos1» 

(2) A arbitrary functions of u, 8. Then (II. 3j) gives since 
Aq, is a cos1> or sin1> term 

(O)gu/(O)g+yu=O to 0(1) 

so 
-

(0) Au = O. 

Also, (II. 3g) gives, similarly, 

- sin8e-Yas(e Y /sin8) - (0) gs/(O)g = 0 to OCr) 
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so that 

(O)A=-lnlsinOI +cf 

and 
(II. 4) 

Notice that (II, 3g) holds for all orders of r if there is 
no ~ dependence, Similarly, (II. 3e) gives 

(e-Y /r)jr + (e-Y /r) rj+ Ur = ° 
so that 

/=-UreY+H(O,~,u)reY. (II. 5) 

H is arbitrary. But (BH32) givesf~-1) = ° and B = 1, 
(BH37) and (BH39) give/o(-1) =0, so that with (£)l=const, 
H =/(-1) =l(~) = (0)1 + (_) 1 sincp + (+)1 coscp. In Sec. IV, 
(+) 1 * ° are treated. (+)1 = (_)1 = 0, (0)1 = ° is treated in 
Appendix B. Here we take 1 = ° and then (II. 3j) and 
(II. 3g) give also (+) g= (_) g= ° as well as 

j= - UreY• (II. 6) 

Next, notice that (SIII2) last gives a relation valid at 
all 11 and r between (BH18c), (BH18d), and (BH18g). 
(BH18g) is already zero for all u and r so that if we had 
(BH19c) holding at all u and r, (BH19d) would do like­
wise. Thus we define A for all u and r by (BH19c). It 
can be solved for A unambiguously. Then all of (BH19) 
hold for all u and r except possibly (BH19a), (BH19h) 
and (BH19i). We will see, with our (A,B,/,g) whether 
they indeed hold, i. e., if they evolve. The definitions 
of (A,B,j,g) in BH give 

7]'" = (B,Ae-28 - iB Vr-1, BU + je-Y /r, geY /r sinO) 

so that using (II.4), (II.6), and B = 1, 

7]'" = (1,Ae- 28 - i Vr-t, 0, cl)' 

(II. 7) 

(II. 8) 

However, 1)'" = (0,0,0, cl) is Killing, and hence setting 
cl = ° will affect nothing. Also, (BH19c) gives, on re­
arranging, using (II. 6) and B = 1, 

(Ae-28-ivr-l)(Yr+1/r)=-yu (II. 9) 

while (BH19d) similarly gives 

(II. 10) 

so that one must clearly have for the definition of A 

Ae-28 _ i Vr -1 = 0. (II. 11) 

Hence, 

1)'" = O~. (II. 12) 

From arguments in Sec. I this will evolve to fill out the 
region M of space-time so that the remaining three 
equations will evolve. The definition of A by (II. 11) will 
not be inconsistent with any of the three remaining 
equations: E. g., (BH19h) to O(1/r2) gives (BH79) which 
gives A (1) = - M. But (II. 11) gives just that; further 

(BH19h) gives, using (II. 11), J3u = 0, and is thus consis­
tent. Similarly (BH19a) gives ou(Vr-1e28 - U2y2e2Y) = ° 
and (BH19i) has Yu = 0, both consistent. The definition 
will, of course, be consistent with the initial data. 

In the cases considered so far it has emerged that 
the isometry evolves and M must be Weyl. 

III. SPECIAL CASE: B = 0, (±) 1 = 0 

Checking back on the discussion leading to (II. 8), g 
can be taken to be 0, (II. 3e) gives 
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j=H(O,u)reY 

and then (BH24) gives H = 0. (BH10c) gives A = ° at 
u = ° and (BH19a) gives Au = ° at u = 0. A can be defined 
to equal zero without inconsistency. This is a trivial 
subcase. 

IV. SPECIAL CASE: (_)1, (+)1 =1= 0 

Since (coscp, sincp) are linearly independent in 
L 2(0,211', R), (II. 3j) and (II.3g) give respectively, at 
u=O, for B=l or B=O, 

- (±)Au re-r exp(- (±)A)± ( .. >1 Ue2r /sinO = ° (IV. 1) 

and 

- (Y9 - cotO) re-Y exp(- (±)ji) - re-Y exp(-(±)A)(-Y9 - (±)A9) 

'f ( .. ) je2Y / sinO = ° 
(IV. 2) 

with the obvious notation 

j= w>i + (_J'sincp + (+>icos~ (IV. 3) 

and so on. (IV. 2) may be written as 

exp(- (±) A)«±) A9 + cotO) = 'f ( .. ) leh / sinO (IV. 4) 

with (±)l constants. Clearly a coscp in j gives a sincp in 
g and vice versa. Now, since the left-hand side of 
(IV. 4) is independent of Y, the right-hand side will also 
besoatu=O, i.e., Y=Oatu=O. (IV.1)givesU=0, 
so C = N = 0; then, (B22) gives j3 = ° and (B24) gives 
V=r-2M, Mo=Ofrom (B35). (IV. 1) also gives (;JAU 

= ° at u = 0. If B = 1, (BH19c) and (BH19d) give respec­
tively, at u=O 

(A - t Vr-l )(l/r) = - Yu, 

(A - tVr-1)(1/r) =Yu- (0) 1 cosO/sinO 

(IV. 5) 

(IV. 6) 

so that (Oll = 0, Yu=O and (0) A = Vr-1/2. Then (BH19a) 
for (±)j gives M2 = ° and then (B36) gives No = 0, all at 
u = O. An examination of Paper B then clearly shows 
that, since co(u) = 0, the initial value problem evolves 
uniquely as spherically symmetric, i. e. , Y = J3 = U = 0, 
etc., continue at all u. If B = 0, (BH19c) gives A = 0, 
and (BH19d) gives (0)1 = ° both at 11 = O. (BH19a) for 
(±l/ gives M2 = ° and then as before the metric evolves 
spherically. Birkhoff theorem, of course, gives us a 
static space-time. 

V. SECOND PART. SMALL ANISOMETRIES: SMALL 
PERTURBATIONS OFF WEYL 

Since imposing an isometry in Bondi gives us a Weyl 
space-time, one becomes interested in the next best 
thing: imposing an "almost symmetry." If by this is 
meant taking a vector field 1) and taking L(~+6~lg"'8= O(e), 
where E is a small parameter which will denote the mag­
nitude of the symmetry breaking, then this will be a 
space-time very near to a Weyl one, i, e., gaB=wgaB 
+ Eh"'B and 

L(n+6~)g"'8= L~wgaB +eL~h"'B +EL(6~lwg"'B' 

The last term may be removed by a gauge transforma­
tion. We see that if we wish to stick to our definition of 
"almost symmetry," 1) will have to be a Killing vector 
field of wg",B; if we do not necessarily wish a timelike 
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vector or axial symmetry, the base Weyl space-time 
will have to be thus restrictedo The equations for any 
perturbation h0<8 may be written down17 and compared18 

with those for L~h0<8' and one sees that equations for 
both, in vacuum, are identical. Metric perturbations 
of Schwarzchild space-times have been treated exten­
sively in the literature,19,20 spurred by interest in 
radiation near nonrotating black holeso Metric pertur­
bations in Weyl space-times have also been carried 
out. 21 The expansions used have been essentially of two 
types: a double series of multipole moments- multipole 
moments,21 and in a l/r series and later in multipole 
moments. Objections and convergence problems of the 
latter method are not important if one remains far away 
(but not at 00) from the source. Here we carry out a 
l/r expansion and calculate perturbations far away in 
a way that, very simply, would show some second 
order perturbations effects had one started with linear 
theory. 21 Of course, higher order perturbations in this 
scheme could be carried out, and the convergence is an 
open question. We start with Weyl and perturb it, keep­
ing the axial symmetry and nonrotation, and thus use 
Bondi's method linearized about Weyl. In a very simple 
way nonlinear effects appear. The only drawback seems 
to be that one never really relates masses and so on to 
exact sources (e. g., fluid or kinetic densities). This is 
a standing unsolved problem in all of gravitation. 

We start with a Weyl s-t transformed to a coordinate 
system where c = o. 7,22 A perturbation will involve a 
small change in c to Ef(u, 0), E a small parameter to be 
speCified later. We will keep only terms of O(E). (B35) 
gives 

(V.l) 

where 

F=f22 + 3f2 cotO - 2f, (V.2) 

and mw is the constant mass in the Weyl unperturbed 
case. (B36) then gives 

N O=- t EF2. 

(B34) gives 

4C oo = E[2m wfo - t (F2 coW - F 22 )1. 

(V.3) 

(V.4) 

We will now calculate the quadruple moment. There 
are different nonequivalent definitions and we used Eq. 
(3) in Newman and Unti, 23 

Q(u)=3lfoVCp~(cosO) sinOdO (V.5) 

(l a numerical factor so that the linear approximation 
should give the right answer), where ~ is the m asso­
ciated Legendre polynomial 

P~ = 3 sin20; 

then, using (V. 4), 

.. (T [1 ] . 3 Q=l9E Jo 2m wlo- s (F2cotO-F22 ) swOdO 

(V. 6) 

(v. 7) 

This integral will of course depend onf. So will F. Ex­
panding I in Legendre polynomials in cosO with u depen­
dent coefficients 

~ 

1= 6 dn(u) P n (cosO). ncO (V. 8) 
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Then, from (v. 2), with lJ!'=dlJ!/d(cosO) 

~ 

F= 6 dn {[1- cos2e]p: - 4 cosOP~ - 2Pn} 
ncO 

and since P n satisfies its differential equation 
~ 

F = 6 dn {- 2 cosep~ - [2 + n(n + 1)] P n}; (Vo 9) 
ncO 

(v. 10) 

with .. 
an=-2 6 dmK mn -dn[2+n(n+l)], (v. 11) 

m=n 

so that if I has dn = 0 for n> k, an = 0 for n> k also. 
Since 

F2 coW - F22 = (F')2 sine, 

we get, integrating by parts, 

lOT (- F22 + F2 cote) sin30 dO = - 811 FP2(cosO)d cosO). 
-1 

Also, 
(Vo 12) 

10' 10 sin30 dO =% l! 10 [po - P 2] d(cosO). (V. 13) 

Thus, we see from (Vo 11), (V.12), and (V. 13), and the 
orthogonality of the Legendre polynomials, that the only 
contributions to Q will be from the n = 0 and n = 2 terms 
of f and the n = 2 term of F(ie , do, d2, ~). Higher terms 
off, i. e., d4,ds and so on, will only contribute in~. 
This is because 

111 '£ - 2dn cosep~p2 d(cosO) 
... 0 .. 
= 2 6 [dn {f 0n2 + 2onO} - 2 (if n even)]. ncO 

Hence, 

(v. 14) 

where the superscript dot indicates d/du. This is exact 
to O(E) and relates the quadrupole moments to two coef­
ficients of c. The lowest order effect in mo is, from 
(B58), 

(V. 15) 

It is clear that the di, dj (i> 2) are independent of Q, 
even at higher orders of E. Thus, at least part of the 
radiated energy is not related to quadrupole moment 
change. If we, however, take the 0 and 2 terms of I as­
suming the i> 2 terms and d1 to be much less than the 
others (or simply ignoring their effects on mo) and if 
we let time (u) derivatives be much less than l/m w, i., 
for any coefficient dj , d~mw« dj, so that the background 
should be strong and the change slow, but not totally 
negligible, and so that E could be roughly taken as the 
energy radiated/total energy and E« mw/T, where 

l/T = rate of energy radiated/total energy 

as that the approximation is consistent, then 

~.= (4l)2E2[6mw (ao· - tdi·) - 752 di]2 

'" E2l2{_(72)2 ·16/25] J~ + 12mw(- t di·) ~i'lE} 
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where we have set in the last time 1;" »do'. Then using 
(V. 15), 

- Q"Z ",[(72)z/5J 16lzmo + '* mw E Q' Q', 
or 

mo'" - [5/16[z(72)zJ Q'z - [60/(72)3J mw Q' ·ij". (V. 17) 

The first term is the usual one that relates radiated en­
ergy to change in quadrupole moment (different numbers 
depending on "normalization" l). The second, since it 
has a term m w, is an interaction of the radiation with 
the background. 19 This approximate expression is sim­
ilar to those in Refs. 19-21 and represent radiative 
tails. Further multipole moments may be defined as 
in Ref. 23 so as to write more exact expressions for 
mo in terms of them from (V. 14). The advantage in the 
perturbative approach here used is the mathematical 
simplicity. The disadvantage is the usual not-apparent 
interpretation, including that of Q and the approxima­
tions used. If Q were related to source densities, Eq. 
(V. 17) could be used to calculate the energy radiated 
by a massive axially symmetric static object changing 
slowly. More exact expressions are needed to disen­
tangle further the nonlinearities, but it is helpful that 
even in this simple approximation to O(e) some appear. 
Care should be exercised in that there are different 
(usually numerical) definitions for Q. 1,19,Z3 Also if in­
stead of Bondi's mo we used Newman and Unti's, Z3 there 
is a relation mo (Bondi) =mo (N. U.) -1/2J;(c~ 
+ ccoo) sinO dO so that we may again get an approximate 
different expression for radiated energy. For a dis­
cussion of mass and multipole moments in relation to 
Bondi's formalism see Refs. 23 and 24. For a nice in­
variant treatment and generalization of Bondi's formal­
ism see Ref. 25. 

APPENDIX A 

Some errors in (BH) have been taken care of here: 

L~goo =j[e-Yoo(Vr-ZeZ8 - UZre ZY ) + 2Ure2Youe-Y] 

+ 2fu UreY + Bou(Vr-1e28 - UZ~ezY) 

+ (Ae-Z8 _ iBVr-1) 0T(Vr-1e28 _ U2~e2Y) 

+ BUoo(Vr-1e 28 - U2~e2Y) + 2(Vr-1e28 - U2~e2Y) Bu 

+ 2e280u(Ae-28 - iB Vr-l) + 2U~e2You(BU), 
(BH18a) 

L~gl1=e28oTB, (BH18b) 

L~g22 = - 2fo reY + Bou(- ~e2Y) - (Ae-28 - B Vr-1/2) oT(~e2Y) 

- BUoo(~e2Y) + 2U~e2YooB - 2~e2Yoo(BU), 
(BH18c) 

L~g33 = (je-Y /r) 0 0(- ~e-2Y sin20) - 2gC/l re-Y sinO 

+ Bou(- ~e-2Y sin20) + (Ae-28 - ~BVr-l)oT 

(- ~e-2Y sin20) + BUoo(- ~e-2Y sin20), 
(BH18d) 

L~g12 =f(- ~e2YoT(e-Y /r)] - fT reY + e28Bo - ~e2Y(BU)T 

+ U~e2YBT' (BH18e) 

(BH18f) 

422 J. Math. Phys., Vol. 18, No.3, March 1977 

Lng 01 =j[(e-Y /r)00(e28) + U~e2YoT(e-Y /r)] +fT Ure Y 

+ Boue28 + (Ae-28 - tBVr-l)oTe28 + BUo oe28 

+ e280T(Ae-28 _ ~BVr-l) + U~e2YBUT + e28Bu 

(BH18g) 

+ BT(Vr-1e28), (BH18h) 

Lng 02 = j[oo(UreY) - reZY0uC-Y] - fureY + fo Ure Y 

+ Bou(~Ue2Y) + (Ae-28 - tBVr-1) oT(U~e2Y) 

+ (Vr-1e28 _ U2~e2Y)Bo+e2800(Ae-28 _ tBVr-1) 

+ U~e2Yoo(BU) + U~e2YBu- ~e2Y(BU)u 

+ BUo(re2YU), 

and, lastly, 

L ng 03 =AC/l - g(re-Y sinOru) + fC/lUreY - gure-Y sinO. 

APPENDIX B 

(±)l = 0, !JJ)l * 0, B = 1. 

(BH18i) 

(BH18j) 

(o)l =K1, (BH40e) and equations preceding (II. 6) give 

/1) = 2K1c + (c2 + 2c cotO). 

(BH40i), while using (BH24), gives 

- Kl (c2 + 2c cotO)o + A~O) = O. (El) 

(BH40c) and (BH40d) actually hold for all u since all the 
terms, from (BH34) and with g(O) = 0, are independent of 
u. Thus 

- fo(O) = c oKl _flO) cotO 

and (II. 5), with H=K1, gives 

f(O)=K1c 

so that Kl = 0 or 2C2 + c cotO = O. Ignoring the already 
treated former case, and with A (0) - 1/2 = - K1c2, and 
using (B. 1), c=O. (II. 4) givesg<-1)=c1, g<0)=g<1)=0, 
and there is also A (-1> = f (0) = f <1l = 0, A (0) = 1/2. 
(BH40a) gives A~1> =K1M 2 at u = 0, (BH19h) gives A (1) 

= M at u = 0, and defining A by (BH19c) as before, A (1) 

= - M at all u so that M2 = 0, using (B35). As before, one 
one may get 

(B2) 

which meansg,,8=g,,8(U-O/K1); a=i3=O give clearly 
M z = 0 at u = 0 anyway: Again there is no inconsistency 
nor additional imposed metric conditions. (B36) now 
gives No=O, (B34) Coo=O, (BH19i) gives Uo=O, (B2) 
then gives U u = 0, all at u = O. One may continue using 
(B2) and equations in Band BH to get zero for all func­
tions. This is a trivial subcase, flat space-time. 

APPENDIX C 

First, (II. 4) will still hold as well as the equations 
before it. (IV. 1) will also hold, and so will (IV. 4) ex­
cept one would have, to start, on the right-hand side of 
(V. 4) ±(±>fe3Y /r sinO and on the left of (IV. 1) ±(±) AeY / 
r sinO. The argument below it would give 

(±J = (±) G(u, 0) re-3Y. 

R. Berezdivin and L. Herrera 422 



                                                                                                                                    

(BH1ge) gives (±)/= (±) H(u, 0) re' so th~t, since [(±)G/ 
(±)H]r=O, y=O. Then (IV. 1) gives (±)Au=O, 

(n) 

(±)GU + (~) A ("-2) = 0; with n = 1 we get (±)A (-i) = ° so that 
(±)/(-i)=const=G. If (±)G=O, then (±)g=O and (±)A=O 
and there is no 1> dependence (treated below). But 
(BH19h) gives 

(±) Ar + 2e2aJ3e = ° so that A (1) = 0, 

and since (B22) gives i3 = 0, we must have (±)A = ° from 
(BH40c), and thus U = ° at u = 0. (BH19c) and (BH19d) 
give with B"* 0, respectively, (IV. 5) and (IV. 6) with the 
former's right-hand side changed to Yu- (O)/cosO/rsinO 
and both left-hand sides changed V - BV, and A - (O)A. 

(BH1ge) also implies (0)1= T(u, e)r, and so, comparing 
(IV. 5) and (IV. 6), wegetyu=O, T=O. Everything, so 
far, is at 11 = 0. The argument below (IV. 6), from "then 
(BH19)" on, is then valid. Thus, if there is a 1> depen­
dence on (f,I<) we must have spherical symmetry, and 
(.0 = 0. 

If there is no 1> dependence anywhere the argument 
above does not follow. One proceeds as follows in order 
to set B = 1 or 0. 

Taking au on (BH40c) and (BH40d) (we will define A (0) 

for all u in such a way) gives K = c5 cose (c5 const), and 
previous equations in BH then give fe-i) = C5 sine, A (-i) 
= - C5 cosO. (BH40c) and (BH40d) give (without au) 

- c5(ce sinO + c cosO) + m/2 + m" 

= C5(CS sine - c cosO) + m' coW + m/2 

while (BH40i) gives 
(2) (2~ 

c5{sinOUe - c sine +2 cosOU j+n' +m' /2 = ° 
with 

n = - c5(c sinO)s + m/2 + mil. 

(Cl) 

(C2) 

(C3) 

If one now expands c/sin20 in cose near 0 = ° (c/sin20 
must be regular7 there) and m in a Taylor series at (} = ° 
(B must be regular also), 

c =d(2)02 +d(4)(}4 +"', 

m=m(O)+m(i)(}+ ••• , 

and uses the above two equations for c and m, one gets 
C5d(2)=0, m(O) arbitrary, m<1l=m(3)=0, 8m(4)+tm(2) 

= 0, •• '. Since d(2) may be taken different from ° (by a 
supertranslation1 K = 1, (l' = (l' (8), one can always do so; 
also set c"* 0), we must have C5 = 0. Then one may solve 
exactly above to get B = cB cosO + C9 and if ca"* 0, take 
B=C9+COS(}; now, (BH1ge) gives 

le-Y /r= - BU - J(e2Il-2Y /-?) sinO dr, (C4) 

and with 

L=-re' J(e2MY/-?) sine dr, 

(BH19c) and (BH19d) give, respectively, 
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(Ae-2a - BVr-i /2)(1/r+ Yr ) = - U sinO - Ls/reY - Byu 

(C5) 

and 

(Ae-2a _ B Vr'"1/2)(1/rYr) = Byu - (LeY /2r sin20) as (e-2Y sin20). 

(C6) 

Checking both to O(l/-?), we get, respectively, 

- c(A (0) - B/2) + (A (1) - BM) = (c sinO)e, 

+ c(A 0 - B/2) + (A (t) - BM) = (c sinO)e, 

so that c(A (0) - B/2) = 0. With c set not equal to ° by a 
super translation, A (0) - B /2 = - cosO = 0. This is non­
sense so that ca must have been 0. Thus b = C9 constant. 

*Present address: Inco Inc., 7916 Westpark Dr., McLean, 
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This paper is a continuation of a previous paper with a similar title [I. Math. Phys. 17, 1345 (1976)]. In 
this paper we develop further properties of time·dependent symmetries of dynamical systems expressible in 
the form (a) E;(j(.x,x.t) = E;(j(l ..... j("; x1, .... x"; Xl ..... X";t) = O. Such dynamical symmetries are 
based upon infinitesimal transformations of the form (b) x; = x; +I>x;, I>x;= ~;(x. t)l>a. (c) t = t +1> t, 
I>t=~o(x.t)8a, which satisfy the condition (d) I>E' =0 whenever Ei =0. It is shown that if (~~, ~~), 
A = I, .... p. is a complete set of solutions of the symmetry equations as determined by (d). then these 
solutions generate a p-parameter complete group of symmetry mappings, and the group structure implies 
linear dependency relations between first and second derived time-dependent constants of motion as 
obtained by a related integral theorem. The complete groups of time-dependent symmetry mappings are 
obtained for all conservative systems (n > I) with spherically symmetric potentials. These groups are 
classified into six types according to the associated form of the potential. A similar analysis leads to three 
types of Noether symmetries. In the case where (a) takes the form (e) E;(x,x,x) =0. it is shown that if 
(~;. ~O) defines a symmetry mapping then in general (l~;/atK, iiK~O/atK), K = 1,2, ... , will also define 
symmetry mappings; similar properties are shown for Noether symmetries. These results when applied to a 
large class of time-dependent constant of motion defined in terms of (~i. ~") lead to further contants of 
motion. 

1. INTRODUCTION 

With respect to a classical particle dynamical system 
a dynamical symmetry is defined as a mapping of the 
set of system trajectories into itself. 

In a previOUS paperl (Paper I of this series) we 
developed a gauge invariant formulation of time-depen­
dent symmetry mappings and associated constants of 
motion for Lagrange's equations. In this paper we con­
tinue this work by developing further properties of 
time-dependent dynamical symmetries, and exemplify­
ing several aspects of the theory. 

We shall now consider dynamical systems expreSSible 
in the form 2 

E i( x, x, x, t) "'" E i (x', ... ,.y"; -i;1, ••• ,.\:"; x', ... , x"; t) = O. 

(1. 1) 
In Ref. 1 we defined Type I (infinitesimal) mappings 

by 

(1. 2) 

(1. 3) 

Based upon such mappings the 6 variations 6Xl and ox; 
were defined respectively by' 

(1.4) 

d 2 - i d 2 • i 
0"1- X X (ti '1"0 2"jtO)6 x = dP -"df2 = S - x ~ - x sa. (1.5) 

For any function G(x, x, x, t), oG is defined by 

, _ oG ,"I (lG A'; (lG F. i oG 
uG=~vx +-.-; vX +-;-TvX +--ot. 

'lX oX vX (It 
(1. 6) 

A Type I mapping will define a symmetry mapping of 
the dynamical system (1.1) if 
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OEi =0 (whenever Ei =0). (1.7) 

To obtain the explicit conditions on the mapping func­
tions ~"(\:,t), (""'~O, ~i), Q/=O,l" .. ,n, in order that 
(1.7) be satisfied we proceed as follows: 

(a) We expand (1. 7) by means of (1.6) in which ox" 
01, 6';-1, and OXi are expressed by (1.2), (1.3), (1.4), 
and (1.5), respectively. 

(b) In the resulting equation we eliminate the Xi terms 
by means of (1.1) [which we assume to be solvable for 
yl]. Since OXI and OXI are linear and homogeneous in 
the ~o:, ~~B' ~~Br the equations so obtained will be of the 
form 

G~(x, x, m" + G~i(X, x, t)~~B + G~ri(x, x, tH~Br = O. (1. 8) 

(c) The explicit symmetry equations for the ~"(x, t) 
are obtained by conSidering (1.8) as identically zero in 
the ~yi variables (since otherwise they would impose con­
straints on the dynamical system), The ~"(x,!) which 
satisfy these symmetry equations will be referred to 
as symmetry solutions. 

By means of (1,2), (1.3) such symmetry solutions 
determine the above-mentioned Type I symmetry map­
pings of a dynamical system (1.1). 

In Sec. 2 it is shown that if a dynamical system of 
the form (2.1) admits a symmetry mapping defined by 
[~i(X,t), ~O(x,t)l, then in general it also admits a 
symmetry mapping defined by [iJK~i/otK, aK~O/atKJ, 
K = 1,2, .... A similar property is shown to hold for 
Type I Noether symmetries. These results when applied 
to a large class of time-dependent constants of motion 
based upon the functions [1; i, ~ollead to further constants 
of motion. 

In Sec. 3 it is shown that if [(~(x,t), ~';;,(x,t)], 
A = 1, 2, ... ,p, is a complete set of solutions of the 
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symmetry equations based upon a dynamical system 
(1.1), then these solutions generate a p-parameter 
(complete) group of symmetry mappings. It is shown 
that the group structure implies linear dependency 
relations between first and second derived time-depen­
dent constants of motion obtained by use of a related 
integral theorem. 3,4 

In Sec. 4 we give an example of a class of time­
dependent Lagrangians which satisfy condition [Ref. 1, 
(4,12) J. (It was shown in Ref. 1, Sec. 4 that if the 
dynamical systems defined by such Lagrangians admit 
Type I symmetries, then a time-dependent constant of 
motion C1 exists. ) 

In Secs. 5-9 explicit time-dependent symmetry equa­
tions for conservative systems are derived. Based 
upon the solutions of these equations the complete 
groups of time-dependent symmetry mappings are ob­
tained for all such systems (n > 1) with spherically 
symmetric potentials. These groups are classified into 
six types according to the form of the potential. 

In Sec. 10 a similar procedure is carried out for 
Type I Noether symmetries. 

2. TIME DERIVATIVES OF SYMMETRY SOLUTIONS 

In this section we restrict the dynamical equations 
(1.1) to be of the form 

(2.1) 

We shall first show that if ~<>:(x, t) is a symmetry 
solution of the dynamical system (2, 1) so also will be 
~~t. Since (2.1) does not contain t explicitly, it follows 
from the discussion leading to (1.8) that (1.8) now takes 
the form 

G!(x, xH <>: + G~j(x, x) ~~8 + G~yj(x, X)~~8Y = O. (2.2) 

To find the explicit conditions that the functions ~<>: 

define a symmetry solution, we require that (2.2) be 
identically zero in the ii variables. We assume that the 
resulting equations in the unknown quantities ~'" so ob­
tained (referred to as the symmetry equations) by this 
requirement are satisfied by the solution 

~"'=r(x,t). (2.3) 

Hence, if we substitute for ~'" in (2.2) by use of (2.3), 
the resulting equations will be identically zero in the 
ii,i.e., 

Fi=G!r+G~1,~+G~Yif,~y=0 (int-i). 

From (2.4) it follows that 

aF i 

iJt=O 

in the ii. From (2.4) and (2.5) it follows that 

G~(j,~) + G~i(j,~) ,8 + G! Yi(f.~), 8y -= 0 (in Xi). 

Hence ~~I = f.~ will also define a symmetry solution. 

(2.4) 

(2.5) 

(2.6) 

In a similar manner it follows that in general f" 
a ttP 

f,lll' .•. will also be symmetry solutions. 

This result can be stated by the follOwing theorem. 

Theorem 2.1: If a dynamical system which is charac-
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terized by (2. 1) admits a symmetry mapping (1. 2), 
(1.3) defined by [~i(X,t), ~O(x,t)], then in general it also 
admits symmetry mappings defined by [aK~j/(JtK, 
3K~o/3tKl, K=I,2,3, .... 

We now assume the case where the dynamical equa­
tions (2.1) are expressible in the form of Lagrange's 
equations 

Aj(L)=O, (2.7) 

based on the Lagrangian L =L(x, x). 

A Type I mapping defined by (1. 2), (1. 3) is called a 
Type I Noether mapping if there exist functions [~"'(x,t), 
ljJ(x, t) 1 such that5 

(2.8) 

It is clear that the expanded form of the left-hand 
side of (2.8) will be linear and homogeneous in the 
quantities ~"', ~~8' and 1jJ,,,,. Hence by an argument simi­
lar to that used in the proof of Theorem 2.1 we obtain 
the additional theorem 

Theorem 2.2: If a dynamical system based on a 
Lagrangian L(i, x) admits a Type I Noether symmetry 
mapping defined by [~"(x, t), ljJ(x, t)l, then in general it 
also admits a Noether symmetry mapping defined by 
[()K~"'/at\ (JKIjJ/atKJ, K=1,2,3, .... 

We may apply Theorem 2,1 to the case where (2,1) 
takes the form of Hamilton's equations 6 

EA(X, x)= XA_T/ABH'B =0, A,B=I, ... ,2n, (2.9) 

where 

H(x, t) =A(x) +B(t). (2.10) 

In this case (1. 7) is again linear and homogeneous in 
[~A(X,t), ~O(x,t)J, and hence if these quantities define 
a symmetry mapping of the Hamiltonian system so in 
general will [am~A/atm, am~o/(Jtml, m = 1, 2, 3, "', de­
fine a symmetry. 7 

It is well known in Hamiltonian mechanics that if 
H(x, t) is of the form (2.10), then ifI(x, t) is a constant 
of motion then aI/at will also be a constant of motion. 

A similar result is easily shown to hold for dynamical 
systems represented by equations of the form (2,1). B 

To prove this, assume l(x, x, t) is a constant of motion 
of such a dynamical system; then 

d (01) a2
['i a2

["j a2
[ 

dt at = axi at x + axi at x + atii 

=~(~xi +.E.xi +~)=~(dI)= at ax' axi at at dt O. 
(2.11) 

We state the following theorem. 

Theorem 2. 3: If a dynamical system of the form (2. 1) 
admits a constant of motion 1(X, x, 0, then al(x, x, t)/at 
is a constant of motion. 

Corollary 2.3: If a dynamical system (2. 1) admits a 
Type I symmetry mapping (1. 2), (1. 3) defined by ~"'(x, t) 
and an associated constant of motion of the form 

1= I[~", ~~8' ~~BY; x, x J 

(2.12) 
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then the constant of motion aIjat is of the form 

aljat =I[(~~t), (~~t),B' (~~t),BY; x, xl, (2.13) 

where by Theorem 2. 1 ~~t also defines a Type I 
symmetry. 

As an illustration of a constant of motion of the form 
(2.12) we mention the function C, defined by Ref, 1, 
(4.6) (with y, = 0), where the dynamical system (2.1) is 
based on Lagrangian L = LCy:, x). 

We note that a statement similar to that of Corollary 
2.3 holds for the Noether constant of motion C2 defined 
by [see Ref. 1, (4.8)1 

2L i (CL.. ) 0 =-.-. ): - -.-. x' -L ~ +ij; 
Oyt ~ ax! , (2.14) 

(where [~", ~)] define a Type I Noether mapping) in l4at 
the constant of motion 

(2. 15) 

where again (2.1) is based on the Lagrangian L(x,x). 

3. GROUP PROPERTIES OF TYPE I SYMMETRIES 

In this section we shall first show that if ~~, ~~ de­
fine any two Type I symmetry mappings of the dynami­
cal equation (1. 1), then9 

~~B -=t A~~ = ~~,B~~ - ~~,B~~ = AA~~ - AB~~ (3.1) 

will also define a symmetry mapping of (1.1), where 
for any function MCf, x, x, /) 

A N \1=d5 A •IJ,;JjOa, (3.2) 

with 0 Af'vl based upon ~~. 

To prove the above stated property concerning ~~B' 
we note the commutator expression defined by 

[AA, AB 1M = (AAAB - ABAA)M= AA(ABM) - AB(AAM ) 

(3.3) 

gives on expansion (by means of a lengthy but straight­
forward calculation) 

[AA' AB 1 M = [(~~B - .Xj~~B - 2xj k~B)a ji1.Y'j 

+(~~B -xj~~B)aj?xj +~~B?jcx"jM. 

(3.4) 
From (1. 2)-(1. 5) Eq. (3.4) can be written in the form 

[AA' AB 1f'vl = [(AABxj)a jax
j + (AABxj)a ja x

j 

+ (AABx")a jax"]M. (3.5) 

It is observed that (3.5) may be rewritten in the form 

(3.6) 

where the operator AAB is defined as in (3.2) in terms 

of ~~B' 

Since ~~, ~~ define symmetry mappings, we have from 
(1. 7) and (3.2) that 

AAEi=O, ABEi=O [whenever Ej(x,x,x,t)=Oj. 

(3.7) 

Hence it follows that 
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AA(ABEi)=O, AB(AAEi)=O (whenever Ej=O). 

It therefore follows from (3.3) and (3.6) 

(3.8) 

AABEi=O (whenever Ej=O). (3.9) 

We summarize the above results in the following 
theorem. 

Theorem 3.1: If ti', ~~ define Type I symmetry map­
pings of the dynamical equations (1. 1), then ~~B defined 
by (3. 1) will also define a Type I symmetry mapping. 

Assume now that the symmetry equations (refer to 
Sec. 1) associated with the dynamical equations (1.1) 
admit a complete set of solutions ~~(x,t), A=1,2, ... , 

p. By Theorem 3.1, ~~B defined by (3.1) is also a 
solution of the symmetry equations for any choice of 
A, B. Hence we must be able to express ~~B in the form 

GB=C~B~~' (3. 10) 

where C iB are constants. 

If now we define the operators X A by 

X A = ~~? jaxOl
, (3.11) 

then by means of (3.1) we may express (3.10) in the 
form 

[XA,X Bl =C~BXJ' (3. 12) 

Hence we can state the following theorem 

Theorell1 3.2: If the symmetry equations'O of a dy­
namical system (1.1) admit a complete set of solutions 
~~, A = 1,2, ... ,p, then these solutions generate a p­
parameter group G p of symmetry mappings (in the n + 1 
variables Xi, t). 

Remark 1: If we assume the conditions of Theorem 
3.2 are satisfied, then it follows from (3. 10) and the 
definition of the operator AAB that (3.6) can be ex­
pressed in the form 

(3.13) 

If we interpret AAM(x, x, x,f) as the generators (in the 
3n + 1 variables Xi ,~i, Xi, t) of the second extension of 
the group G p , then (3.13) is a statement of a well-known 
group property. !1 

Remark 2' If in (3.13) we regard M=ICy,x,O, where 
I is a constant of motion of (1. 1), then (3. 13) can be 
written in the form 

lAB - 1 B A = C iB I J> 

where 

(3.14) 

(3.15) 

are by the related integral theorem3
,4 the first and 

second derived constants of motion (based on 1) 
respectively. 

4. A LAGRANGIAN ILLUSTRATING COROLLARY 
4.1 OF PAPER I 

In Paper I' it was shown that if a dynamical system 
defined by Lagrange's equations 

(4.1) 

admits a Type I symmetry, then a sufficient condition 
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that the dynamical system admits the constant of motion 
C1 given by Ref. 1, (4,6), is that there exist functions 
A ij(x, x, x, t) such that12 

illUL) =tA.A.(L) (4.2) 
ilt i=!} It' 

In this section we obtain conditions that the class of 
Lagrangians defined by 

L",,'teXP(e/t)g/x-,x), e/x-,x)*e/x,x), i,j=1,2, .. "n, 
i=l 

(4.3) 

will satisfy (4.2) for some A Ji' 

If we evaluate the left side of (4.1) using (4.3), we 
obtain 

(4.4) 

+ :.:::...1L + e.G" -H .. aGo ~. 
a I "} I} , 

(4.5) 

iJe· ago 
G/j(i,X,t)""tff/ ilX; + ax;" (4.6) 

(4.7) 

Substitution of (4.4) in (4.2) gives 

(4.8) 

A sufficient condition that (4.8) be satisfied is obtained 
by equating to zero each of the bracketed expressions 
in (4.8). This gives the system of linear equations (in 
the unknowns A jk)' 

(4.9) 

For a fixed j and with k assuming the values 1, ..• ,n, 
we obtain n equations in the n unknowns Ajl (i= 1, ... ,n). 
This set of n equations will have a solution for these 
Aj/ if 

IFikl*o (along a trajectory). (4.10) 

It is clear that if (4.10) is satisfied, all the Aji (i,j 
= 1, ... ,n) can be determined. 

5. TIME-DEPENDENT SYMMETRIES OF 
CONSERVATIVE DYNAMICAL SYSTEMS 

In this section we derive the explicit time-dependent 
symmetry equations for the conservative system defined 
by the Lagrangian 

(5.1) 

where ff/j defines the metric of a Riemannian (configura­
tion) space. 

From (5. 1) Lagrange's equations take the form 

(5.2) 

where r~b(X) is the Christoffel symbol based on the f[w 
By inspection it is seen that (5.2) may be expressed in 
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the equivalent form [see (l.l)J 

Ei=xi +r~xail' +giaV,a=O. (5.3) 

To obtain the symmetry equations by use of (1.7), 
we calculate oEi from (5.3) and, as outlined in Sec. 1, 
use (1.2), (1.4), (1. 5) to eliminate the ox i , ox i , OXi 
terms, respectively. In the resulting equations, (5.3) 
is used to eliminate the Xi terms. This procedure leads 
to 

+r;k,mC)ii,Xk +(~~jgjkV,kO! +2~~mgijV,j - ~~tto! 

+ 2~: tm + 2r:m~: t)im + ~:tt -~,ijgikV,k +2 ~~ tf[u V,j 

+CffiJV,jm +g:~~mV,j=O' (5.4) 

The symmetry equations in ~/, ~o are obtained by re­
quiring that (5.4) be identically zero in the ii. As a 
consequence we obtain 

where 

t ,rJk "" ~:jk + ~~kr~j + ~~jr~k - ~:ar;k + ~ar;k,a. 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

For our purposes, unless otherwise stated, we now 
assume in this and the remaining sections that the con­
figuration space be Euclidean referred to rectangular 
coordinates Xi (which implies that gif =gij = Oil and 
r Jk = 0). As a consequence the symmetry equations 
(5.5)-(5.8) reduce to the form 

(5.10) 

(5.11) 

~~jj = O. (5.13) 

If we define ¢ "" ~~t> then (5.12) takes the form 

(5.14) 

This is recognized as defining a (time-dependent) pro­
jective collineation (in a flat space) with the known 
solution!3 

~i(x,t)=aj(t)xjxi +B;(t)xj +Ci(t). (5.15) 

From (5.13) we obtain 

~O(x, t) =A /t)x j + B(t). (5.16) 

Hence by use of (5.15), (5.16) in (5.12) there is ob­
tained2 

ai =A;, and (5.15) is expressible as 

(5. 17) 

There remains to be considered (5.10) and (5.11). 
[Note that (5.16), (5.17) hold for any potential V(x).] 

Use of (5.16), (5.17) in (5.10), (5.11) leads to the re­
spective conditions 
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A7'XiXi +Bj"xi +C i" - [A;Xi +A;Xi1i~ +B~]V,k 

+2(A;xi +B')V,i +(A;xi0 +BJxi +Ck)V,kl=O, (5.18) 

A i V,/i~ +2Am V, i - (A ;'xj + B")1i~ +2(A~xi 

+A;XkO~ +B~')=O. (5. 19) 

If in (5.19) we put i = m and sum, the result can be 
solved for Ai V,j' If this solution is used in (5.19), we 
find 

A.V . = [l/(n +2)] (B" + Bkk')Oi - Bi' -A '!x i 
J ,1 J J J. (5.20) 

Thus the solution to the symmetry equations (5.10)­
(5.13) has been reduced to solving (5.18), (5.20) for the 
quantities Ai> B, Bj, C i

, V. The forms of ~o, ~i will 
then be given by (5.16), (5.17) respectively. 

6. SYMMETRY SOLUTIONS FOR THE CASE 
V(x) = Vo = CONST 

Note that in this case the dynamical equations (5.3) 
reduce to the equations of the geodesics. 

When V=Vo=const, we have from (5.18), (5.20) 
respectively 

From (6.2) we obtain 

When this result is used in (6.1), (6.2) we find 

(6.1) 

(6.2) 

(6.3) 

Ci"=O, B'''=O, B;=~B'o;+Q'; (a;=const). (6.4) 

Hence from (603), (6.4) we have 

BJ=(llol +~1l1)oj +a;, 
(6.5) 

where in (6.5) ai' To v~, vI, 11o, Ill> 112, a; are 
arbitrary constants. The solutions for ~i, ~o can now 
be obtained by use of (6.5) in (5 0 16), (5.17) (see Type I 
solution, Sec. 9). 

We thus have the theorem: 

Theorem 6.1: The most general time-dependent 
symmetry mappings of a conservative system with a 
constant potential [with a Euclidean configuration space 
referred to rectangular coordinates (Xi)] are determined 
by (5.16), (5.17), (6.5). 

7. SOLUTIONS OF SYMMETRY EQUATIONS (5.18). 
(5.20) WITH AT LEAST ONE Ai =1= 0 14 

In this situation there is no loss of generality in 
taking, for example, A I ,* O. 

From (5.20) we find 

AY,ik=O (Uk). (7.1) 

Use ofj=l in (7.1) gives V,lk=O (i,*k), and hence v(x) 
must be of the separable form 

V(x) = t Vj(x i ) (VI is a function of Xi only). (7.2) 
i=l 

Again, from (5.20) withj=l, we find by differentiation 
with respect to Xi 
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V,ii= V;'(xi) =A{'(t)/AI(t) =:0 2a (i=l, .• 0 ,n; a=const), 

(7.3) 

so that we may write 

V = ar + i3lxi +y (i3/> Y = const), 

where 
n r =:0.6 (xi)2. 

i=I 

(7.4) 

(7.5) 

Equation (7.4) gives the most general form of poten­
tial when at least one of the Ai '* 0 in (5.18), (5. 20L This 
implies (when at least one Ai '* 0) that the only spherical­
ly symmetric potential, that is, V= V(r), is given by 

V=ar2 +b (a, b = const). (7.6) 

We continue with the solutions of (5.18), (5.20) 
assuming the potential V has the form (7,6). If then 
(7.6) is substituted in (5.18), (5,20), the following con­
ditions are obtained: 

(7.7) 

B'U +8aB' = 0, (7 0 8) 

C i " +2aC i =0, (709) 

(7.10) 

[Note that the conditions (6.3), (6.4) (for V= Va) corre­
spond to the case a = 0.] 

The above results are summarized in the theorem 
stated below. 

Theorem 7.1: If a conservative dynamical system 
defined by the Lagrangian (5.1) [in a Euclidean configu­
ration space referred to rectangular coordinates (Xl) 1 
admits a time-dependent symmetry defined by functions 
1; i, i;0, these functions must have the forms given by 
(5.16), (5.17) respectively. If there is in (5.16) at least 
one Ai'* 0, then the potential V(x) must have the form 
(7.4). In this case the most general spherically sym­
metric potential is given by (7.6), and for this potential 
the conditions on the coefficients in (5.16), (5.17) are 
given by (7.7)-(7.10). 

Since in a later paper we plan to discuss symmetry 
mappings of conservative systems with separable poten­
tials of the general form (7.2), we will postpone further 
discussion of the potential (7.4) to this later paper. 

8. SOLUTIONS OF SYMMETRY EQUATIONS (5.18), 
(5.20) WITH ALL Ai = 0, AND WITH SPHERICALLY 
SYMMETRIC POTENTIALS 

When all A i= 0 in (5.16), (5.17), we obtain 

(8.1) 

Equations (5.18), (5.20) now reduce to the respective 
forms 

B;"xi +C i " _ WB;xi +2WB'xi +(B~xi +C k
) 

x[(W'/r)~xi +Wo~]=O, 

(B" +B~')o~=(n +2)B!', 

where 
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W= V'/r. 

From (8.3) it follows that 

Bj=tl5~B' +aJ, a~=consts. 

From (8.5) and (8.2) there is obtained 

e l" + wei +xl[(W'/r)(eixi) +tB'" 

+ B'(2W +trW') + (W'/r)(a{xixk
)] = 0. 

(8.4) 

(8.5) 

(8.6) 

As (8.3) is satisfied identically by means of (8.5), Eq. 
(8.6) is the only remaining equation to be considered. 

If (8.6) be differentiated with respect to Xi (j *- i), the 
result implies that14 

(8.7) 

The choice W' = ° requires V to be of the form (7.6), 
and it can be shown that (7.7)-(7.10) will still hold 
(withallAi=O). IfW'*-O, then (8.7) implies that 

With (8.8) used in (8.6) we have 

B'" + (4 W +rW')B' + (2W' /r)(a~ Xix") = 0. 

Equation (8.9) implies 

aJ +a{=2aoli (a = const), 
where 

a'Oa:=a~=···=a~. 

(8.8) 

(8.9) 

(8.10) 

(8.11) 

From (8.4), (8.10), (8.11) used in (8.9) there results 

B'" +(V" +3V'/r)B' +2a(V" - V'/r) =0, (8.12) 

which is the only remaining condition on V(r) and B(t). 

Differentiation of (8.12) with respect to rand t leads 
to 

B"(V" +3V'/r)'=0. (8. 13) 

Now if (V" +3V'/r)'=0, (8.12) and (8.4) will give the 
condition aW' = 0. Since we are assuming W'*- 0, this 
implies a = 0. The condition (V" +3 V' /r)' = 0, (with 
W'* 0) implies that 

V = kor + k1/r + k2' kl * ° (ko, ku k2 = consts). 
(8.14) 

Since now a = 0, (8.12) reduces to 

B'" +8koB' = 0, (8.15) 

from which B can be found. Then ~\ ~o can be found by 
means of (8.1), (8.5), (8.8), and (8.10) with a =0. 
(See Type m of Sec. 9.) 

The other possibility of (8.13), B" =0, gives 

B=bol+b1 (bo, b1=consts), (8.16) 

and hence (8.12) reduces to 

(bo +2a)V"+(3bo -2a)V'/r=0. (8.17) 

Solutions of (8.17) are of three types, 
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(8.18) 

[co*- 0, p(bo +2a) +2(bo -20')=0, p(p2 -4)* OJ, 

(8.19) 
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(8.20) 

[The restriction p(p2 - 4) * ° in (8.19) is to exclude 
duplication of previous solutions. 1 

The corresponding solutions for ~ i, ~o may be found in 
the general summary given in Sec. 9. 

9. SUMMARY OF COMPLETE GROUPS OF TIME­
DEPENDENT SYMMETRIES ADMITTED BY 
CONSERVATIVE SYSTEMS WITH SPHERICALLY 
SYMMETRIC POTENTIALS 

Conservative systems (n > 1) are classified into six 
types according to the form of their associated spheri­
cally symmetry potentials. For each type the corre­
sponding (~o, ~i) symmetry solution is given along with 
the complete group generated by the solution. 

It is found convenient to represent the symbols of 
these groups in terms of the following operators: 

u=xjPj, U*=x"P", 

where 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

p;=a/axi , po=a/at, xO'OI. (9.5) 

Note that 
n 

U=L; Qjj, Sjj=Qjj-Qii' (9.6) 
i=l 

A group of p parameters is represented by a set of 
symbols indicated by expressions of the form 
(Xl> X2 , • •• ,Xp]. It will be noted that each complete 
symmetry group will contain the rotation, time-trans­
lation (sub)group (Si)' Pol. Each of the groups listed 
below is a complete group. 

Type I 

V= Va' 

~o=(a;l +T)X f + llot 2 + Il/ + 1l2' 

~i=(ajx})xi +(Ilol +~lll)Xi +aJxi +vci! +vf. 
Complete group = (Q"B' Q", P "j, p= (n + l)(n +3), where 
Q" = XCI U*. This is the general projective group in n + 1 
variables. (The basis of the group given above is ob­
tained by a suitable change of the original basis. ) 

Type II(a) 
V=aY +h (a >0), 

~o = (a j cosAI + b) sinAl )xj 

+ (1/2A)(C1 sin2At - C2 COS2At) +c3 , 

e = (- Aa i sinAL + Ab i COSAt )Xi Xi +d I cosAI + e i sin>.t 

+ ~(cl cos2At +c2 sin2Xt)x i + aJxi , (x = ffa). 

Complete group = [Qlj, Do Ei' F;, C j , L" L 2 , Po], 

p=(n +l)(n +3), 

D j = xi(COSAt)Po - A(sinAt)U], 
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E j = x;[(sinAt)Po + A(COSAt)U], 

F j = (COSAt)P;, G j O' (sinAt)P j, 

L, '" H(COS2At)U + (1/A)(sin2At)Po], 

L2 '" H(sin2At)U - (1/A)(cos2At)P a]. 

Type II(b) 

V=a~ +b (a <0), 

~a= raj exp(At) +bj exp(-At)jXj 

+ (1/2A)(C, exp(2At) - C2 exp( - 2At)) + C3 , 

~ j = A[aj exp(At) - b j exp( - At} ]xjx j +d; exp(At) 

+ e j exp(- At) +Hc, exp(2At) + c2 exp(- 2At)]x; 

+ tl'jxj (A=J -2a)' 

Complete group =[Qjj, H j , Ii' J i , K j , M" M 2 , Po], 

p=(n+1)(n+3), 

HiO'exp(At)xi(Po +AU), Ii O'exp(-At)Xi(Po -AU), 

J i = exp(At)P i' K i '" exp( - At)P i' 

M, = (1/21..) exp(2At)(Po + AU), 

M2 = - (1/2A) exp(- 2At)(Po - AuL 

Type III(a) 

V=kor2+k,/r2+k2 (k,*O, ko>O), 

~o=(1/fJ.)(a,sinfJ.t-a2cosfJ.t)+a3 (fJ.=J8ko ), 

~i=Ha,COSfJ.t +a2sinfJ.t)xi +flI}Xi (tl'; +a{=O). 

Complete group = [Sjj' N" N2 , po], p= [n(n -1)/2] +3, 

N, "OHcosfJ.t)U + (1/ fJ.)(sinfJ.t)Pa, 

N2 = HsinfJ.t)U - (1/ fJ.)(cosllt)Pa• 

Type III(b) 

V=1?ar2+k,/r2+k2 (k,*O, ka<O), 

~o = (1/ fJ.)[a , exp(fJ.t) +a2 exp(- fJ.t)] +a 3 (11 = ~), 

~ i = Ha, exp(fJ.t) - a2 exp(- fJ.t) lxi + tl'}Xi (a] + a{ = 0). 

Complete group = [Su, R" R2 , Pa], p= [n(n -1)/2] +3, 

R, = ~ exp(fJ.t)U + (1/ fJ.) exp(fJ.t)P a, 

R2 = -t exp(- /.Lt)U + (1/ /.L) exp(- /.Lt)Poo 

Type III(c) 

V=k,/r2+k2 (k,*O), 

~o = fJ.at
2 + /.L,t + /.L2' 

~j=(/.Lot+~/.LI)xi+a;xj (a;+a{=O). 

Complete group = [Su, f(IPo + U), fPo +~U, po], 

p=[n(n-1)/2]+30 
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Type IV 

V=aolnr +a, (aa* 0), 

~o = bot + b" 
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Complete group =[Sjj, Po, U*j, p=n(n -1}/2 +2. 

Type V 

V=cOrP+c, [co * 0, p(p2_4)*Oj, 

~o= -2a[(p -2)/(p +2)]f +b" 

~i = _ a[(p - 2)/(p +2)]xi + a;xj , aJ + Cl'~= 2aG/ i • 

Complete group = [Sij' Po, Y], p= [n(n -1)/2] +2, 

where 

Type VI 

V(r) = arbitrary (but not one of the previous types), 

~o=a, ~j=tl'Jxj, IY;+IY{=O. 

Complete group =[Sjj, po], p=[n(n-l)/2]+1 0 As noted 
above this group is a subgroup of all the previous 
groups. 

10. TYPE I NOETHER SYMMETRIES OF 
CONSERVATIVE SYSTEMS WITH SPHERICALLY 
SYMMETRIC POTENTIALS 

In Sec. 2 a Type I (time-dependent) Noether symmetry 
was defined by means of (2.8). In the present section 
we first obtain the explicit form of the Type I Noether 
symmetry equations for the conservative system defined 
by the Lagrangian (5.1). 

By use of (1.2), (1.3), (1.4), (1.6), and (5.1)itis 
found that (2.8) expands to the forms 

-t~~jKjkXjXjxk +HtKik - ~~tKjk)Xiik 

+ <KiJ~:t - V~~j + </Jjxj 
- (V, i~j + V~~t - </J) =0, (100 1) 

where the Lie derivative 

tKjk"OKik, i~i +Kjk~:i +Kij~:k' (10.2) 

Equation (10.1) must hold identically in the Xi, and 
hence this leads to the Noether symmetry equations's 

V, i~i + V~~t - </J,t =0. 

From (10.3) it follows that 

~o= ~0(t)"OB(t). 

(10.3) 

(10.4) 

(10.5) 

(10.7) 

By use of (10.7) Eqs. (10.4), (10.5), (10 06) reduce 
respectively to 

V.i~i +VB'=</J,t. 

(10.8) 

(10.9) 

(10.10) 

It is to be noted that (10.8) defines a time-dependent 
homothetic symmetry. 
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We now restrict the space to be Euclidean referred 
to rectangular coordinates (Xl) and assume a spherically 
symmetry potential V(r). In this situation (10.8) has 
the known solutioniS 

~1=tB'x/ +bj(t)xi +Ci(t) (b~ +b{=O), 

and (10.9) becomes 

~:t= -l/J,/. 

From (10.11), (10.12) there results 

and (10.13) implies 

l/J, /i -l/J,ji= bJ' - b{' =0, 

(10.11) 

(10.12) 

(10.13) 

(10.14) 

which by the skew symmetry of b~ [see (10.11)1 means 

bJ=const. (10.15) 

The solution for l/J is now found from (10.13), (10. 15) 
to be of the form 

(10.16) 

There remains (10010) to be considered. From (10.10), 
(10.11), (10.16) we obtain 

(V'/r)(xiC i +t~B') + VB' =D' -t~Bn' _x/C/n, 

(10.17) 

from which we determine B(t), Ci(t), D(t), and V(r). 
We omit the details since the calculations are similar to 
those of Secs. 5-8. We give the summary of results 
below. 

It was shown in Ref. 1, Sec 0 3, that every Type I 
Noether symmetry will be a (general) Type I symmetry 
as defined in Seco 1. Hence for a given dynamical sys­
tem this implies that any complete group of Type I 
Noether symmetries will be a (sub)group of the complete 
group of general Type I symmetries associated with the 
system o 

The solution to (10 017) result in three cases which 
we refer to as Types N-1, N-2, N-3 respectively. 

Type N-1 is identical to Type III of Sec. 9. In addi­
tion, the value of l/J is given by 

(10.18) 

where k2 is a constant appearing in the potential of Type 
III and where the function B(t) satisfies (8.15). 

For Type N-2, V(r)=a~ +b, a,b=const, 

~o=B(t), ~i=~B'Xi +ajxi +Ci(t), 

a;=consts, aj+Cl!{=O, 

where B satisfies (7.8), C i satisfies (7.9), and 
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(10.19) 

l/J=-t~Bn-x/C/'+bB+c, c=const. (10.20) 

There are three subcases corresponding to the value of 
the constant a: 

(10.21) 

(10.22) 

(a = 0) complete group = [Sii' tU*, tPo +t u, [Pi> Pi> pol. 

(10.23) 

The group (10.21) is a subgroup of Type II(a); the group 
(10.22) is a subgroup of Type I1(b); the group (10.23) is 
a subgroup of Type I. 

For Type N -3, V(r) is an arbitrary function other 
than the potentials of Types N -1 and N -2. For Type N-3 
the functions ~ /, ~o and its complete group are identical 
to those given in Type VI. In addition l/J = const. 

lG.H. Katzin and J. Levine, J. Math. Phys. 17, 1345 (1976). 
2Unless otherwise indicated, lower case Latin indices will 
have the range 1, ... , n, Greek indices will have the range 
0,1, ... , n, and the Einstein summation notation is used. A 
dot (.) indicates total time derivative dldt. A comma (,) indi­
cates partial differentiation. A prime (') indicates differen­
tiation with respect to the indicated argument. A semicolon 
(;) indicates covariant differentiation. 

3For a discussion of related integral theorems see Theorem 
4.2 of Ref. 1 and also G. H. Katzin and J. Levine, J. Math. 
Phys. (a) 15, 1460 (1974); (b) 16, 548 (1975). 

4For a discussion of linear dependence between derived inte­
grals see Ref. 3(b) and also G.H. Katzin, J. Math. Phys. 14, 
1213 (1973). 

5See Sec. 3 of Ref. 1. Note that <J; of (2.8) is related to on of 
Ref. 1, (3.11)byl/Joa=on. 

6See Ref. 3(b) for notation. 
1This result is a generalization of Corollary 6.1 of Ref. 3 (b) • 
8This may be a known result, but a proof is given for 
completeness. 

9The symbol LA denotes the Lie derivative with respect to the 
vector ~~. 

IOSee Sec. 1 for the procedure which leads to these equations. 
llRefer to L. P. Eisenhart, Continuous Groups of Transforma­

tions (Princeton U. P., Princeton, N. J., 1933), Chap. 2. 
121n this section the Einstein summation convention is not used. 
13For the familiar time independent case see L. P. Eisenhart, 

Non-Riemannian Geometry (American Mathematical Society, 
New York, 1927), Vol. m, p. 127. 

14The case n = 1 is an exception and will be considered in a 
later paper. 

151t can be shown that (5.10)-(5.13) are satisfied as a conse­
quence of (10.3)-(10.6). This is in agreement with Theorem 
3.2 of Ref. 1. 

16J. Levine and G. H. Katzin, J. Math. Phys. 14, 1886 (1973). 
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An extended Levinson's theorem * 
T. A. Osbarnt and D. Ballet 

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 
(Received 18 August 1976; revised manuscript received 15 October 1976) 

We investigate the form Levinson's theorem takes when the two-body scattering amplitude is not 
decomposed into partial waves. It is found that the theorem changes its structure in this case and is not 
merely the sum over angular momentum of the well-known partial wave results. The energy dependent 
quantity that replaces the partial wave phase shift turns out to be the trace of the two-body time delay 
operator. This extended version of the theorem remains valid for scattering by nonspherically symmetric 
potentials. 

I. INTRODUCTION 

We study an extension of Levinson's theorem for two­
particle scattering. This extension states the theorem 
as a moment property of the trace of the two- body time 
delay operator 0 In the form obtained here the theorem 
is valid for the entire- nonpartial wave decomposed­
amplitude. The resultant form of the theorem found 
here is not what one would surmise on the basis of 
simply summing the well-known partial wave statements 
in terms of phase shifts. Our derivation will be 
rigorously carried out for the class of local potentials 
that belong to L 1 " L 2. 

To begin with, we list the known features of time 
delay in two-particle potential scattering which we must 
employ in this analysis. This outline is too brief to be 
a balanced introduction to the theory of time delay con­
cepts in scattering. Such a general discussion is found 
in Ret 1, which also gives a survey of the recent 
literature on this topic. 

The scattering system studied here is characterized 
by an interacting Hamiltonian h and an asymptotic 
Hamiltonian lto. In these two Hamiltonians the center­
of- mass motion has been removed. If x is the vector 
separation of the two particles, then hand ho act on a 
Hilbert space H composed of square integrable functions 
of x. On H one defines the Mpller wave operator by the 
strong limit, 

0«) = s-lim exp(iht) exp(- ihot), (1.1) 
t .. ::j:CO 

where I is the real parameter denoting time. Each J in 
H may correspond to a possible incident wavepacket. 
The symbol ¢(I) will always represent the time depen­
dent noninteracting wavepacket associated with J. Like­
wise <jJ(t) will be the function that is the fully interacting 
wavepacket evolving in time according to h. These two 
functions are given by 

¢(I) = exp(- ihot)J, 

1J(t) = exp(- ilzt)O«)J. 

(1. 2) 

.(1. 3) 

The time delay of a scattering process is defined by 
the following construction. Let us describe a family of 
projection operators that is specified by the equations 

P(R)g(x) =g(x), x ~ R, 

=0, x'> R, 
(I. 4) 

where g is any function belonging to Ii. Thus P(R) pro­
jects any function onto a sphere of radius R measured 
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from the collision center at x = O. Given an incident 
wavepacket J and a specific value of R the time delay is 
determined by the expression, 

T(R,f) = r: dt[ (I/!(t) , P(R)I/!(t») - (¢ (t), P(R)¢ (t))l. (I, 5) 

The inner product is that of Ii. The second member of 
the integrand gives the probability that at time t the 
wavepacket ¢ (t) is inside the sphere P(R). The integral 
over t of this real quantity is just the total time ¢ (t) 
spends inside the sphere P(R). The same interpretation 
applies to the first inner product involving I/!(t). Con­
sequently, T(R,f) is the difference of time the two 
waves reside in the sphere, 

Consider now the description of the scattering prob­
lem in momentum space. The relative two-particle 
momentum will be the vector po The corresponding 
kinetic energy of relative motion will be E = p2/2J.1., 
where J.1. is the reduced mass of the two particles. The 
symbol p will denote the unit vector direction of p. We 
introduce a Hilbert spaceH. of L2 functions of p-name­
ly that space determined by the inner product 

(g,g').=J g(P)*g'(P)dP. (I. 6) 

The theory of time delay allows one to construct a fami­
ly of operators q (E, R) acting on H.. This family has 
the property2.3 

T(R,f) = J~ 00 dE ILP J J dP dP' j*(PP)(f> Iq (E, R) Ip')J(PP'), 

(I. 7) 

where P = .J2ILE. In expression (I. 7) (p I q(E, R) 11>') is 
the kernel representation of the operator q(E, R). 
Furthermore, for well- behaved potentials, the R - 00 

limit of T(R,f) exists and is associated with an opera­
tor q(E), viz., 

limT(R,f)=J
oo 

dEILPJ J dPdP'j*(Pp)(plq(E)lp'>J(PP'). 
R-oo 0 

(I. 8) 

The operator q (E) is known2 to be Simply determined 
by the 5 matrix. The full 5 matrix that acts on Ii is 
defined by the product of wave operators: 

(I. 9) 

If one takes the momentum space matrix elements of 
Eq. (1.9), one is led to a natural definition of a reduced, 
energy dependent 5 matrix, s(E), that acts on H •. The 
operator s (E) is specified by its kernel (P I s (E) I p,> , 
which is determined from 5 by the expression 
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(P I sip') =[o(E - E')/IlP](p Is(E) Ip,>, (1,10) 

for E = p2/21l. The energy dependent delta function, of 
course, indicates the physical conservation of energy in 
the scattering process. In terms of s (E) the operator 
q(E) may be expressed2,4 as, 

q(E) = - ist(E) :E s(E). (I. 11) 

It is interesting to note here that the structure of Eq. 
(I. 11) is suc h that the unitarity of s (E) implies that 
q (E) must be Hermitian, 

The feature of time delay that is vital for our analysis 
is known as the spectral property. Let r(z) = (h - z tl 
and ro(z) = (ho - ztl be the resolvents of hand ho defined 
for complex energy z. Then the spectral property is 
the relation 

21m Tr[r(E +iO) - rotE +iO)1 = tr[q(E)], (I, 12) 

In this equation Tr is the trace on Hand tr is the trace 
on H _. This relation has a simple physical interpreta­
tion. The right-hand side is just the trace of the time 
delay operator q (E) and is proportional to the total time 
delay experienced by an incident plane wave of energy 
E. The left-hand side is the change of state density 
produced by the interaction v, In fact we shall require a 
somewhat more general version of Eq. (I. 12), 
specifically 

1m Tr[r(E + i7) - ro(E + i7)] 

f~dE' (E_l)2+7)2 tr[q(E')]. 
o 

(1.13) 

The Ei appearing here are the negative of the eigenval­
ues of h. This equation is given explicitly in Ref. 5. 
The spectral property is readily obtained from Eq, 
(I. 13) by letting the imaginary parameter 7) go to zero, 
The advantage inherent in this version of the spectral 
property is that it allows one to estimate how rapidly 
1m Tr[r(E + i7) - ro (E + i7)] approaches its 7) = 0 value, 

Throughout this study we will conSistently assume 
that the potential belongs to LIn L 2, This means that 
v(x) is such that 

This class of potentials is broad enough to include 
most cases of physical interest .. However both hard 
core potentials and Coulomb potentials are excluded 
by (A). We note that the LI restriction of (A) dictates 
that the power behavior of v for 1 X 1 very large must be 
like - 1 x 1-3

-
6

, where ° is an arbitrarily small positive 
number. The L2 requirement of (A) implies that most 
severe local singularities can be - Ixl-3(2+6. 

The time delay formalism has been rigorously studied 
under assumption (A), In particular Kat06 has proved 
that the wave operators n(±) in Eq, (I, 1) exist when (A) 
holds. Jauch, Sinha, and Misra3 prove the existence of 
the limit given in Eq, (1,8). Equation (1,13) is found in 
Ref. 5. This equation, which is central to our discus­
sion, may also be easily inferred from the results of 
Jauch, Sinha, and Misra. 7 Another rigorous analysis of 
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the time delay formalism above has been recently given 
by Martin4 for slightly different assumptions on the 
potential. 

One may question whether or not it is necessary to 
treat this problem in a rigorous fashion. For example, 
is not Levinson's theorem valid so long as the potential 
falls off more rapidly than the Coulomb force? Two ob­
servations indicate why a careful and detailed analysis 
is necessary. First, as indicated at the beginning of 
this section, a simple sum of known partial wave re­
sults does not lead to the correct answer for the entire 
scattering problem. The form of the answer is sensitive 
to the order of integration and limiting processes; thus 
each change of order must be justified. A second ob­
servation emphasizes the need to specify precisely the 
behavior of the potential, Suppose one considers the 
following central potential: 

(I. 14) 

where Al and A2 are real parameters and g(r) is an 
arbitrary real function, In this case one can proveB that 
the momentum derivative of all partial wave phase 
shifts is positive for all k, so that 

f
~ d 

dk dk o,(k) > 0, alll, 
o 

(I. 15) 

By way of contrast the Levinson's theorem for partial 
wave phase shifts states 

r~ d J
o 

dk
dk

o,(k)=6 r(oO)- 6r(O)=-rrNr, (1.16) 

where N, is the number of two- body bound states with 
angular momentum l. Thus potentials of the form 1'1 

violate the theorem for every partial wave. Sufficient 
conditions for the existence of the partial wave form of 
Levinson's theorem are that the moments 

Ali=jo~dYrilv(1')I, i=1,2, (I. 17) 

be finite. 9 By this criteria we see that potentials like 
VI fall off too slowly in l' to lead to a reasonable phase 
shift behavior. Also in the extended case, the potential 
VI would be excluded by condition (A). 

The proof we shall give of Our extended Levinson's 
theorem is based on two elements. One is the spectral 
property Eq. (1.13). The second is the analytic behavior 
of Tr[r(z) - 1'o(z)] in the complex z plane. Section IT of 
this paper gives a rigorous proof of the various aspects 
of the analytic behavior we need. Section III combines 
this analytic behavior with Eq. (I. 13) to complete the 
proof. In Sec, IV we give a general discussion of these 
results and also describe a second approach to the 
problem that is based on the asymptotic completeness 
of the wave operators. A quick, albeit nonrigorous, 
understanding of our results may be obtained by just 
reading Sec. IV, 

II. ANALYTIC PROPERTIES OF Tr [r(z) -ro (z)j 

This section is devoted to the study of Tr[1'(z) - 1'o(z)1, 
We always assume condition (A) is obeyed by the poten­
tial v. One very useful consequence of (A) is that it 
implies that our potential v is in the Rollnik class that 
Simonlo has extensively studied, viz" 
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ford d Iv(x)llv(y)1 =B <00 px y Ix-yl2 y. 
(II. 1) 

Our analysis will make extensive use of the well­
known operators ro(z), Vro(z), and A(z). These opera­
tors all act on H and depend parametrically on z. They 
are conveniently defined by their kernel representations 
in coordinate space: 

(x Ira (z) I y) = 2J.i. eXPI(ik I x ~ y I ) , 
1T x-y (II. 2) 

(xl Vro(z) Iy) = 2J.i. v (x) exp~ik IX~ y I) , 
1T x- y (II. 3) 

(xIA(z) I y) =.1!:.. vl/2(X) exp(ik I x- y I) I v(y)II/2 
21T Ix-yl ' 

(II. 4) 

where k=J2J.i.z, v1/2(x) = Iv(x)II/2 sgn[V(x)], andA(z) 
= VI/2ro (z) I VII /2. The set of points in the z plane a 
distance Ii or greater from positive real axis we will 
denote by ITo. The symbol ITo will denote the cut z-plane 
obtained by letting Ii - O. For Z e ITo or ITo then k clearly 
belongs to the upper- half complex k plane. 

We shall use three different norms to describe opera­
tors on H. First, the usual operator norm will be 
represented by the symbol 11·11. Second, we define the 
Schmidt norm of an operator A on H by 

(II. 5) 

where A(x, y) is the kernel generated by A. The class 
of all operators on H with finite Schmidt norm is called 
the Schmidt class. The class is denoted by 82. Our 
third norm is the trace norm defined by 

(II. 6) 

where A= (AtA)I/2. When A has finite IIAllt, it belongs 
to the trace class of operators on H. The trace class is 
labeled 81' When A e8l> then the operator has a well­
defined trace given by the sum 

00 

TrA=:0 (¢I,A¢I)' 
I 

Of course, this sum is independent of the basis set 

(II. 7) 

{¢I}' Our analysis will frequently use the following gen­
eral properties of the trace and the Schmidt operator. 

(i) A r::: 81 if and only if it can be written as the product 
A=BC, where Be82 and Ce82. Furthermore, IIAlll 
'" II BII 211 c[12' 

(ii) If B e82' then Bt e82. 

(iii) If Be82 and Ce82' then TrBC=TrCB. 

(iv) If Be B I and A has finite norm IIAII, then BA e8 1 

and AB E:81 and IIBAIII '" IIAIIIIBIII' 

(v) If AE:8 1, then ITrAI "'L~ I (¢I,A¢;)I "'IIAll l. 

(vi) If Band C are Schmidt class, then TrBC has the 
representation 

TrBC=J J dxdyB(y,x)C(x,y), 

where B(y,x) and C(x,y) are the L2 kernels generated 
by the operators Band C. 

Shattenll gives proofs of all these statements. 
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For later convenience let us collect here some well­
known estimates for norms of the operators occurring 
in this problem. We shall show that the operators 
V1/ 2ro(z), I VI 1 / 2r o(z), and ro(z)V are Schmidt class 
for all Z e ITo. Consider the first operator in the list 
above. If we employ the integral form of the Schmidt 
norm to compute II Vl/2ro (z)1I2, we have 

11
1/2 ()II -.1!:..(ffd d IV(X)leXP(-2ImkIX- ill)112 

V roz 2- 21T x Y Ix-yl2 

( B) 1/2 
=J.i.~ • (II. 8) 

The same expression holds for the norm II I VI 1/2ro(z)1I 2. 
Similar conSiderations show that 

(II. 9) 

Now let us examine the operator A(z) given in Eq. 
(II.4). This operator is Schmidt class in the entire 
z plane ITo 

IIA(z) 112 

=.1!:..( f/dxdylv(X)II(v(y)1 eXP(_2ImkIX_ YI»)1/2 
21T } J~ I x- Y 12 

(II. 10) 

where Br is the constant entering the Rollnik bound on 
11. Another useful bound pertains to A (z)2. One may 
show, using the Riemann-Lebesque lemma, that 

lim IIA(d 112 = O. (II. 11) 
IRekl- ro 

The convergence is uniform in Imk'" O. Equation (II. 11) 
means that there exists a finite ky such that for all 
I Rek I > ky then IIA(z)2112 < t The number ky depends 
only on v. We will not write out the proof of Eq. (11.11) 
and the estimate for IIA(z)2112. Theorem I. 23 of Simon's 
book is very nearly result (II. 11). The difference is that 
Simon requires k to be real. It is a simple modification 
of Simon's proof to extend it to complex k in the upper 
half plane and to show that the convergence is uniform 
in Imk. 

Le III lJ1a 1: Let the potential 11 satisfy (A). For all 
positive integers n, the operators ro (z)[ Vro (z)]" are 
trace class for z E: ITo. The function Tr{ro(z)[Vro(z)]"} 
is an analytic function of z in the ITo domain. Further­
more, the order of the trace operation and d/ dz may be 
freely interchanged in ITo. 

Proof: We first establish ro[Vro]" is trace class. Con­
sider n = 10 This operator may be written as the product 
of rol V1 1/ 2 and V 1 / 2r o, each of which in Schmidt class in 
ITo. Thus employing property (i) of the trace gives 

(11.12) 

Estimate (11.8) tells us the right- hand side is finite. 
For n> 1 we may write 

(11.13) 

In obtaining (II. 13) we have used trace property (iv) 
together with the general inequality IIAII '" IIAlb Esti­
mates (11.8) and (11.9) then imply that the right-hand 
side of (II. 13) is finite. 
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Next consider the analyticity of Tr{ro(z)[Vro(z)]n}. 
Set n == 1. As noted above the operator is the product of 
two Schmidt operators ro 1 V1 1

/
2 and VI/2rO in the domain 

ITc;. Invoking property (vi) of the trace for the operator 
ro Vro gives us 

(
1J.)2 If v (x) . I I Tr(roVro)= 21T dxdy ly-xl2 exp(2zk y-x ). 

(II. 14) 

For values of k restricted by the condition Imk ~ 0' ~ 0 
the expression 

iv<x)1 exp(-20'ly-xl)/ly-xI 2 

bounds the integrand above uniformly in k. This bound 
is absolutely integrable with respect to (x, y). Thus the 
integral in Eq. (II. 14) defines an analytic function of k 
and thus z. This argument may be extended to show 
Tr{ro[Vro ]n} is analytic for all nand z E ITa. 

Finally let us examine the differential properties of 
Tr[Vro(z)]n. The trace diverges for n= 1, but is well 
defined for n ~ 2. Consider the case n = 2. If we examine 
the integral representation of Tr[ Vro (z)]2, the Rollnik 
condition (II. 1) guarantees that the integral is uniformly 
convergent in ITo. Thus we can differentiate under the 
integral to obtain 

:z Tr[Vro(z)]2 =(~)j JaXdY 2i~~(~)~~Y) exp(2ik Iy - xl). 

(11.15) 

One then observes that the Hilbert identity for ro(z), 

ro(zl) - r O(z2) = (Zl- z2)rO(zl)rO(z2), (11.16) 

implies the operator relation 

dro(z) _ ()2 
dz -ro z • (11.17) 

The kernel form of this last identity is 

ilJ. exp(ik Ix- yl)= ...!:!:.-fdS exp[ik(lx- sl + Is- Yill. 
k 21T 1 x - S lis - y 1 

(II. 18) 

Inserting Eq. (II. 18) into the right-hand side of (IT. 15) 
gives 

d 
dz Tr[ Vro(z)]2 = 2 Trh (z)[Vro (z)j2} 

= Tr(:z [vro(z)J2). (II. 19) 

These arguments extend to the n> 2 cases. There Eq. 
(II. 19) becomes 

d 
dz Tr[Vro (z)]n = n Tr{ro (z)[Vro (z) ]n}. (II. 20) 

This completes the demonstration of Lemma 1. 

Lemma 2: There exist finite kr and k i such that for 
all 1 z 1 > (k; + ki)/21J. the Born series expansion 

Tr[r(z) - ro(z)] = '0 (-l) nTr{ro(z)[Vro(z)]n} 
11=1 

(II. 21) 

is valid. The series is uniformly convergent in z. 

Proof: As usual, set z = k2/21J. and choose z so that 
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it has values Imk > k i = IJ.Bz/21T. For z so restricted, 
the operator Born expansion 

., 
r(z) - ro(z) = '0 (- l)'lyo(z)[Vro(z)]n (II. 22) 

11=1 

is valid. It is easy to see that the series (II. 22) is con­
vergent in operator norm for Imk > k j • A given term in 
this series has norm 

IIro(z )[Vro (z) N "" II ro (z) 1111 Vro (z) II n 

"" (21J./k~) II Vro(z) Ilq. (1123) 

For the restricted values of k, II Vro(z)11z is less than 
one. The sum of terms (II. 23) with respect to n then 
converges absolutely. 

Since we know r(z) - ro(z) is trace class, we can take 
the trace of Eq. (II. 22) to obtain 

Tr[r(z)-ro(z)l=Tr{E (_l)nro (z)[vro(z)]n} (II. 24) 

for Imk> k j • The series on the right of Eq. (II. 24) 
suggests we consider the related series 

"" '0 (-l)nTrh(z)[Vro(z)]n}. (II. 25) 
11=1 

Introducing the definition of the trace into this expres­
sion gives the double sum 

'0 '0 (_l)n(¢j, ro(z)[Vro(Z)]n¢i)' (II. 26) 
n j 

It is easy to demonstrate that this double series is ab­
solutely convergent. Employing the general trace 
identity (v), we have 

"" 
'0 I (<Pi> ro (z)[Vro(z)]n<pj) I "" Ilro (z)[ Vro (z)]n III 
i 

"" Ilro(z) 1111 Vro(z)llq. (II. 27) 

As in Eq. (II. 23), when Imk > k j the sum over n of the 
terms on the right of Eq. (II. 27) converge uniformly in 
k. This shows that the double series in expression 
(II. 26) is absolutely convergent. Thus the order of 
summation may be changed. And so, Eq. (II. 24) may be 
written in the form given by Eq. (II. 21). 

Let us consider the validity of Eq. (It 21) in a differ­
ent region of z. Suppose 1 Rek 1 > k r • The trace norm ap­
pearing in Eq. (II. 27) may be estimated by 

IIro(z)[Vro(z)]nll l 

= IIro(z) I VI1! 2A(z)n-I v1!2ro (z) III 

"" IIro(z) I VII/211~IIA(z)211~n-1)/2, n=odd, 

"" Ilro(z)1 VII/211~ IIA(z) 1121IA(z)211~n-2)!2, n=even. 

(IL 28) 

Bounds given in Eqs. (II. 9), (11.11), and (II. 12) show 
that the sum over n of Ilro(z)[Vro(z)]nlb converge. Again, 
the double sum in Eq. (II. 26) is absolutely convergent, 
and formula (II. 21) is valid for all 1 Rek 1 > k r• In fact 
the domain specified by 1 z 1 ~ (k~ + k~)/21J. lies in the 
union of 1 Rek 1 > kr and 1 Imk 1 > k i • So Lemma 2 is 
proved. 

Lemma 3: For all integers n~ 2, Tr[Vro(z)]n satisfies 
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lim Tr[Vro(z)]n= 0 
IR.kl~~ 

(II. 29) 

for all Imk?- O. 

Proof; We note first that for n?- 2 

Tr[Vro(z )]n = Tr I V 11/ 2[V1/2ro (Z) I vll/2]n~1 Vi /2 ro (z). 

(II. 30) 

For Z E. no the operators A(z) and Vl/2 ro (z) are Schmidt 
class and I VII /2 is bounded; thus we may use trace 
property (iii) to obtain 

(II. 31) 

For n?- 4 we have the bounds 

ITr[Vro(z)]nl.,,; IIA2(Z)I!~/2, n=even, 

.,,; I!A(z)I!21IA2(z)ll~n~1l/2, n=odd. (II. 32) 

Applying result (II. 11) gives the statement (II. 29) in the 
lemma. 

There remains only the cases n = 2,3 to prove. Con­
sider n = 2. Using the integral representation of the 
trace, we have 

Tr[ Vro(z)]2 =(~)J !dXdY V(X)V(Y~ :~P;7;k I x- y I) . 

(It 33) 

Because of the condition (II. 1) the nonoscillatory part of 
the integrand 

v (x)v(y) \x- yl-l exp(- 2 Imk Ix- y I) 

is L2 over (x, y). Thus we can apply the Riemann­
Lebesgue lemma to conclude that Tr[Vro(z)]2 vanishes 
as I Rek I - 00. A similar argument works for 
Tr[V1"o(z)P. 

Lemrna 4: For all z E TIo the value of Tr[ro(z)Vro(z)] 
is given by 

Tr[ro(z)Vr(z)] =; (~t2 Jz /dXV(X). (II. 34) 

Proof; For z EO TI o, 1"o(z)VYo(z) is the product of two 
Schmidt operators, so by trace property (vi), 

T [ ( )V ( )] - (J!:..)Jfa d v (x) exp(2ik I X- Y I). r Yo z Yo Z - 2 Y x I 12 Tf X- Y 

(11.35) 

For all Iml? > 0 the double integral 

ffd dx Iv(x)1 exp(- 2Imklx-yl) 
y Ix-yl2 

exists since v EO Ll. Thus, employing the Fubini theorem 
on interchange of integration, we can write (II. 35) in 
the form of an iterated integral 

(11-)2/ exp(2ikl1]l) ( 
Tr[Yo(z)Vro(z)]= 2Tf d11 11112 J dxv(x), 

(II. 36) 

where we have set 1) = x - y. The integral is trivial and 
gives Eq. (II.34). So far the equality (II. 34) is estab­
lished for z EO TIo. However, the right- hand side of 
(II. 34) has TIo as its natural domain of analyticity. Thus 
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(II. 34) represents the analytic extension of 
Tr[ro(z)VYo(z)] to the domain TIo. 

III. LEVINSON'S THEOREM 

In this section we combine the analytic properties of 
Tr[r(z) - ro(z)] established in the previous section with the 
known features of time delay outlined in the Introduction 
to complete our derivation of Levinson's theorem. Our 
proof will require one additional technical assumption 
about time delay. We assume the existence of the 
following integral 

/

00 \ 2( )1/2 - I o dE tr[q(E)] + -; 1 ~, (B) 

where 15 is defined by 

v=J dxv(x), Ivl <B1• (III. 1) 

Ideally assumption (B) should be verified directly from 
the potential property (A). But it would take us far 
afield to establish (B) in this manner. There are strong 
physical arguments for believing (B), that will be dis­
cussed in the next section. 

Consider the function Q(z) defined by 

Q(z) = Tr[Y(z) - ro(z) + Yo(z) VYo(zll. (III. 2) 

We have established that this function is analytic in TIo. 
Bound states of the Hamiltonian H appear as simple 
poles of the resolvent 1"(z), with residues that are pro­
jection operators onto the bound state eigenfunction 
space. Physically interesting potentials will always 
have negative bound state energies. So our formalism 
will always imply this situation. 

Suppose Zo is some point in TIo and Co some small 
circular contour about zoo Then the Cauchy-Coursat 
theorem tells one that the integral 

¢ dzQ(z)=O. (III. 3) 
Co 

Our version of Levinson's theorem is based on this 
identity. We open up the contour Co as indicated in Fig. 
1. Now Co may be replaced by the contour segments 
C r , Ct;, and C/. The contours C j , which are P in num­
ber, encircle the P distinct eigenvalues of the Hamil­
tonian h. Path Co is symmetric about the real axis, 
always a distance 0 away from the positive real axis 
and ending where the real value of z is equal to r. The 
curve Cr is a circle centered about the z plane origin, 
having a radius equal to (r2 + 02)1/20 

Because of the behavior of the exact resolvent r(z) 
in the neighborhood of the eigenfunctions of h, one has 

z plane 

r 

FIG. 1. The complex energy plane. 
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p 

'0 ~ dz Q(z) = 271iN, 
1=1 CI 

(III. 4) 

where N is the total number of bound states of h count­
ing degeneracy. Thus the integral (111.3) becomes 

(III. 5) 

We will now evaluate the double limit 

(III. 6) 

Consider the Co integral first. It may be expanded as 

r dz Q(z) = 2i 1. r dAlm[Q(;\ + iii)] + iii J Co 0 

x f r/2 d8 exp(i8)Q[ Ii exp(i8)]. 
3r/2 

Because of the presumption that the Hamiltonian h has 
no zero energy eigenstates the second integral gives 
zero in the Ii - ° limit. Let us study the first integral 
on the right-hand side of Eq. (III.7). We shall prove 

Lemma 5: For potentials such that (A) and (B) are 
valid then 

lim lim2fr dAlmQ(;\ +ili) 
r-"" 6-0 0 

j
"" [ 2(1l)3/2 V ] = 0 dE tr[q(E)] +:;;: 2" ..fE (III. 8) 

Proof: Define Dl(r, Ii) and D2(r, Ii) by the expressions 

1 Jr r"" Ii 
D1(r,Ii)=:;;: 0 d;\ )0 dE (;\_E)2+ li2 

[ 
2( )3/2 V J x tr[q(E)] +:;;: i ..fE' (III. 9) 

f r 1 
x 0 d;\ReV;\+ili' (III. 10) 

where Co = (2/71){1l/2)3/ 2V• Equations (I. 13), (11.34) 
together with (III. 2) give 

2 jr d;\lmQ(;\+ili) 
o 

=D1(r,Ii)+D2(r,Ii)+jr d;\{t 
o I=t 

(III. 11) 

Since EI are the magnitudes of the negative energy 
eigenvalues and thus positive, it is obvious that the last 
integral vanishes when the double limit is taken. So we 
need only consider the contribution from Dt and D2• 

Consider D t • Set 

g(E) = tr[q(E)] + - l!:. -2 ( )3 /2 V 
71 2 ..fE (III. 12) 

(III. 13) 
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Since (B) states that g(E) is L t and that [(;\ - E)2 + li2]-1 
is Ll in ;\ for all Ii> 0, the Fubini theorem allows us to 
change the order of integrations, 

f "" (r lig(E) 
Dt(r,Ii)= 0 dE J

o 
d;\71[(;\_E)2+li2]' (III. 14) 

The integral over d;\ is elementary and gives us 

D (r Ii)-j"" dEg(E) (tan-t r- E + tan-IE::) (III. 15) 
t,-o 71 Ii Ii' 

Now the E-dependent integrand is Lt for all Ii '" ° and 
uniformly bounded by Ig(E) I. The Lebesgue dominated 
convergence theorem permits us to pass the Ii - ° limit 
through the integral to obtain, 

Dt(r,O)=;:"" dEg~) lo~~(tan-lr~E +tan-t~). 

Using 

lim tan-t(E/ Ii) = 71/2, 
5-0 

lim tan-t[(r - E)/Ii] ={~2/2 
6-0 71 , 

all E> 0, 

all E < r, 
all E> r, 

(III. 16) 

(III. 17) 

we see that tan-t functions give us a step function that 
becomes zero when E > r. Thus 

and 

lim limDI (r, Ii) = fo"" dE g(E). 
r-"" 6-0 

A parallel analysis leads one to conclude 

limlimD2(r, 1i)=0. 

Thus Lemma 5 is proved. 

(III. 18) 

(III. 19) 

(III. 20) 

The one remaining integral in relation (III. 5) that we 
have not yet studied is the Cr term. For this integral 
we have the result: 

Lemma 6: For potentials satisfying (A), then 

lim f dz Q(z) = 0. (III. 21) 
r-"" Cr 

Proof: Choose r > (k~ + k~)/21l. Lemma 2 states that 
the Born series expansion of Q(z) is uniformly conver­
gent for Z E: Cr. Using Eq. (n. 21) to expand Q(z), we can 
write our integral as 

"" 
= '0 (-l)nJ dzTrh(z)[Vro(z)]n}. (III. 22) 

n=2 Cr 

Equation (n. 20) allows us to transform the integrand 
into an exact differential, 

(III. 23) 

Estimates (11.32) imply that this series is uniformly 
convergent in r. Thus the r - 00 limit may be passed 
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through the sum. Lemma 3 shows us each term in Eq. 
(III. 8) vanishes in the r - cO limit. Thus Eq. (III. 21) is 
demonstrated. 

Combining the conclusions for both Lemmas 5 and 6 
together with Eq. (III. 6) gives us: 

Theorem: For potentials satisfying condition (A) and 
the trace of the time delay satisfying (B), then, the 
following relation holds: 

f ~ [ 2 3/2 - ] 
o dE tr[q(E)]+;{~) ~ =-2rrN. (III. 24) 

The positive integer N is the total number of negative 
energy eigenfunctions of the Hamiltonian h. It is pre­
sumed that h has no zero energy resonances or bound 
states and is free of positive energy bound states. 

Under differing circumstances the theorem obtained 
here has been discussed previously by Buslaev. 12 In 
Buslaev's version the function tr[q(E) 1 is replaced by its 
logarithmic S- matrix derivative form given in Eq. 
(1. 11). In the form found by Buslaev there is no recogni­
tion that the theorem is a moment property that con­
strains the energy integral of the time delay. By way of 
contrast, our basic starting point, the spectral property 
relation (I. 13), is derived in Ref. 5 using just the def­
inition of the time delay operator. No recognition or 
use of the S matrix is needed in obtaining Eq. (1.13). 

From a technical perspective the theorem given above 
is established here for a larger class of potentials than 
Buslaev's analysis permits. Buslaev requires that the 
potential V(r) be infinitely many times differentiable. 
Furthermore, both the potential and all of its deriva­
tives are required to decrease to zero in the limit I r I 
- cO more rapidly than any power of I r I -1. 

IV. ASYMPTOTIC COMPLETENESS AND 
LEVINSON'S THEOREM 

In this section we are concerned with two aspects of 
our Levinson's theorem. First, we establish how one 
may derive the result starting from the completeness 
of the scattering states. Secondly, we give a physical 
interpretation and explanation of our result. Our aim 
in this section is to provide some insight into the re­
sult obtained above, rather than to supply additional 
rigorous proofs. Thus, we will use nonrigorous argu­
ments which we believe convincing, even though these 
arguments tend to lose sight of the exact conditions on 
the potential for which the analysis is valid. 

The derivation given above of Levinson's theorem is 
based on the spectral property of time delay combined 
with the analytic features of Tr[r(z) - ro(z)]. However, 
in the literature there exists another method of del' iva- I 

tion. Jauch13 established that the usual partial wave 
form of Levinson's theorem can be obtained from 
asymptotic completeness and certain properties of the 
wave operator, n(+). 

We adopt Jauch's argument to the case at hand­
namely the full amplitude. The mathematical statement 
of asymptotic completeness is 

n(+)tn(+) =1, 

n(+)n(+)t =1- p. 

(N.1) 

(N.2) 

Here 1 is the identity operator in Ii and P is the projec­
tion operator onto the subspace spanned by all eigen­
functions of h. We note that TrP=N. 

The wave operator possesses a well-known represen­
tation in terms of the t matrix. Suppose t(z) is the 
operator satisfying the Lippmann-Schwinger equation 

(N.3) 

The wave operator may be expanded13 about the identity, 

n(+) =1- K, (N.4) 

where K is determined by the generalized function 

( IKI "= (pll(P,2/2Jl + iO)lp,) • 
P PI p2/2Jl-p,2/2Jl-iO 

(IV. 5) 

If one forms the commutator [Kt,Kl, then Eqs. (N.1) 
and (N. 2) imply, 

Levinson's theorem is obtained by taking the trace of 
Eq. (IV. 6). 

On aspect of this approach requires care. The kernel 
representation of K is a generalized function. As a con­
sequence the trace needs to be computed through a 
limiting process. It is convenient to introduce a two 
parameter family of operators on Ii., T(E, E'), defined 
by 

!.fi I T(E, E') Ip') =j(E)(Ep I f(E +iO) IE'P')j(E'), (IV. 7) 

where I EP) stands for the element I PM and P = Y2JlE. 
The factor j(E) = (2Jl 3E)I14. One can easily express the 
reduced S matrix, seE), in terms of T(E, E), viz., 

seE) =c - 21TiT(E, E). (IV. 8) 

Here c is the identity on Ii .. 

Construct now the trace of [Kt, KJ. Combining Eqs. 
(IV. 7) and (IV. 5) and the fact that dp =j2(E) dE dP, we 
have 

·(E)(Ep·I[Kt K1IE'p·)·(E')-- t:zE lp· (PlI T(Eh!iJjP)*(PlI T(El,E')IP)-(PIT(E,Ell IPl)(PIT(E',EI) IP1)* (IV. 9) 
] ,J] - J { 1 ( 1 (E _ El - iO)(E

I 
- E' - iO) 

.-------------------------------
Carry out the dP integration of both sides of Eq. (IV. 9) I jdP.j(E)(EP I [Et, Kli E'Mj(E') 
and use the adjoint relation ~ t 1_ hr t( )] __ r IE tr[T(EbE)T(E1,E')~T(E,EilT E',E 1 

(pi Tt(Ej,E)IPu=(pIT(Ej,E)Ip>*. (IV. 10) - J o ( 1 (E-E1 -iO)(E1 -E'-iO) 

The result is (IV. 11) 
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Here, as before, tr denotes the trace on H •. The 
diagonal element of Eq. (N.ll) is obtained by letting 
E' - E. To carry out this limit let us recall a result 
established by Jauch. 13 Let feE, E') and geE, E') be com­
plex valued functions which are differentiable in their 
(real) arguments. Then the following formula is valid: 

l' /.0 dE f(E,El)g(ElzE')-g(E,Et)f(El,E' ) 
E~~ 0 1 (E - El - iO)(E I - E' - iO) 

. r d d J =-lrr teE, E) dE gee, E) - geE, E) dE fee, E) • (IV. 12) 

If we apply (IV. 12) to Eq. (N.ll) and integrate with 
respect to dE, then the left-hand side of Eq. (N. 12) is 
Tr[Kt, K]. Thus employing Eq. (N. 6) gives 

N = - irr /.0 dE tr [Tt(E, E) d~ T(E, E) - T(E, E) d~ Tt(E, El} 

(IV. 13) 

This is Levinson's theorem expressed in terms of the 
scattering amplitudes. It may be restated in terms of 
the reduced S matrices, seE), by utilizing Eq. (IV. 8). 
Simple algebra leads to 

N = ~rr ;:"' dE{ tr &s t (E) d~ s (E) - i d~iE) s (E)] 

+ tr ~ :e [st (E) - S(E)J]} 

= 4~ ;:~ dE {- 2 tr[q(E)J + i d~ tr[st (E) - S(E)]}. 

(N.14) 

What remains is to understand the behavior of the term 
tr[st(E)- s(E)J. Let us define t2 (z) by 

t2(z)=t(z)-V. (N.15) 

Replace t(E'+iO) in Eq. (N.7) by t2(E'+iO) and denote 
the resultant two-parameter operator by T2(E, E'). 
Using Eq. (IV. 15) and Eq. ( N. 8), one finds 

d 4(11)3 / 2 V d i dE tr[st(E) - s (E) J = - -; 2" IE - 8rr dE Re trh(E, E)l. 

(N.16) 

Thus Eq. (N.14) now reduces to, 

_ 2rrN= loO dE[tr[q(E)] + ;(~y/2 ~] 

+ 4rr R e tr[ 1'2 (E, E) ]1 ~:;. (IV. 17) 

This is Levinson's theorem when the last term is zero. 
The fact that the zero energy on-shell t-matrix is pro­
portional to the scattering length means that tr[ 1'2 (E, E) J 
behaves like a const x IE for small E. So, we have 
tr[ 1'2(0,0)] = O. 

All that is left to consider is the high energy limit of 
Re tr[ T2(E, E)]. Under assumption (A) on the potential, 
it is well known14 that 

I (p I t(P2/211 + iO) Ip) - (p I Vip) 1= I5(P). (IV. 18) 

and I5(P) - 0 as p - 00. Furthermore, the symmetry 
properties of the resolvent r(z) under the transforma­
tion p - - P imply that the forward scattering amplitude 
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(N.19) 

satisfies 

f*(P) = f(- pl. 

Of course, only the forward scattering amplitude is 
needed to compute Retr[1'2(E,E)]. The symmetry rela­
tion (IV. 20) means Re(j(p)] is an even function of P. 
Thus, at infinity Re(j(p)] = o(p-2n). Now the estimate 
(IV. 18) forces n to be a positive integer. Thus the slow­
est behavior possible for Re(j(p)J at infinity is O(p-2). 
This observation combined with the definition (N. 7) of 
T(E,E') implies Retr[T2(E,E)]=O(E-1/2). Thus the high 
energy surface term in Eq. (N. 17) vanishes. 

The details of this derivation indicate why our the­
orem must have the term v present. Consider the high 
energy behavior of tr[q(E)J. For sufficiently high en­
ergies we expect that the t matrix will be dominated 
by the Born term. If we replace the t matrix by v in the 
expression for the S matrix, then the first order con­
tribution to tr[q(E)J in powers of potential is 

2(11)3/
2 

V tr[q(E)J - - -; 2" ..fE • (IV. 21) 

For this reason tr[q (E) J is not integrable at infinity with 
respect to E. The Tr[ro(z) Vro(z)] term in the integrand 
of the Levinson's theorem exactly cancels this singular 
behavior of tr[q (E) J. With this singularity subtracted 
away it is now very reasonable to expect that condition 
(B) on this time delay is valid. 

Since the form of our Levinson's theorem differs 
from the usual partial wave form, it is intructive to 
see how the customary result can emerge from the 
analysis given. This is most easily understood by 
starting from Eq. (N.14). When the potential v is 
spherically symmetric, then the angular momentum 
operator L=xxp commutes with hand ho, so that the 
reduced S matrix and the time delay operator may be 
represented by 

A I I A .;-. 2l + 1 A A (p see) p~ = t'o ~ s,(E)P,(p. p'), (IV. 22) 

AliA f,2l+1 A A 

(p q(E) p~ = '!:o ~- q,(E)P/(p· P'). (IV. 23) 

Here the S matrix admits the usual phase-shift 
parametrization, s / (E) = exp[2i 0, (E) J. The correspond­
ing formula for the time delay is q,(E)=2(d/dE)I5/(E). 

Let us compute the contribution of a single partial 
wave amplitude to Eq. (IV. 14). Each bound state has a 
2l + 1 degeneracy, so let N/ denote the number of bound 
states with different energy. Upon substituting Eqs. 
(N. 22) and (IV. 23) into Eq. (IV. 14) we have 

1/00 

{d d } N/ = - 4rr 0 dE 4 dE 15, (E) - 8rr dE sin[2l5, (E) 1 • 

(N.24) 

The customary phase shift normalization is to set 0,(00) 
= O. Thus Eq. (N. 24) becomes 

rrN, = 0/(0) - 2rr sin[20/(0)J (N.25) 

and has the solution 
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(IV. 26) 

This is the partial wave Levinson's theorem. For a 
single partial wave the terms tr[q (E)] and (d/ dE) 
xtr(st(E) - s(E)) are individually integrable. For the 
full amplitude case these terms are separately diver­
gent, but when added together their divergences cancel. 
The mechanism for changing the behavior of these 
terms is the infinite sum over partial waves, 

We close this section with some general comments 
about the results found here. One interesting aspect of 
statement (III. 24) of Levinson's theorem, is that it 
relates two observables of the scattering system. Both 
the time delay tr[q(E)] and the number of bound states 
N are in principle observable features of the scattering 
system. One nonintuitive result of the theorem con­
cerns the behavior of time delay when resonances are 
present. Consider the case when at some energy, En 
there is a very long-lived resonance. Suppose the po­
tential is slightly perturbed so that the lifetime of the 
resonance increases but the number of bound states is 
unaltered. Then Eq. (III. 24) tells us that at energies 
away from the resonance there must be a correspond­
ing decrease in the time delay since the energy integral 
is invariant. 

A second advantage of this theorem is that it is more 
general than the usual Levinson's theorem in that it re­
mains valid for scattering from a nonspherically sym­
metric potential. Furthermore, the general approach 
given here may obtain Levinson's theorems for the few­
body scattering problem. We note that the spectral 
property of time delay has already been established for 
the three-body problem. 5 

So far physical applications of this theorem have not 
been investigated. However, one application is straight­
forward. The theorem may be used to predict the high 
temperature behavior of the second virial coefficient 
for a quantum gas. This will be reported on elsewhere. 
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The purpose of this paper is to present the spin-frame independent variables in general relativity. The work 
is based on the fact that the tetrad Newman-Penrose form of Einstein's equations can be put into the 
Yang-Mills form with the group SL(2,<r) as the gauge group. The set of Mandelstam path-dependent 
dynamical variables for such a theory forms spin-frame independent variables in general relativity. The 
empty-space field equations for spin-frame independent variables have formally the same form as Maxwell's 
equations. In addition, the full set of field equations for spin-frame independent variables have formally the 
same form as the equations of nonlinear electrodynamics. 

1. INTRODUCTION 

In the formulation of the gravitational canonical 
formalism or in any effort toward the quantization of 
this field the main complication is related to the con­
struction of coordinate independent variables. The 
situation in some respects is Similar to the one which 
we encounter in electrodynamics when we try to formu­
late the canonical formalism and apply it to the quanti­
zation procedure. Due to the gauge invariance of the 
electromagnetic field any attempt to construct Poisson 
brackets or equal-time commutators for gauge depen­
dent quantities in a covariant form and in full agree­
ment with the equations of motion fails. The well known 
solution of the problem is to choose one particular 
gauge, to form Feynman diagrams, and at the end to 
prove that all phySical quantities like the S matrix are 
gauge invariant. Due to the renormalization procedure 
in quantum electrodynamics the last point was not easy 
to prove. 1 Another possible way of proceeding is to 
formulate a gauge independent canonical formalism and 
to quantize the field in a gauge independent way. Such 
a gauge independent quantization of the electromagnetic 
field has been known for a long time and is due to 
Mandelstam.2 

As a result of the formal Similarities between the 
gravitational field and the electromagnetic field, the 
literature contains several attempts to build a canonical 
formalism and to quantize the gravitational field using 
the methods of claSSical and quantum electrodynamics, 3 

The analogies between the Maxwell and Einstein fields 
are brought out in a striking way by the spinor formal­
ism. The source free Maxwell equations and the Bianchi 
identities become, respectively, 

aACq, AB = 0, 

(JAEIJIABCD=O. 

(1.1) 

(1. 2) 

A careful investigation of the algebraic structure and 
of the nonlinearity of the gravitational field indicates a 
possible way of gaining a better understanding of gen­
eral relativity in the context of the Yang-Mills field. 
This similarity is based on the fact that in gravitation, 
the non-Abelian internal gauge group [SU(2) in the 
original work of Yang and Mills4] is the non-Abelian 
group of coordinate transformation. As a result, in 
almost all papers related to the quantization of the 
Yang-Mills field we can find a paragraph devoted en-
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tirely to the gravitational field. 5-8 

In all these papers the difficult problem of quantizing 
the Yang-Mills field is attacked by different techniques 
and methods. Nevertheless, one common result 
emerges: the Feynman diagrams for the Yang-Mills 
field (obtained for the first time by Feynman himself 
in his pioneer work on this subject). 5 If we compare the 
paragraphs related to the gravitational field we discover 
that each author uses different aspects of gravitational 
field for the quantization after Yang-MillS. Mandelstam 
used the path dependent Riemanian tensor R~OI.B(X, p), 7 

and Fradkin and Tyutin used the Chrystofiel symbol r~~ 
and gBg/l.V as basic variables. 8 In fact, it is very diffi­
cult to compare results due to divergences and to the 
different gauges used. This situation is due to one basic 
question. How does one relate the gravitational field to 
the Yang-Mills field in a compact and general form? 

Recently, Carmeli9 has shown the relationship be­
tween the gravitational dynamical variables and the 
Yang-MillS field variables, He used the spinor-tetrad 
formalism developed by Newman and Penrose. 10 In the 
framework of this formalism he was able to show that 
the spin coefficients and the Riemann tensor play the 
role of the Yang-Mills potentials and the Yang-Mills 
fields, respectively. The non-Abelian gauge group is 
the group SL(2,a:) acting in the spin space. However, 
there is one problem. The Yang-MillS field constructed 
by Carmeli is not a gauge-independent SL(2, a:) invariant 
object. In contrast to the electromagnetic field (Yang­
Mills with Abelian gauge) the field strength is a gauge 
dependent object and therefore it cannot be used for any 
gauge independent procedures (canonical formalism or 
quantization) . 

The purpose of this paper is to present in the frame­
work of the Newman-Penrose (NP) formalism a set of 
spin-frame independent variables for the gravitational 
field. 

In Sec. II we briefly introduce the Yang-Mills de­
scription of the gravitational field using the Newman­
Penrose formalism, and we also establish our own 
notation. In Sec. III we introduce spin-frame indepen­
dent fields as path-dependent quantities. The empty­
space field equations (1.2), in terms of these new 
fields, coincide formally with the field equations of 
Maxwell's electrodynamics. In Sec. III, we generalize 
the result to the full set of field equations (1. 2). 
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2. THE EMPTY·SPACE FIELD EQUATIONS AND 
YANG-MILLS FIELDS 

The connection between tensors T~.~·:· and spinors 
TABeD ... . !1 

Eft... IS 

(2.1) 

The quantities a:B satisfy the relation 

(2.2) 

where f{"v is the metric tensor and the E'S are the Levi­
Civita symbols, 

(2.3) 

In the Newman-Penrose formalism we introduce at 
each point of a curved space-time two basic spinors 
OA and LA. The spinors OA and L A satisfy the normaliza­
tion condition 

and the completeness relation 

EAB =OAL B - LBO ..... 

We denote the spin frame by ~:, where 

~1=OA, ~:= LA. 

(2.4) 

(2.5) 

The dyadic components of a spinor in a given spin 
frame following Newman and Penrose are given bylo 

(2.6) 

where the rules of lowering or raising spinor indices 
are 

(2.7) 

Having a dyad in the spin-space, we can build a tetrad 
in the vector space, 

Ill- " A B " " A Ii = a AB ° ° , 1'1 = a AB L L , 

(2.8) 

The set of four vectors I", 1'1", m", ni" form a null 
tetrad system with the completeness relation 

Following the basic idea of the Yang-Mills' fields we 
introduce a gauge group as follows. At each point of the 
curved space-time we introduce ~: to define a spin 
frame. A spin frame gauge can be defined as an arbi­
trary way of choOSing the orientation of the spin-frame 
axes at all space -time points. We then demand that all 
physical processes be invariant under the spin-frame 
transformation, 

(2.10) 

where ~ is a 2 x2 complex matrix whose elements are 
~: and S E SL(2, <I;). From the definition of the spin 
frame, the dynamical variables of the gravitational 
field can be introduced. 9 

The covariant derivative acting on the spin frame 
gives 

(2.11) 
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Using matrix notation, this equation can be written as 

V,,~=B/J.~' (2.12) 

In the same matrix notation the commutator of the 
covariant derivatives V" Vv - Vv V" acting on ~ gives 
F"v, where 

Fjl.v=VvBu-VuBv+[Bjl.,Bvl. (2.13) 

The tetrad components of Bu and F "V are given, respec­
tively, by (compare formula 2.1 and 2.6) 

(2.14) 

(2. 15) 

It was shown in Ref. 9 that the B" fields are related to 
the Newman-Penrose spin coeffiCients, 

(
E - K) (f3 -a) Boo = BOl = , 
11 -E Jl -f3 

(2.16) 

(
a -P) (Y -T) B lO = , Bli= , 
A -I}' V -Y 

and that the F"v fields are related to the Newman­
Penrose tetrad components of the Weyl tensor, 

(2. 17) 

Flioo=FoilO= (iJi2 -iJil) 

'h -'h 
We see that B" (the spin coeffiCients) play the role of 
Yang-Mills potentials and that F"v (the Weyl tensor) 
plays the role of the Yang-Mills fields with the group 
SL(2, 0::) as a gauge group. Under a change of spin 
frame, ~ = S ~ I, the potentials B" and the field F "V are 
transformed, 

B~ =SB"S-I -S-12"S, 

F~v = SF"v S -
I
• 

(2.18a) 

(2,18b) 

As in the Yang-Mills case the simplest Lagrangian 
density which is invariant under both general coordinate 
transformations and spin-frame transformations is 

This Lagrangian leads to the follOwing set of field 
equations: 

V" FVlJ, - [B", F V
" 1 = 0, 

(2. 19) 

(2. 20) 

The tetrad projection of these field equations leads to 
the Newman-Penrose form of field equation (1. 2). 9 

The form of the field equations (2.20), the definition 
of F"v (2.13), and the transformations (2.18) under 
gauge changes indicate the Yang-Mills form to the 
theory. The important difference is that the gauge group 
is the group of all possible changes of the spin-frame, 
the group SL(2, 0::). 

3. SPIN·FRAME INDEPENDENT DYNAMICAL 
VARIABLES FOR EMPTY·SPACE FIELD EQUATIONS 

In contrast to the Abelian gauge in electrodynamics 
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given by the group U(l), the field strength F"v given by 
Eq. (2.13) is not invariant under SL(2, a:) gauge trans­
formations. It means that we cannot build a coordinate 
independent canonical formalism for the gravitational 
field based on the Weyl tensor. At this point the analogy 
between electrodynamics and general relativity breaks 
down due to the fact that the gauge group of the theory is 
not Abelian. We need to introduce new objects for the 
gravitational field which are independent of the particu­
lar spin frame chosen, 

One can construct spin -frame independent fields J jJ. v' 

Such quantities for the Yang-Mills field with the gauge 
group SU(2) are known (see Ref. 12). Let uS now extend 
this procedure to the field presented in Sec. 2. 

Following Mandelstam's path-dependent formulation 
of quantum electrodynamics we introduce a path depen­
dent matrix, 13 

U(x,P)==:Texp(- f;B"dx") = Texp (- f;B,,(s) ~;jJ. dS), 

(3,1) 

where the linear integrals are evaluated along a certain 
path P: x-"(s). The T operation denotes the S ordering 
of the B.,. 's, 

T(B" (S)B,,(S2) =B,,(S1)B,,(sz) if S1 >S2' (3.2) 

The derivatives of the matrix U(x,P) are given by 

V"U(p) = -BjJ.U(P), (3,3) 

Lets define a new gauge-invariant field J"v as a path­
dependent quantity, 

(3.4) 

where FjJ.v is given by Eq. (2.13) and U· is the Hermitian 
conjugate of U(P). 

Under the gauge transformation (2.18) the gauge­
transformed matrix 

U' ==: Texp(- [' B' dx-'") 
• p " 

(3.5) 

satisfies the following equation: 

V" U' = -B~ U' = - SB,"S-lU' + (ajJ.S)S-1U'. (3.6) 

It is easy to check that the matrix SU satisfies the same 
equation. Because the two matrices SU and U have the 
same boundary condition, 

SU=! =U'! =1 5::-.0 8=-00' 

it follows that they are the same, 

U'= SU __ ~> U'· = if 5 -1. 

(3.7) 

(3.8) 

Now we can prove the gauge invariance of J"vCp). Under 
the gauge transformation (2.18), the field ]jJ.v(P) trans­
forms as follows: 

]'jJ.v(P)= U'·F~vU'= U'·SFjJ.vS-1U'= U·FjJ.vU=]jJ.v(P), 

(3.9) 

where we have used the relations (3.8). So we have 
proved that the path-dependent field J I'v(P) defined by 
the formula (3,4) is a spin-frame independent object. 
In terms of] "v(P) we can rewrite the field equations 
(2.20) and (2.13), 

VjJ.]jJ.V(P)=O, (3. lOa) 
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(3. lOb) 

This set of equations is equivalent to the vacuum 
Bianchi equations (1.2). The field equations (3.10) 
obeyed by spin-frame independent fields are linear and 
coincide formally with the field equations in Maxwell 
electrodynamics. 

4. SPIN-FRAME INDEPENDENT VARIABLES FOR 
THE FULL FIELD EQUATIONS 

The results of Sec, 3 were obtained for the case of 
empty-space Einstein equations. This means that in the 
decomposition of the Riemann tensor into its irreducible 
components we took into account only the Weyl tensor. 
Now we want to generalize our previous results such 
that the tracefree part of the Ricci tensor and the Ricci 
scalar are present. The field, 

FjJ.v= VvB" - VjJ.Bv +[B",Bv], (4.1) 

leads to the following tetrad components9
: 

(4.2) 

where the nine rp's describe the tetrad components of 
the tracefree part of the Ricci tensor, R is the Ricci 
scalar and A. = -hR. 

Using the definition of a's and the field FjJ.v we can 
define the following field: 

(4.3) 

The full set of gravitational Newman-Penrose equations 
can be obtained from the Lagrangian density14 

L = - ~(-g)1/2Tr{H'"V(-tF"v + V"B" - V"B v + [B",Bv])}. 

(4.4) 
In empty space this Lagrangian becomes the Lagrangian 
given by the formula (2.19). The Lagrangian denSity 
generates the field equations 

(4.5) 

As in the previous case, let's define two new spin­
frame invariant fields, ]"v and HjLv, as path dependent 
quantities, 

J "v(P) = U·(P) F jJ.vU(p), 

HjJ.v(P)==: U+(P)H"vU(P), 

(4.6a) 

(4.6b) 

where the definition of the matrix U is given by (3.1). 
As in Sec. 3, it is easy to prove that the path-dependent 
] I' v and H" v are both gauge invariant under the SL(2, a:) 
gauge. In terms of these new fields, the field equations 
(4.5) and (4.1) can be written as follows: 

VjL H"V(p) = 0, 

K. Wodkiewicz 443 



                                                                                                                                    

(4.7b) 

and 

(4.7c) 

This set of equations is equivalent to the full Bianchi 
equations (1.2). The field equations obeyed by the spin­
frame independent fields (4.7) coincide formally with 
the field equations of nonlinear electrodynamics. 

5. CONCLUDING REMARKS 

The hope to obtain nontrivial results in quantum 
gravitation is based on the recent successful investiga­
tion of the Yang-Mills field theory. Apart from the 
discovery of the Feynman diagrams for such a theory, 
the basic results are due to 't Hooft who proved that the 
Yang-Mills theory is a renormalizable theory. 15 This 
fact opened the possibility of investigating higher order 
Feynman diagrams without divergences. The basic tool 
in the renormalization procedure is the Slawnov-Taylor 
identity, which is the generalization of the Ward identity 
to non-Abelian theories. 16 

As was shown in Sec. 3, the empty-space field equa­
tions (1. 2) for the path dependent objects JJ).v(p) have 
the form of the equations of linear electrodynamics. 
Apart from the hard problem of the interpretation, this 
theory seems to fit the 't Hooft results. The careful 
investigation of one loop diagrams and the form of Ward 
identity can hopefully shed some light on the renormal­
ization of quantum gravitation. This problem will be 
investigated in a further publication. The example of 
the full field equations presented in Sec. 4 indicates 
further complications. Bianchi's equation coupled to 
matter or to the electromagnetic field for path-depen­
dent quantities has the form of the equations of nonlinear 
electrodynamics. There exists in the literature some 
conjectures that such theories are not renormalizable. 17 

The quantization of the gravitational field has still 
some fundamental difficulties. Even in the simplest 
case of a Yang-Mills theory based on the group SU(2), 
there is no proof that the amplitudes or the probabilities 
are gauge invariant. 

The second problem is that the present quantization 
of the gravitational field is rather a theory for spin two 
but not for gravity. 17,1B For these reasons a better 
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understanding of the classical theory may give deeper 
insight into its structure and indicate the direction of 
future investigations. 
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Global operator product expansions for free fields of 
arbitrary mass m~ 0 
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A set (more than countably many) of global operator expansions-"on and off the vacuum"-are proved to 
hold for free fields of any mass m:2 O. Conformal invariance (m = 0) singles out exactly one of them in the 
case of the "vacuum expansion." There does not exist any termwise conformal covariant expansion "off the 
vacuum." 

I. PRELIMINARY REMARKS 

The motivation for studying conformal covariant 
(QFT) quantum field theory originates from the wide­
spread belief that conformal covariance may playa 
central role in constructing global operator expan­
sions. 1- 9 This program consists of two main parts: 

(I) Construction of (composite) field operators with the 
correct transformation properties under global con­
formal transformations. 

(II) The derivative of global operator expansions by 
means of these fields "on and off the vacuum. " 

For both parts some progress has been recently 
achieved10- 15 respectively. 6-9 Nevertheless, the (un­
solved) problems one faces in performing this program 
in a Minkowski quantum field theory are large and deep 
enough that for a deeper understanding a detailed inves­
tigation in the (technically) simplest possible model of 
quantum field theory seems to be worthwhile. The 
simplest such model is, of course, the free field or 
generalized free field. Even in this case the "off vac­
uum" expansion is not yet completely understood. 6 

The main problem of Minkowski conformal covariant 
QFT is the reconciliation of Einstein causality with 
global conformal transformations. Since the structure 
of the conformal group in itself is already very compli­
cated, it is of tremendous help to observe that the 
causality problem is completely understood if it is 
solved for one single element, namely, the so-called 
conformal inversions: 

(I. 1) 

Note that any special conformal transformation may be 
written as 

K(b) =RT(b)R, (I. 2) 

where T(b) is a translation by b. Hence we will restrict 
ourselves to this transformation. 

In Sec. II we will very briefly review the generalized 
free field theory. Section III is devoted to the construc­
tion of a set of composite operators (Wick products and 
their derivatives) for generalized free fields, which is 
properly covariant with respect to conformal inverSions 
(transformations). Finally in Sec. IV we derive by 
means of these operators a whole set (more than count­
ably many) of weakly convergent operator product ex­
pansions "on and off the vacuum" for any free field 
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theory of arbitrary mass m?- 0- conformally covariant 
(m = 0) or not (m > 0). 

However, in the "off vacuum" case the coefficients 
are not tempered distributions anymore. Hence the 
expansion exists only on a restricted subspace of the 
Schwartz space16 S4 (smearing of the fields in configu­
ration space), for instance, the subspace D4 of C'" func­
tions with compact support. 16,11 Also the weakly con­
vergence has to be understood in the restricted sense of 
all states from the dense set of functions with compact 
support in momentum space. 

II. REVIEW OF GENERALIZED FREE FIELDS 

In this section we want briefly collect the main facts 
and formulas of generalized free fields, which we need 
later on. The details and their derivation may be found 
in Ref. 18. Let.o 0 be the Hilbert space of the complex 
numbers 1/J0 with the scalar product 

<'I'o, .po) =~o¢o (11.1) 

and.o n=L2(dnll) the Hilbert space of all equivalence 
classes 1/Jn(pl, ••. ,Pn) of complex functions of n four 
vector variables, which are symmetric under permuta­
tions and square integrable with respect to the measure 

(II. 2) 
()+(p2) = ()(pO)()(p2). 

Here Il (p2) is some positive tempered measure on the 
closed positive real axis. For the free field of mass 
m Il (p2) is given by: 

Il (p 2) = o(p2 - m 2). (II. 3) 

Now the Hilbert space of the theory is the direct sum of 
aU.o n 

{}=EB-I)n. 
n=O 

The elements >J1 of .0 are sequences 

'Ji={I/,o, l/ll(Pl)' l/l2(Pl,P2)"'" l/ln(PI,'" ,Pn),"'} 

with the norm 

/I >J1/1 2 = t f d nil (Pl, ••• ,Pn) Il/ln(pu .•• ,Pn) 12 < + 00 • 

n=O 

(II. 4) 

(II. 5) 

Local field operators cp{f) = f d4xcp(x)j(x) are introduced 
in the following way: Let /)<p denote the dense domain in 
V, conSisting of alljinite linear combinations of vectors 
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of form 

'ltn={O, ... ,O, 1f!n(PI, ... ,Pn), 0, O, ••• } (II. 6) 
n-l n "+1 

with 1f!n(PI,'" ,Pn)ES4n being the Schwartz space of all 
Coo functions of strong decrease. 16,17 On f) ~ we define 
for every jES4linear operators cpj(f) (j=0, 1) by 

cpo(f)'ltn={o, ••• ,0, V: 11 ~ j(-Pn+l) 
n + n+l 

n n+l 

x1f!n(PI,··· ,Pn), O,O,".}, (11.7) 

where 'n+1 means symmetrization in all n + 1 vectors 
Pn , and 

CPI (f)'ltn = {O, 0, ••• , 0, Vii J dill (q) 

xj(q)1f!n(PI"" ,Pn-l> q), 0, ••• }, 

j (q) = [1/ (21T)3/2] J d4x exp(- ip .x)j(x). 

(II. 8) 

(II. 9) 

CPo and CPI are just the familiar creation and annihila­
tion operators or the positive respectively negative fre­
quency parts of the Wightman field 

(11.10) 

They have all properties of a Wightman field except 
locality or Einstein causality. 

Besides the basic local field cP(f) and its nonlocal 
constituents we introduce what we call in the future 
local composite fields: : cp/: (f). They are nothing else 
than the Wick products of cP, for instance, 

In close analogy to the basic fields cp(f) they may be 
represented in form of a sum of Z nonlocal constituents 
:cp/:j(f) , (j=O,I, ••• ,Z) 

I 

:cp/:(j)'It = .B : cp/:j(f) 'It, 'ltEf)~, (11.11) 
j=O 

where the fields : cp/: /f) give rise to comparatively 
simple transitions in .0, namely 

~ {\ (n+I-2j) for j "" min {(Z +n)/2, n} 

.on :cp/:j 

~O forj>min{(Z+n)/2,n}. 

to be compared to the basic fields cp j(f) 

for j = ° 
for j = 1. 

Explicitly the operators: cp/:j(j) are defined by 

I -3/20-0 ( n! ) 112 
:cp :j(f)'ltn={O, ••• , 0, (21T) (n +Z- 2j)! 
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(11.12) 

(II. 13) 

x 1f!n(ql,' .. , qj, PI"" ,Phi"" ,Ph
l
_j ,'" ,Pn+I-2J), 0, O, ••• } 

(n.14) 

The sum Lp( •• 0) is over all permutations of the variables 
qu ... ,qj) (- Phi)' .•. , (- Pk .), and P means that this 
vector has to be omitted. I-J 

By a closer inspection of this complicated expression 
the property (12) follows at once. It means, for in­
stance, that all : cp/: j(f ) with j > ° destroy the vacuum: 

:CP:j(f)'lto=O for allj > 0. (II. 15) 

Moreover, for Z ;,. 2 all : cpl: j(f) with j > 1 destroy in ad­
dition the one-particle state: 

:cp/:j(j)'ltI=O for2""j""Z, l;,.2 (II. 15 ' ) 

and so on. 

The definitions above, of course, give only Lorentz 
scalar composite fields. Besides these we need, how­
ever, tensor fields of arbitrary high rank. They are ob­
tained by forming Wick products of derivatives of the 
basic fields. 

Let a denote a sequence {ao, a!> a2, a 3} of four non­
negative integers, I a I = Lt=oaj and 

(II. 16) 

then DOl cp(f) is defined by 

D"'cp(f) = (- 1)1'" 1 cp(D"'j). (II. 17) 

Now the Wick products of these fields are formed in 
exactly the same way as in the scalar case 

I (i) 

: [1 (DOl cp): (f)'It 
;=1 

(II. 18) 

and the explicit representation of the constituents is 
obtained from (11.14) by putting the corresponding poly­
nom~als in the momenta qr and - Phs in between Lp(ooo) 

and/: 
(1) (I)) :D'" cpx ••• XD'" Cp:j (f 'ltn 

= {O, ... ,0, (21T)"3 1 2<1-0 (n + ~l ~ 2j) !) 112 f···f 

• (iPhl)"'W J(tl qs - ~ Phr) ] 

X1f!n(qj, ... ,qj' PI"" ,Phi"" ,Phl_j"" ,Pn+I-2i), 

0,0, •• • } . (II. 19) 

The symbol (k)'" stands for the product 

(kO) "'O(kl)'" I (k2)"2 (k3)"'3. 

Obviously these composite fields share all the proper­
ties (12), (13), and (15) of the scalar ones. In addition 
by means of the sum Lp(oo,) occurring in (19) they are 
symmetric with respect to any permutation of the 
a(1) ••• a(l). Hence if {l p, 2p, ••• ,lp} denotes any per-
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mutation of the index set {I, 2, ••• ,I}, we have 

(11.20) 

This completes the review of generalized free field 
theories, and we may attack the problem of conformal 
covariance. 

III. CONFORMAL INVERSION COVARIANCE 

Since the Hilbert space is a direct sum of direct 
products of the one particle subspace.(} 1, all unitary 
representations of symmetry transformations have the 
same structure 

.. n 
U = E& Un, Un = IT 0 U1, n ~ 1. (III. 1) 

n$O J,1 

Hence we need only construct unitary representations 
U1 in -0 1 and UO on the vacuum. 

Before we consider conformal covariance let us first 
list the restrictions induced by scale invariance. The 
existence of unitary operators 

(III. 2) 

fixes the measure dlll(P), up to a normalization con­
stant g(d) to be 

1 _~g(d)d4pe.(p2)(p2)d-2 ford>l 

d Il (p) - tg(l)d4p (5.(p2) for d = 1. (III. 3) 

d < 1 is forbidden by positivity of the Hilbert space 
norm. If we chose the normalization constant g(d) to be 

g(d):o:: (21T)222<i-d)r(d - 1)-1 r(dt l for d> 1, 

g(l) = (21T)2 for d:o:: l, 
(III. 4) 

then the Fourier transform of dill (p) becomes simply 

(III. 5) 

In order to get an idea, how the conformal inversions 
in ~I may look, we transform the scalar product into 
configuration space: 

with 

¢'!(x) = (1/(21T)5/2] J d4p exp(- ipX)¢I(p). 

Performing the formal substitution 

R: Xt--XR=-X/X2 

in (III. 6) and using the distribution identity 

[- (x - y ± i e)2]d 

(III. 7) 

(III. 8) 

= [- (XR ± i€)2]-d[ - (XR - Y R ± ie)2Jd[ - (y R =F ie)2rd (III. 9) 

we readily see that the following mapping U~(R) in ~l 
may be a suitable candidate for a unitary representation 
in.o I: 

(III. 10) 

In order to prove this, one transforms this relation 
back to momentum space by means of 
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± (21T)3[- (ZR±i€)2]d exp(ipZR) 

1 . if d3
ydrr d4q8=(q2)qO(q2)<d-2) 2 exp(zqz) (y2 + r2)3 

!p2!-<d-2) 12 Ja-2(v'Tj)'Zlr) J d-2(y~;2) 
(III. 11) 

Definition III. 1: Let b be the dense domain in .(} 1 of all 
fast decreasing functions: 

b ={lJtl E{} In LI(dl ll(q)(q2)<d-Z)IZ) ! (1 + (qOJ2]N¢>l(q)! <+00 

for all N E IN}. 

Now one can prove along the same lines as in Ref. 11 
the following theorem for d> 1. The canonical case d = 1 
has already been proved in Ref. 11 (Theorem 1). 

Theorem 111.1: For all d> 1 the mappings b -.(}! with 

¢>!(p) t- (Ua(R)¢>I)(p) 

= (21Tt3 Id4qe.(q2)qO(q2)<d-Z) 12¢>4(q) If (~:X+d;~3 
x !p2!-<d-2) 12 J d_2(-lif7lr) J d_Z(X~:2) 
X exp{- i[px _ qx(x2 + r2 t l ]} (III. 12) 

define linear isometric and symmetric operators on b 

satisfying the group relation U~(R)U~(R) = 1. Hence they 
possess unique unitary and self-adjoint extensions to 

1 
.(} 

The main steps of the proof are these: 

(1) Consider the scalar product (<PI, U~ (R)lJt l ) for ¢!, 
<!JI E b • By means of the reality properties of the Bessel 
functions and a variable substitution 

(x, r) f- (y, p) = (x, r)[x2 + r 2]-! 

in (III. 12) one gets at once the symmetry relations 

(U~(R)<PI;lJtl) = (<pl;Ua(R)o/l) ' (III. 13) 
(<pI;U~(R)U~(R)o/l)= (U~(R)<pI; U~(R)o/l)' 

Hence this scalar product defines a symmetric sequi­
linear form on b • 

(2) In the second technically much more involved step, 
one proves the (weak) group relation for all <PI' 0/1 
E b: 

(III. 14) 

The last two relations imply the scalar product to de­
fine also an isometric sesquilinear form on b, which in 
turn implies via Schwartz's inequality its boundedness 
on b • This proves the theorem. 

The details of the last step consist in fooling around 
with integrals over Bessel functions and will be 
omitted. 

Having established the existence of a unitary repre­
sentation in.(}l, it is now straightforward to derive the 
transformation laws of the basic and composite field 
operators. Since the consequences are nontrivial, let 
us start with the basic fields C{Jc(f). We have only to cal­
culate the right-hand side of the following equation: 

A.H. Volkel 447 



                                                                                                                                    

(<1>; Ud(R)CPc(f) Ud(R)\}I) = (Ud(R)<I>; CPc(f)Ud(R)\}I) 

for all <I> E: ('I and \}I E: [) ~. 

This can immediately be done by means of (11.7), (II. 8), 
(III. 11), and (III. 12) using the unitarity and self-ad­
jointness of Ud(R). 

The resul t is 

(III. 15) 

with 

d {[- (x+id]d--Y(-xlx2) 
(Vd)(x) = 

[- (x - iE)2]d-4j(_ xl x2) 

for 1:=0 
(III. 16) 

for 1:= 1. 

Again as in the free field case l1 the positive and negative 
frequency parts transform differently, i. e., there is no 
local transformation law for the local field cp(j) itself. 
Moreover, since the right-hand side of (Ill. 16) is not 
anymore an element of the Schwartz space 54, from 
which we started in Chap. II, the conformally covariant 
fields cannot be tempered. For them we have to re­
formulate the whole theory, i. e., construct a new test 
function space, which is invariant under the transforma­
tion (Ill. 16) and Poincare transformations. Obviously 
this new space 5~ cannot share the polynomial decrease 
at infinity of 54' However, since we want to construct 
Lorentz tensors of arbitrary high rank by means of 
derivatives, it must share the C'" properties in 54' 
Moreover, it must be a nuclear space in order to be 
able to construct the Wick products. In one dimension 
such test function spaces exist depending on the scale 
parameter d. 19 In higher dimensions, to our knowledge, 
this problem is yet unsolved. The construction of such 
spaces goes, of course, beyond the scope of this paper. 
We shall simply assume the existence of such spaces, 
and will whenever we restrict ourselves to conformally 
covariant theories replace 54 by 5~. 

Finally we want to mention that the different trans­
formation laws for CPo and CPI are closely connected to 
their support properties in momentum space; CPo having 
support only in ~he closed forward cone V + and CPI in the 
backward cone V _. Hence we expect an even more com­
plicated transformation law for our composite fields 
:cpl:j since they have also support in spacelike regions 
of momentum space [see Eq. (II. 14]. 

Indeed, if we perform the same calculation as above 
for:cpl:j, we find 

(III. 17) 

with 

(V~l j)(x) = [- (x + iE)2]dl-4+dj[ - (x - id ldjj(- xl x2) 

(III. 18) 

and 

[- (x + iE)21al-4-dj[ - (x - iE)2]dj = 

Ix21 al-4 exp[ _ i1Td(l- 2j») for x2 > 01\ Xo > 0 
{

I for x2 
"" 0 

exp[i1Td(l- 2j) for x 2 > 01\ xO < O. 
(III. 19) 

For d not an integer the components: cpl:j of the Wick 
products: cp': transform all differently by a phase factor 
exp{- i21T djE(xO)e (x2)}. 
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This is exactly the transformation behavior suggested 
by Schroer and Swieca on group theoretical arguments 
and verified in two-dimensional models. 12 Since the dis­
tribution of the powers (+dj) and (- dj) in (18) and (19) 
is unique only mod 1, (III. 16) is just a special case of 
(III. 18). 

Our final task is to construct traceless Lorentz co­
variant higher rank tensors, which will bring us new 
problems. Let us start with the Lorentz vector: 
:o"'cpx cpl-I:j(f). Performing the by now familiar calcu­
lations, we find 

Ud(R): a'" cp x cpl-l:j(f)Ud(R)\}I 

= : a" cp x cpl-I :j(r~ • (V1'j») \}I 

+2d:cp':j(X"" (V~lj»)\}I, (III. 20) 

where X" and r"'" are the multiplication operators in 5t 
by x" respectively by 

(III. 21) 

Since a":cp':j(f)=Z:o"'cpxcpl-t:j(f), it follows from the 
symmetry (II. 20) that there exists no other Lorentz 
vector by means of which one could remove the second 
term in (III. 20). 

The situation improves, when we go over to trace­
less tensors of higher rank. First making the most 
general ansatz for a traceless second rank tensor, 

T~~.j(f) = al: 0'" a" cp x cpH:j(f) 

+ a2: 0'" cpov cp X cpl-2 :j(f) + a3: cp': j(i) '" oVj) 

- Traces, 

and calculating the transformation under Ud(R) , we find 

Theorem III. 2: There exists one and only one sym­
metric, traceless tensor of second rank, which trans­
forms convariantly under Poincare transformations and 
conformal inversions, namely (1 = 2, 3,4, o •• ) 

C~/~;j(f) = H(d + ~)r(d - ~Y!{(d - 2) 

x [: cpa:,! a.:'2cp x cpl-2: j (f) - t g" 1"'2: cpo~a..aCP x cp'-2: j(f)] 

_~ [cpa." 1 (! :2 cp x cpl-2: j(f) -!x'" 1 "'2: cpo+a a.a cp x cpl-2: j(f)j}. 

(III. 22) 

Here the a. are defined by: 

- a a 
a~=-~-±a-' 

ux" x" 
(III. 23) 

The expression (III. 22) gives us a hint how to construct 
the higher rank tensors. For the coefficients occurring 
in (III. 22) are just those of the well known Gegenbauer 
polynomial of degree 2. Hence, by copying the coeffi­
cients from the Gegenbauer polynomials, 20 the correct 
combinations seem to be 

C~i:;:;~2"(f ) 

= :cpG~Si;"'2"(a:. ;a.)cpx cpl-2: j (f), (III. 24) 

where G:::(a~;a:) are the following symmetric, trace­
less differential monomials of degree 2n, n==l, !, 2,"', 
2,'" , 

"1"''''2"(- -) Ga-1I2 0_;0+ 
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_ ~ (- l)mr(d - t + 2n - in) 22n-2m 
- m=O m! (2n - 2m)! r(d - 2) 

x ~ , 2n~m ""i.1l J B' a.1l2n-2m+s _ Traces. (III. 25) 
l("rl J=1 s=1 

The symbol ~("TI again means symmetrization with re­
spect to all indices: 

~ = (2nWI 6 . 
("rl P("I,oo"2n) 

In other words the monomials C:::(""i., a.) are con­
structed in such a way that for any lightlike vector ~ 
(~2 = 0) and two arbitrary Minkowski vectors x, y we 
have 

_ (t )2nCd-1/2(~X)) 
- sy 2n (~y) 

with C~~1 12 (z) being the Gegenbauer polynomial of degree 
2n. 

Explicitly we obtain from (II. 19) 

"I"'1l2n -30_n2( m! ) 1/2 
C Id+2n;J (f)Wm = {O, ... ,0, (21T) (m + 2 _ 2j)! 

j m+I-2j 1 xf ... fOdlll(qJ) .6 7f 
;=1 kl<"'(kI_j=1 J. 

x [ 6 (- 11'c:.\';;""IK., <.1 
~>,. .. -:::-/ )~ 

X
f \Plqj 

- E/kr 'J 
X ;J!n(qj) •.• ,q j,P 1 • •.• .Pkl' ... ,Pk , .. ,Pn+I-2J), 0, 0 .. • } I-J 

(III. 26) with K given by 

K±= ql'fPk forj=1 (III. 27) 
{

ql±q2 forj?2 

I . 
Pk±Pk forJ=O. 

1 2 

One can convince oneself by complete induction using 
the recurrence relations for the Gegenbauer polynomi­
als that these operators are covariant under conformal 
inversions. A final property of these composite opera­
tors may be obtained by a simple calculation from 
(III. 26) and the representation (III. 2) for scale trans­
formations, namely that the scale dimension of them is 
dl + 2n. 

Collecting the results we have 

Theorem 111.3: The symmetric, traceless tensors 
IlI'''''2 Cdl+2n;J n(f) are of scale dimension dl + 2n and transform 

under conformal inversions covariantly according to 

Ud(R)C~I~'2':;~2n(f)Ud(R)w 

1I1 .. 'V2n(2n "s dl \ 
=Cdl +2n;} 21 r Ils(V/j))W (III. 28) 

with WE[)~ and r"V(x) = 2x"xv 
- x 2g"V ,n= 1,~, 2,···. 

IV. OPERATOR PRODUCT EXPANSIONS 

For the major part of this section we can forget 
everything we have derived about conformal covariant 
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fields in Sec. III except the definition of the composite 
operators C~xl:;:;~2n(f), i. e., the formulas (III. 22)-
(III. 26). They are, of course, independent of conformal 
invariance and could also be obtained by pure intuition. 
By means of these operators we are going to prove 
operator product expansions for free fields of arbi­
trary mass m ? 0. Hence conformal invariance will 
serve only as a bookkeeping for the composite operators 
to be used. Only at the very end we come back to proper 
conformal invariant theories. The global operator ex­
pansions rest on the idea that there may exist a com-

{ "t'"'' } plete set of so called composite operators Cdn•Xn n(f) , 
characterized by their Lorentz-tensor structure, their 
scale dimension, and some other degeneracies, such 
that at least the matrix elements of the product of two 
basic fields may be developed into a series of the same 
matrix elements of the composite fields. Hence in our 
case we expect (at least formally) something like 

t 

(<I>; 'P(g) 'P(f)w) = 6 (<I>;'Pr(g)'Ps(f)w) 
T,8=0 

00 00 1 I 

= (wo;'Pt(g)'Po(f)wo)(<I>;w) + 6 6 6 6 J d4zJ d4xJ d4y 
m=O 1=0 r.s=O j=O 

Xg(x)f( y)K~lt~+.2.m,}:~r.s(x_ z, y - z) 

x (<I>; C~X~2·~~r(Z)w). (IV. 1) 

Due to the Hilbert space structure (direct sum of direct 
products of the one particle space.c t) all matrix ele­
ments of the first line may be reduced to the following 
two: 

or (IV. 2) 

(<I>t; 'P(g) 'PU )wl) = (<I>d 'Po (g)'Pt (f) + 'Pt (g) 'Po (f) }wl). 

Hence we need to consider (IV. 1) only for these special 
matrix elements, which consideration also brings con­
siderable Simplifications on the right- hand side. 

From the condition (II. 12) 

~ .c n+I-2j for j "" min{(l + n)/2)n} 

.cn "t'''''2m C ZX+2m;j (f) 

-----.. ° for j > min{(l +n)/2)n} 

we deduce at once that, in the first case, the so-called 
"vacuum expansion, " only the operators with 

1 =2 and j= ° (IV. 3) 

and, in the second case, the so-called "off vacuum" 
case, only terms with 

1 =2 and j= 1 (IV. 4) 

contribute to the sum on the right-hand side of (IV. 1): 

(<I>;'P(g)'P(f)w) = (wo;'Pt (g)'Po(f)wo)(<I> , w) 

00 I I 

+66 6 Jd4zJd4xd4yg(x)j(y) 
m=O r, s=O }=o 

XK[2X+2m;}lr.s(x _ z' y - z) (<I>' c" I'" "~m(z)w) 
t.Lt Uo t.L2m ' '2X+2miJ • (IV. 5) 

Our task now consists of constructing a set of kernels 
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(IV. 6) 

such that the z integration can be given a precise mathe­
matical meaning and the sum converges to the left-hand 
side for the two special matrix elements (IV. 2) with 
>{II, <I>I and <I>2 Ef)",. 

Introducing the Fourier transform 

K:::(k'Z)=(211'~572 f d4uexp(iku)K:::(u+z, u-z) 

(IV. 7) 

and calculating all matrix elements explicitly by means 
of (II. 7), (II. 8), and (III. 26), we end up with the follow­
ing two equations: 

(1) "Vacuum expansion": 

1 f I 2 -d /.l(PI) d /.l(P2) cP (PI,P2)g(- PI)!( - pz) 

= (27Tt3/2 ~_n; E (- 1)n/ d1/.l (PI)dl/.l (p ohp2(pt>P2) 

x fd4qg (_PI +~2-q).f (_PI +f2+q) 

X fd4x exp(iqx) C~!;;;"2n(pl - P2, PI + P2) 

(IV. 8) 

(2) "Off vacuum expansion": 

fdl/.l(PI)d~(P2)cpl(Pl) {g(- Pl)f(P2) +g(pz)f(- PI)}<PI(P2) 

=cos(p_ 'x), for Pl E V., P2E V., XE lM4 

holds in the sense of tempered distributions. 

(IV. 11) 

Now for any Lorentz invariant function g(p+; x) with 
the property 

(p_'X)2";gO(p.,x) for aUP1,P2EV.!\ xE1M4 (IV. 12) 

cos(p_x) may be developed into a uniformly convergent 
series of Gegenbauer polynomials21 • 22 in the following 
way: 

cos(p_x) = cos (,fgo(P., x), ,f~~:'~ x) ) 

r(A - 1/2)2~-1/2" n I 

;:= -J ( )~ -1/2 6 (- 1) (2n + A - 2) 
go P.,x n=O 

X9~-1/2'2n(,fgO(P+'x)) C~~1/2(,fg~:'X) ), A> - t. 
(IV. 13) 

Since on the left-hand side of (IV. 11) there occur poly­
nomials C~:i/2 closely related to the Gegenbauer poly­
nomials, we may try to reduce our problem to finding 
solutions of the equations 

r( 1)2~-1/Z(2 1) 
_ A - Z n + A - a () U (p x)) 
- ,fgoifi., x)~-1I2 "2n+~-1/2 go +, 

XC~-I/Z( P_'X \ forallnEN. (IV. 14) 
2n ,fgo(P+, x)} 

This relation suggests the ansatz 

= (27Tt3/2 ~i_~ ~o (- l)n f dl /.l (PI) f d1 /.l (PZ)cpl(Pl)l/Jl(p2) K~21~~2.n~~~O,o(_ p+, x) = r(A - t)(2n + A - t)2~-1 IZ(27T)-5/2 

xfd4q g (_ PI - :2 -q); (_ PI - ~2 + q) x (-igo(P., x)) -~.IIZ-Zn 9 x-1/Z.Zn(,fgO(P., x)) 

XK[2~+2n'I]'(_ (p _P) x) 
"1'" "2n I 2, (IV. 9) 

with 

K[ .. ·]Oo1(k xl +K[· .. ]o.t(k x) +K[,,·11·0(k x) ... , _.0 , ... ,. 

Here C~:;;;'"2n are the polynomials of Gegenbauer type 
introduced at the end of the last section. 

Now the only difference between the right-hand sides 
of (IV. 8) and (IV. 9) apart from the wavefunction is the 
interchange 

(IV. 10) 

We first solve the less problematic case of the 
"vacuum expansion" and afterwards look for the changes 
brought about by this replacement for the "off vacuum 
expansion. " 

A. "Vacuum expansion" 

The only thing we ~have to do, is to construct an infi­
nite set of Kernels K:::(k ,x) such that 

(211')5/2 i (_ 1)nc"I"'''2n(p . p ).0.ZX.Zn.OJO,o(P . x) 
n=O ;\-1/2 -, + ~1···tL2n +, 
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(IV. 15) 

with :::(- P.,x) an arbitrary traceless, symmetric 
tensor of the form: 

m ~+2n (_ P x) - x '" X 
-t-'/.Lt .... JJ. 2n +, - /.L 1 ~2n 

- Traces}. 

(IV. 16) 

Inserting this ansatz into (IV. 14) we end up via (Ill. 25) 
with one linear relation between the 2n coefficients 
a~·n 

2n-1 
+ 6 H,n(p+, x ,pJa~'"(P+, x) =!t·n(P., x,P_; qo), 

1=1 
(IV. 17) 

where the !~.n are given Lorentz invariant polynomials, 
homogeneous of degree 2n. 

This relation would admit at least one solution if the 
coefficients would not depend on p: and (p+, pJ as in the 
case of a free field of mass m ~ 0, in which these two 
variables may be reexpressed in terms of P; and m Z• In 
the general case, however, the situation is different. 
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For instance, if n = 1, then (IV. 17) reads 

a~·I(p., x){p![(X +~) P: + !p!] - 4(X + ~)(P. 'pY} 

+ 2a1,1(p., x){(xP.)[ (X +~) P: +! p!] 

- 4(X + ~)(xpJ(P.P.)} 

=2go(P.,x)- 2(p~)2+h2p!_ (X+~)X2p:. (IV. 18) 

N ow if dill (p) has a continuous part, there is obviously 
no solution for the three functions aZ,1(p., x) (X> - ~) 
and go(P., x) independent of p •. 

This, however, does not mean that there does not 
exist a vacuum expansion for our system may not yet be 
a complete set of operators. 23 The situation improves 
rapidly if the measure is concentrated on one or more 
mass hyperbolids. Take, for instance, the case of one 
mass m"" O. Then with 

go(P.,x) = (p.x)2 - X2p;) "" (P.x)2 

Eq. (IV. 18) becomes 

{
aX'I(p X)+X2 +2 (xP.)aX•2(p X)} 

2 ., p; T I ., 

x {(X - l)p; - 4m 2(X + ~)}= 0 

with the most general solution 

j
_ x2 _ 2 (xP.) aX.I(p x) p; T I ., 

a~,1(p., x) = unless d = 1 i\ m = 0, 

arbitrary for d = 1 i\ m = O. 

(IV. 19) 

(IV. 20) 

(~V. 21) 

The situation remains similar for all higher n E N with 
the result that Eq. (IV. 17) can always be solved for 
a~~n(p.,x) in terms of the remaining a~·n(p.,x) 
(t = 1, ... , 2n - 1) due to the fact that apart from an over· 
all factor the coefficient of a~~n is proportional to (p;)2n. 
A particular simple solution is 

X.n (p ) O. X.n(p ) (- 1)s (X2)S a2s·1 ., x = , a2s ., x = 2s _ 1 p; , 
(IV. 22) 

s=1,2, ... ,n, nEN. 

With our solutions above every term in (IV.ll) is a 
polynomial bounded continuous function in Pi' P2, and x. 
Moreover, since the inequality (IV. 19) holds for all 
Pi> P2 E v.m and all x E 1M4 the series (IV. 13) respective· 
ly (IV. 14) converges uniformly and therefore also in 
the sense of tempered distributions. Thus we have 
gained our first result: 

Theorem IV. 1 ("Vacuum expansion"): Let cp(j) be a 
free scalar field of mass m "" O. Then for any set of 
composite field operators 

{ "'I ,. ·"'2n I . . 1 C2X• 2n ;J (j) nENi\J=0,1,2}WlthX>-2 

defined in (III. 24)- (m. 26) and any set 

M·n(p., x) In E N i\ t = 1,2, ... , 2n - I} 

of Lorentz invariant, polynomial bounded functions 
there exists a set of kernels {K~21~~~n~~!o.o[g,f](z) In E N} 
such that the operator product expansion for 
(<I>, cp(g)cp(f)'lto) converges for all <I> Ef)~. 
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B. "Off vacuum expansion" 

As already mentioned, the "off vacuum expansion" 
may be obtained from the "vacuum expansion" (at least 
formally) by the replacement P. <=> P. in (IV. 11)­
(IV.22). However, the new problems are brought about 
by the fact that the inequalitites (IV. 12), respectively 
(IV. 19), break down after the above exchange: 

(P.x) 'I go (P., x) 

for (IV. 23) 

go(P., x) = (p.X)2 - x2p:. 

go(P.,x) can even become negative, i. e., the square 
root purely imaginary. Hence we have to reinvestigate 
the convergence of the Neumann series (IV. 13). 

Let us introduce the complex variables: 

(IV. 24) 

In the center of mass frame of P.z reads 

z =xo/v'(xU)2 - x2 sin20, cosO =xpj Ix I I p.l· (IV. 25) 

Now the region in the complex plane, for which we need 
the expansion (IV. 13), is easily obtained and shown in 
Fig. 1. Note that go(P.,x) < 0 implies x2 < O. 

Since for every fixed complex 1) the function cos1)· z is 
an entire function of z, a theorem of Szego22 saves us 
under certain restrictions on the test functions g andj. 
It states that if F(z) is analytic on a closed segment 
[- 1, 1] of the real axis, then the expansion of F(z) in a 
Jacobi (Gegenbauer) series converges in the interior of 
the largest ellipse with foci at ± 1, in which F(z) is 
regular. The expansion diverges outside this ellipse. 

Hence the series (IV. 13) withp.<==>P. and therefore 
also the analogon of (IV. 11) converges in any bounded 
region in x of the Minkowski space 1M4• This brings 
about the restriction inj, g to the subspace D4 (in con­
figuration space) of functions with compact support of 
S4 in (IV.9). Besides this there is another necessary 
restriction in the wavefunctions q} (PI) and ,,} (P2). 

For go(P.,x) < 0 the kernels k:: (- P., x) in (IV. 15) con· 
tain in contrast to all other cases modified instead of 
ordinary Bessel functions. The modified ones grow 
exponentially, i. e., 

® 

9 
? C) 

~ ~o 
d? 

90 (P..,X) >0 90 (P..,X) >0 

xo<O -1 +1 ><0>0 

C) 

" )( C) 

~ " .,p 
d? 

FIG. 1. Domain for the "off vacuum expansion." 
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(IV. 26) 

which in the rest frame of p+ becomes 

K::: (- P., x) - exp{lp.1 (I x2 cos20 + x21)1 12}. 

Hence, in order that the individual terms of the "off 
vacuum expansion" (IV. 9) exist at all, also the wave­
function have to be restricted to the dense subspace D3 
of Coo functions with compact support. 

However, with these two necessary restrictions, 
which are deadly for the calculation of the kernels by 
termwise conformally covariance, all the results from 
the "vacuum expansion" can be taken over with 
P. <====> p+. 

Theorem IV. 2 ("Off Vacuum Expansion"): Let cp(j) be 
a free scalar field of mass m ~ O. Then for any set of 
composite field operators {C~}:;:;~2n(j) In E IN i\ j == 0,1,2} 
with A>-~ defined in (III. 24)-{Ill. 26) and any set 
{a~·n(p., x) In EN i\ t == 1, ... , 2n - l} of Lorentz invariant, 
polynomial bounded functions there exists for all I, 
g ED 4 (in configuration space) a set of kernels 
{K~2t.:::'~~+2Jg,/](z) In E N} such that the operator product 
expansion for (<p, cp(g)cp(j)'fJ) with/, gED4 converges for 
all <P, 'fJ E [) ~ with compact support. 

Finally we want to make some remarks concerning 
conformal (inversion) covariant theories, for which the 
kernels could at least formally be computed up to a 
phase by termwise conformal (inversion) covariance of 
the series. 5 

This covariance first fixes m and A to be 117 = 0 and 
A == d == 1. Moreover, for the "vacuum expansion" all 
functions a~·n(p+,x) are uniquely fixed to be the special 
solution given in (IV.22). This is obvious, since all 
three-point functions are uniquely fixed by conformal 
(inversion) invariance. Hence conformal (inversion) 
covariance singles exactly one out from our set given 
in Theorem IV. 1. 

However, the "off vacuum expansion" must disagree, 
since termwise conformal (inversion) covariance leads 
to tempered or even better behaved kernels (decreasing 
exponentially for x2 < 0), whereas the proof above leads 
to nontempered kernels, which grow exponentially in 
certain spacelike directions. 

There rises the question whether there exists another 
set of conformal (inversion) covariant composite opera­
tors or other solutions with a different go(P., x) of 
(IV. 17)? According to Theorem III. 2 there is one and 
only one (inversion) covariant second-rank tensor 
C~rj(j). Moreover, for d = 1 and m = 0, there is one 
and only one solution of Eq. (IV.l8) for go(P.,x), 
namely 

go(P., x) = (p .x)2 - p:x2. 

Hence, for the "off vacuum expansion," conformal (in­
version) covariance can at most serve for finding a 
complete set of composite operators. For the calcula­
tion of the kernels it is completely useless. 

A final remark should be made on the consequences 
of the restrictions in the momentum space wave func­
tions in Theorem IV. 2. According to these restric­
tions-caused by the asymptotic behavior (IV. 26) of the 
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kernels K:::(- p.,x)-no localizable states in configura­
tions space are admitted for the "off vacuum expan­
sion. " This in turn kills all duality programs in quan­
tum field theory24 since locality cannot be applied any­
more. Localizable states in configuration space require 
wavefunctlOns in momentum space of the type charac­
terized by Jaffe. 25 However, for such wavefunctions our 
kernels do not exist. 
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Wigner-Eckart theorem for tensor operators of graded Lie 
algebras* 
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An invariant functional. analog to the group integral associated with a Lie group. is defined for the graded 
Lie algebras. A sufficient condition for the vanishing of the group volume is given. Orthogonality relations 
of the matrix elements of the representations are obtained. and the Wigner-Eckart theorem is proved for a 
class of graded Lie algebras. 

1. INTRODUCTION 

In connection with the interest in the supersymme­
tries,l much attention has been recently paid to the 
study of the graded Lie algebras (GLA). 2-5 Pais and 
Rittenberg3 in a thorough study of the representations of 
the GSU(2) [OSp(2I1)] algebra [the graded version of the 
SU(2) algebra J have brought up the question of a general 
proof of the Wigner-Eckart (WE) theorem. They have 
shown its validity in the particular case of superspin 
J =~ tensor operators of the GSU(2) algebra. 

In this paper we will develop a method which allows 
a general proof of the WE theorem for the GLA's satis­
fying the following conditions: 

(1) the underlying Lie algebra (LA) is compact, 

(2) the reducible representations are fully redUCible, 

(3) the "group volume" is nonvanishing. 

It consists in defining an invariant functional 6 asso­
ciated with any GLA, which is similar to the group inte­
gral for ordinary LA, in the sense that one integrates 
over the usual commuting parameters and over the 
anticommuting parameters associated with the genera­
tors of nonzero grading. This we do by using the defini­
tion of the "integrals" over antic om muting variables 
given by Berezin7 and the formulas given by Pakhomov8 

for the change of coordinates in the mixed integrals 
over commuting and anticommuting variables which we 
give in Sec. 2. 

In Sec. 3 the invariant integral associated with a GLA 
is defined, the orthogonality relations for the matrix 
elements of the representations of the GLA's are de­
duced, and a suffiCient condition for the vanishing of the 
"group volume" is given. 

In Sec. 4 for the sake of simplicity we work on the 
example of GSU(2). We show how all the Clebsch­
Gordan coefficients can be determined and prove the 
WE theorem. 

~PAKHOMOVFORMULAS 

Integration over anticommuting variables is defined 
according to Berezin7 by the rules 

(2.1) 

and multiple integrals are defined as products of simple 
integrals. 
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For mixed integrals over commuting ~i (i = 1, ... ,n) 
and anticommuting 8", (a = 1, •.. ,m) variables, 
PakhomovB has given the formulae for the change of 
coordinates. If the old and new coordinates (~, 8) and 
(1: ,71), respectively, are related by an invertible 
transformation 

(2.2) 

(g is an even and h is an odd element in 71), then we have 
for any integral of an element!(~, 8) 

(2.3) 

where Jc"(~, e) is the Jacobian 

(2.4) 

which by using the rules of computing the generalized 
determinants 9 gives 

(2.5) 

where the determinants appearing in (2.5) are usual 
determinants. 

3. INVARIANT FUNCTIONAL 

The general form of the commutation relations be­
tween generators of a GLA is 

[Qj,Qj]=!ikjQk 

[Qj, v"j= F;", Vs 

{v"" Vs}=A~SQk 

(3.1) 

i=1, ... ,n, a=1, ... ,m, where we will consider that 
the LA generated by Q's is semisimple and compact. 
In any finite dimensional representation of (3.1) we de­
fine a "group" element 

(3.2) 

where 8", is a system of Grassmann anticommuting 
variables 

(3.3) 

~i are c-numbers and summation over repeated indices 
is implied. We will consider as functions on the "group" 
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functions f(G) defined on the superspace (~, e). An in­
variant functional may be defined on these functions 
with the help of a function Ii L (G) if: 

(3.4) 

where liL(G) stands for invariance to the left and simi­
larly with IJ.R(G) for invariance to the right, 

(3.5) 

and 

(3.6) 

1)", being another system of anticommuting variables. 

Using (1.3) the relation (3.4) is equivalent to 

\ 

D(GG') 1-1 
IJ.L(G)= D(G') G'.E (3.7) 

and similarly for IJ.R(G), with G and G' in (3.7) inter­
changed. If the underlying LA of (3.1) is compact we 
have from (3.7) and (1. 5) 

(G) _ (G) I oap(e ,t) 1-1 
liL -liR OT)y 

where ap(e,T), f3/e,1), and Rx.(~) are defined by 

exp( e p Vp) exp(T). V.) = exp[ ap(e, 1) Vp 1 exp[if3k( e, T) )Qk]' 

a p(e,1)= ep +1)p +"', 

f3k(e, T) = eAkT) + ... , (3.9) 

(3.10) 

respectively. 

The relation (3.8) could be further simplified using 
the group properties of the composition law (3.9). 
Indeed, the inverse of (3.9) can be taken in two ways: 
either by interchanging the order of exponentials in 
(3.9) and changing the signs of the exponents, or by 
changing e- -T) in (3.9) and using (3.10) to commute 
the Q term to the left. In this way we obtain 

(3.11 ) 

(3.12) 

Differentiating (3.12) with respect to T) and using (3.11) 
and the fact that the part linear in T) of ate, T) is an even 
function of e, we get 

iJQ/e,T) I =ilQlt),e) +ORpK(~)e ilf3e(1),e) I 
oT)y ".0 oT)y ine K o1]y n,e.o· 

(3.13) 

Thus, if the underlying LA of the GLA (3.1) is compact, 
the invariant forms to the left and right are equal 

(3.14) 

The functional (3.4) is also invariant with respect to 
changing G into G-I in f(G). These properties of the 
functional (3.4) are independent of the way (3. 2) of 
parametrizing the elements, as can be seen by changing 
the variables in (3.4) and using the formulae (1. 3). 
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We remark that unlike the ordinary Lie groups, in the 
case of the GLA the normalization integral (group 
volume) 

I dG Ii(G) (3.15 ) 

may vanish. This is the case whenever for the GLA we 
have irredUCible representations with the number of 
even dimenSions equal to the number of odd dimensions 
or when the number of even generators in (3.1) equals 
the number of odd generators. 

To show this let us conSider a finite dimensional 
irreducible representation of the GLA (3.1). The repre­
sentation vectors are labeled by a(a), where a is the 
grade of the vectors which may be 0 or 1 and a is a 
complete system of quantum numbers. Let us consider 
the matrix elements 

(3.16) 

Two such matrix elements anticommute whenever they 
are both odd, i. e., a + f3 is odd. By the standard tech­
nique, taking into consideration the fact that the matrix 
elements may anticommute, we get 

J dG 1i(G) T a (", ),b(B)(G) Tc(y),d(P)(G-l) 

(3.17) 

which is the orthogonality relation for the matrix ele­
ments (3.16). We see that, unlike the ordinary compact 
Lie groups, (3.17) is not positively defined. 

From (3. 17) we get 

J dG IJ.(G) = A(Ne - No), (3.18) 

where Ne(Q) is the dimension of the even (odd) subspace 
in the irreducible representation of the algebra (3.1). 
In particular a sufficient condition for the vanishing of 
(3.18) is Ne=No' This is the case when the number of 
Q's equals the number of V's because then the adjoint 
representation is of this type (provided it is 
irreducible). 

4. WIGNER-ECKART THEOREM 

The WE theorem can be demonstrated for the GLA 
for which the CG decomposition theorem of direct prod­
ucts of irreducible representations holds, provided that 
(3.18) does not vanish. 

In what fOllows we shall restrict ourselves to the 
Simple example of the GSU(2) algebra. The commutation 
relations are 

[Qm' Qnl =icmnpQp, 

{v"" VBt=i(crm)"'BQ .. , 

where m=1,2,3, Q=1,2, c=C~ ~), and TO! are the 
Pauli matrices. 

(4.1) 

The functions a p and f3m which appear in (3.9) are 

ate, T) = e +T) - t(ecT)e + HecT)T) 

f3m(e, T) = - (i/4)eCT ",T). 
(4.2) 

From (3. 7) we obtain 
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(4.3) 

where ~ = (l; ~Dl/2 and ~I are the exponential parameters 
of the SU(2) group. 

As shown by Pais and Rittenberg3 the GSU(2) algebra 
has irreducible representations characterized by an 
integer or half-integer quantum number J called super­
spin, the spin content I being J and J - ~. Consequently 
a vector of the representation is labeled by JII3' 

In the canonical basis the operators V" have the 
following matrix elements: 

(V~)II3,MM3= [- a-l J-2aI3 0IJ OMJ_l/2 

- ~..; J +2 aI3 +1'" ° IJ-l/2 0MJ ]° 13+" ,M3' 

The orthogonality relation (2.17) is now 

J dG J.l(G) TJII MM3(G) T~"M' I'I'(G-l) 
31 31 3 

( )4(J2 M2)" " " " " = - • VJJ,VlI' V/3/3 V MM , VM3MJ 

where we have used 

T~I MM (G) T~,~, M'M' (G) 
3' 3 3' 3 

(4.4) 

(4.5) 

= (_)4(/+M)(I'+,If') T~~, M'M' (G) TI
J
I MM (G). (4.6) 

3' 3 3' 3 

The relation (4.5) can be obtained directly by integrating 
the left hand side with the form (4.4) for the matrix ele­
ments of the SU(2) and using the orthogonality relations 
for the matrix elements of the SU(2) group 
representations. 

We can go further and using the CG theorem3 

J0J'= IJ-J'I Efi IJ-J'I +~EB" 'EBJ+J' (4.7) 

deduce relations in which under the integral sign there 
appear three matrix elements. 

We have 

(-)4M(['+M')JdGJ.l(G)T~1 MM (G) Tf;, M'M' (G)T~m ii (G-l) 
3' 3 3' 3 3' 3 

=(_)4(j2+m2)(JII3J'I'I~ I jii,) (JMM3J'M'M~1 jmm3), (4.8) 

where (JII3J'I'I~ I jii) is the CG coefficient for the vec­
tor I jii3) in the direct product of the representations 
J and J'. Formula (4.8) can be used to determine all 
the CG coefficients, as in the case of compact Lie 
groups. 

The tensor operators are defined as a set of operators 
V~i3 which acting on a space of a representation T(G) 
of the algebra (4.1) have the property 

T(G) V{i T(G- l
) = T{; mm (G) V~m • (4.9) 

3 3' 3 3 

For these operators we have the WE theorem for the 
matrix elements of Vl;3: 

(J'I'I'a'l Vi. I JII a) 3 tt3 3 

= (jii3JII3 I J'I'I~)(J'a' II Vi I!Ja) (4.10) 

where 
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(J'a'il Vi IIJa) 
6 

mm 3MM3M'M3 
(4.11) 

X (jmm3JMM3 I J'M'M;>(J'M'M~a' I V~m I JMM3a) 
3 

are the reduced matrix elements of the operators V{j . 
3 

This can be easily shown by putting to the left and to 
the right of V{j in (4.10) the product T(G-1)T(G). Using 
(4.9) two of the

3 
operators T(G) are exchanged by the 

matrix element T{j mm (G). Then one acts to the right 
3' 3 

on the state vector with the remaining products of 
operators and gets two more matrix elements T~I MM (G) 

, 3' 3 
and T~,I' M'ML( G). Finally integrating over the "group" 

3' , 
and making use of (4.8) we obtain (4.10). 

5. CONCLUSIONS 

We have shown that for GLA there exist invariant 
forms which can be used to abstract in a simple way 
properties of the algebra such as the CG coefficients 
and the WE theorem. The invariant form (3.17) is not 
positively defined. We gave a sufficient condition for the 
vanishing of the "group volume" but it would be interest­
ing to have also a necessary condition. 
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We show that every tempered distribution Tn€S'(M~) which is the boundary value of a function fn(z) 

holomorphic in the field theoretic tube domain n can be uniquely continued to a distribution Tn on the 
universal covering space M~ of the conformally compactified Minkowski space M 4n. It can be shown that 
t is the boundary value of a function 1n holomorphic in a certain domain J~ ~f the complex manifold 
ItM~ = (It X ~3)"' where ~3 denotes the affine complex three-dimensional unit sphere. 

INTRODUCTION 

On the way to construct a globally conformal invari­
ant quantum field theory it has become clear that the 
so called conformal superworld M4 , which is nothing 
else but the universal covering manifold of the com­
pactified Minkowski space ,"1~, can perhaps play the 
role of an underlying manifold of space and time on 
which such a theory can live. 1-4. 

One can be lead to such a conclusion by several recent 
results concerning the ~tructure of this manifold: We 
know that the manifold M4 admits a global causal struc­
ture which is invariant under the smooth action of the ---universal covering group SO(2, 4) of the conformal 
group SO(2, 4)/ Z2 '" C1s (M4 ). 2-S Furthermore, it was 
shown in Refs, 6 and 7 that the unitary representations 
of this universal covering group are those which appear 
in the transformation laws of quantized fields under 
the conformal group, 

Generalizing this result, Luscher and Mack1 proved 
that in every weakly conformal invariant Wightman 
field theory, 8 the Hilbert space of physical states 
carries an unitary representation of the universal 
covering group s<5(2;4), They also could show that 
the Wightman functions of such a theory can be analyti­
cally continued to a domain of holomorphy which has as 
a real boundary the space ."14 , 

In answering the question if there exist on ;114 fields 
as operator valued distributions it is necessary to know 
if these analytically continued Wightman functions have 
on iJ4 boundary values in the sense of distributions on 
the space 1\14' This is the problem we will be consider­
ing in this paper. 

In contrast to the authors of ReL 1, we do not use 
the Euclidean version of a Wightman field theory 
which would mean working with Euclidean Green func­
tions, but consider the Wightman distributions and the 
Wightman functions themselves, As is well known, 
these are tempered distributions and boundary values 
of the holomorphic Wightman functions. 

We consider therefore the subclass of tempered dis­
tributions on R4n which are boundary values of functions 
which are holomorphic in the so-called field theoretic 
tube domain T~, For this class of distributions one can 
show that they can be uniquely extended to distributions 
on the compact manifold iV1~". By embedding M~ into a 
complex compact manifold <rM~ we are able to show 
that these extended distributions are boundary values 
of functions holomorphic in a certain tube domain J~, 
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the real boundary of which is exactly M~. 

The well-known principle of "recollement des 
morceaux" allows us to project these distributions on 
M~ back to the universal covering manifold M4" via 
the canonical mapping 1T M: M4 - M~. The distributions 
we get in this way on J~ are then invariant under the 
action of the group of deck transformations2 on the 
manifold lV1~ . 

Using then a certain complexification (<r xI3)" of the 
manifold J'\1:;, we can also show that the distributions we 
have constructed on J~ above are boundary values of 
holomorphic functions on the complex manifold (<r XL3)". 

As a first application of these considerations we get 
the result that the Wightman distributions W"(1;u ••• , 1:"), 
which are the boundary values of holomorphic functions 
in exactly the tube domain T~, c~n be uniquely extended 
to distributions on the manifold M~ which are boundaEY 
values of holomorphic functions on certain domains 14" 
of the compl.ex manifold (<r XL3)"' 

We treat these problems in the following way: In 
Sec. I we very briefly repeat the definitions of the con­
formally compactified Minkowski space M~ and its uni­
versal covering space i114 , We construct a topological 
isomorphism between the space 5 (M4 ) and a closed 
subspace L)"(M~) of the space D (M~), which is the space 
of all C~ complex valued functions on ;vI~. 

In Sec. II we show how a first class of distributions on 
:vI4 can be uniquely extended to distributions on the 
manifold M~. The problem of boundary values of holo­
morphic functions on the manifold <rjV1~ is also 
discussed. 

In Sec. III we show how every distribution on M~ 
determines a unique distribution on the universal cover­
ing manifold Ii1.4 which is invariant under the group of 
deck transformations of the covering 1TM : lV1- Jtj4. Fur-_ c 

thermore, we show that the distributions on 1\114 which 
we get in this way are boundary values of holomorphic 
functions on the complex manifold <r}\14. 

In Appendix A we repeat the notion of an equicontin­
uous set, and in Appendices B, C, D, and E we give the 
proofs of some lemmas and inequalities which are the 
main steps for getting the indicated results, 

I. THE RELATION BETWEEN THE SPACE S(M4 ) 

AND THE SPACE D(M~) 

Let us briefly recall the definitions of the different 
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spaces we are dealing with in this paper, We denote by 
M4 the four-dimensional pseudo-Euclidean Minkowski 
space endowed with the Lorentz metric g 

~ 
g= ~ gijdxiZldx j, 

i, j=O 

where gij = 0 for i '* j and goo = - gll = - g22 = - g33 = 1. 
We denote the points of M4 by x=(xC,xI,~,X3) 

(1 ) 

= (xC, x). The compactification of the space M4 we are 
interested in is the space M~ as described, for instance, 
in Ref. 9. This space is diffeomorphic to (51 X53)/ Z2' 
where 5n denotes the n-dimensional unit sphere and Z2 
the discrete group [1, - 1}. For the following it is con­
venient to look at the manifold M~ as a closed subset of 
the five-dimensional real projective space IP5.10 If we 
introduce for the elements [1)] e=- IP5 the projective coor­
dinates (1)0,1)1, ••• ,1)5), the space M~ can be described 
as follows: 

(2) 

Minkowski space M4 is then diffeomorphic to the comple­
ment of the intersection of M~ with any projective 
hyperplane of IP 5

, especially if we take for this the 
hyperplane 1)4 _1)5 = O. From this it follows immediately 
that M4 can be densely embedded into M~. If we define 
an open set UK C M~ by 

UK : = ([ 1) ] E"~ : K = 1) 
4 

- 1) 5 '* o} , 

and a mapping CPK: UK - M4 by 

CPK: [1)]--- (1)°/K,1)1/K,1)2/K,1)3/K), 

then the mapping (3) is a diffeomorphism of U. onto 

(3) 

M4 and cp~l gives a Coo embedding of M4 into the manifold 
M~. For the definition of a basis for a complete atlas 
~ on M~ which makes M~ a differentiable manifold see, 
for instance, Ref, 10. 

The universal covering space of M~ is denoted by 
N14 and it is clear that it is diffeomorphic to the space 
]R x 53' For the elements of M4 we write x = (T, n), that 
is 

- {- ~ } M4= x=(T,n):T c lR,n=(n1, .•• ,n4): ~n~=l . 
J:;1 

The canonical mapping of fVI4 onto M~ is denoted by 7f M 
and is given by 

TfM:X-l(cosT,n, sinT)]. 

Let us next consider the function spaces S (M4 ) and 

(4) 

(5) 

f) (M~). The space S (M4 ) is the well-known Schwartz 
space of Coo functions on M4 which vanish at infinity 
together with all their derivatives faster than any 
power of I x 1-1, where I x I = (x~ + ~ + x~ + x;)1/2 together 
with the usual topology on it. 11 

The space f) (M~) is the space of all Coo functions on the 
compact manifold M~. The topology onf) (M~) is defined 
in the following wayl2: Let In e=- f) (M~) be a sequence. We 
say that In converges inf) (M~) to 0 iff for every chart 
(U, cp) of M~ and every compact set K C cp( U) C R4 the 
sequence In 0 cp-1 converges, together with all its deriva­
tives, uniformly on K to O. 

Of special interest for us is the following subspace 
f)'(M~) of the spacef)(M~): 
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f)' (M~): = {fe=- f) (M~) :1 vanishes together with all its 
derivatives on the intersection of the hyper­
plane K = 0 with M~}. 

We assume f) '(M~) carries the induced topology of 
f) (M~). In generaliZing a well-known result of Schwartzll 

we can prove the following theorem: 

Theorem I: The space S (M4) is topologically isomor­
phic to the spacef)'(M~). 

For the proof of this theorem we need some lemmas 
which we will state and prove first, 

Lemma 1: Let In F f) (M~) be a sequence which con­
verges to gF f) (~). Then the set H = {fn}U g is uniformly 
equicontinuous. 

Proal: Because H is a compact subset off) (M~) it 
follows from the theorem of Ascoli (see Appendix A) 
that H is equicontinuous, but because M~ is compact, 
every equicontinuous set HcC(M~) is uniformly 
equicontinuous. 13 

Lemma 2: Let In E" f)'(~) be a sequence which con­
verges to 0 and let P be any Coo differential operator on 
M~. Then the sequence Pin also converges inf)'(M~) to 
O. 

Pro 01: Because P is a Coo differential operator on M~ 
it follows 14 that there exists for every chart (Ui> cP i) of 
M~, a Coo differential operator Pi on cP i( Ui ) such that 

(Pin) 0 cp-/ = Pi Un 0 qJ-/) (6) 

on the open set qJ J Ui) C ]R4, Now Pi has the following 
general form in the local coordinates x = (XO, xI, x2, X3) 
on qJi(Ui): 

00 

P j = 6a r Dr
, (7) 

r=() 

where the ar are locally finite functions from Coo (qJi(Ui», 
and Dr is the familiar abbreviation 

Now if K is any compact subset of qJi(Uj), it follows 
immediately from the definition of the topology in 

(8) 

f) '(~) that the sequence (PIn) 0 qJi l converges [because 
of (6)] uniformly to 0 on K together with all its deriva­
tives. That the functions PI" are again elements of the 
space f) '(M~), is clear from the definition of this space, 

The content of Lemma 2 can also be expressed by 
saying that every Coo differential operator P on ~ is 
a continuous mapping off) (~) onto itself, such that the 
subspacef)K(M~) is left invariant. Let us now prove 
Theorem I. 

Proal 01 Theorem I: First we define a mapping h: 
f)'(~)-S(M4) which, as we will show, has the desired 
propert~es. Let qJ. be the diffeomorphism defined in (3) 
and letlbe any element fromf)'(~). The mapping his 
then defined as followsll : 

(9) 

On the other hand, if IE" 5 (M4 ) , we define a mapping h-1 

as 
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_ {fa CPK on UK' 
h- 1 

:/-I: = 
o on M~" UK =c UK. (10) 

We have to show that the function I in (9) is an element 
of 5 (M4 ). Clearly I is from (""(M4 ). Next we have to 
show that for every m r-=- N, every multiindex r 
= (ro, r 1 , r 2, r 3 ), and for every E> 0 there exists a number 
N=N(m, r,E) such that 

IxI2mIDr/(x)I<E forallx~M4with Ixl>N. 

We have shown in ReL 10 that for all i = 0,1,2,3 the 
differential operator (a/ax)! on cP.(U.) ~ M4 can be con­
tinued to a well-defined C"" differential operator pi on 
M~. Therefore, the differential operator Dr also defines 
a C"" differential_operator pT on iV1~. Lemma 2 then 
shows us that PTlc.f)K(1\J.;) and also that the function 

J
1 

: = (1)~ + 1)~ ~~~ + 1);)m prj 
K 

(11) 

is an element off) K(M~) for every m r-=- N and every multi­
index r, Denote by 0(K) the following open set of M~: 

0(K) : = {(1)k M~: dist(l1)],C UJ < 6}. (12) 

Because any functionJr-=-f)K(M~) is uniformly continuous 
on M~ there exists for E > 0 a 6 > 0 such that 

l](l1)J) - J([1)2]) I < E for all l1)l]' (1)2] r-=- M~ 

with dist([1)J, l1)2]) < 6. 

Applying this to the set 0(K), we get 

IJ(l1)])I<E for all (1)]~ 0(K), 

because J([1)]) = 0 for l1)] ~ C UK" 

It is clear that for all x~ M 4 , the points (1)] = cp:l(X) 
r-=- UK are contained in the open set 0(K) if Ixl>N(6), 
where N(6) depends on 6 and therefore on Eo So we get 
for all xcc- A14 with Ixl> N(6), and for the functionJl 
from (11), 

IJ10 cp:l(X) I < E. 

But this reads, when we insert definition (3) of CPK and 
use (6), 

IxI 2m IDT/(x)I<E for all Ixl>N(6)=N(E), 

Let us next show that the function J defined in (10) is 
an element off)K(M~). For this we have only to show that 
1 is C"" on C UK because it is trivially C"" on UK' and that 
all derivatives of I vanish on C UK. The same reasoning 
as above shows us that 

with 0(K) as defined above. If we now use the fact that 
relation (13) is also true for all C"" differential operators 
P~ on M~, which are obtained as extensions of the local 
differential operators D~ in the different local charts 
(cp a' U a) (see for instance ReL 10), we get from (13) 
in the local chart (cp a' U a), the following inequality: 

I a(xa)D';,(]o cp-;.') (x a) I < E 

for all xar= CPa(0(K)n uKn U), 

where a(x a) is some C"" function on CPa(0'(K)n UKr', Ua). 
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Putting J and all its derivatives equal to 0 on C UK 
therefore defines a C"" function on M~, This shows that 
the mapping h is a one-one mapping. In a second 
step we have to show that h is even a homeomorphism. 
Consider therefore a sequence In ~ f) K(~) which con­
verges to O. From Lemma 2 we also get that the se­
quence [(1)~ + ... +1)~) / K2]m J?jn converges to 0 in 
L)K(M~) for all mr-=- N and for all C"" differential opera­
tors P on M~. Because of Lemma 1 the set H of func­
tions J:,m: = [(1)~ + ... +1);)/K2]m prJn' where pr is the 
differential operator on M~ which on CPK(UK) is just Dr, 
is a uniformly equicontinuous set, Therefore, there 
exists for E> 0, a 6> 0 such that 

IJ"r, m([1)]) 1< E for all l1)] r-=- 0(K) and for all n. (14) 

Because C 0(K) is closed and therefore compact we have 
CPK({ 0(K)) is compact in CPK(UK), Therefore, there 
exists a number No = No(E) such that 

IJ:,mocp:1(x)I<E for all n>No and for all x(c cP.(C 0(K)), 

(15) 
because J:' m - 0 inf) K(M~L 

For x+ CPK(C V6 (K)) we have cp:1(X)~ V6(K) and therefore 
from (14), 

11;,m o cp:'(X) I <E for all n c N and for all xr:;/ CPK(C Vti(K)), 

(16) 
Inserting now the definition of the function J:' m into the 
two relations (15) and (16) gives 

Ixl2mlDr(]no cp:1)(X) I <E for all xC M4 and for all n> No, 

(17) 

which shows that In 0 1f:1 = In converges to 0 in 5 (M4 ). 

On the other hand, let In c. 5 (.1114) be a sequence which 
converges to 0 in 5 (M4 ) , that means (17) is trueo From 
this we immediately get 

Ip~Jn([1)])I<E for all n>No and all (1)]r-=- UK' 

where p~ is any C"" differential operator on M~ which is 
the global extension of any differential operator D';, on 
the local chart cP a( U a). Because In and all their deri va­
tives vanish on C UK we have even 

I p~Jn(l1)]) I < E for all n> No and for all l1)Jc-~, 

(18) 

but (18) written in the local coordinates of cP a( U a) gives 

I D;(]n 0 cp;)(x,,) I < E for all xal'=" cP ,,(U a) and for all n> NO" 

This concludes the proof of Theorem I. 

II. THE RELATION BETWEEN THE SPACE S'(M4 ) 

AND THE SPACE o'(M~) 

Theorem I of the last section allows us to identify the 
space 5 (M4 ) with the closed subspacef)K (M~) cf) (M~). 
We can therefore also identify the space S'(M4 ) with 
the spacef)KI(M~) via the mapping h* 

(h*T)(j): = T(hj) (19) 

for Tr=c5'(M
4

) and Jr=cf)K(M~) with hJ defined in (9). 

In complete analogy to (19) we can define the inverse 
mapping h*-1=h-1*. Now if T~S'(M4)' we get h*T 
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~ [) KI (M~). Because [) K (M~) is a closed subspace of 
[) (M~), we can extend the definition of h*T via the 
Hahn-Banach theorem to the whole space [) (M~)o We 
call the distribution we get in this way on M~, an exten­
sion of T onto the manifold M~ and denote it by To It is 
however clear that this extension is not unique because 
we can add to T any distribution from [)'(M~) which has 
its support on the space C UK' The aim of this section 
is to find a class of tempered distributions on M4 which 
have the property that they allow for a unique extension 
to a distribution on M~. It turns out that this class con­
tains all distributions which are the boundary values of 
holomorphic functions in certain domains which on the 
other hand, are also of great interest from the physical 
point of view. 

Let 

={yr-M4:y~_y2>0 and yO>O}}. (20) 

Consider further the set 

H(T4 ): = {f: T4 - (£, f holomorphic in T Jo 
Definition: A function f r- H (T 4) is an element of the 

space 5 ~OC(T4) iff limz_a Td(z) = T is a tempered distribu­
tion on the boundary aT4 of the domain T4 • The limit is 
understood in the topology of 5,«(£4). 

It has been shown by Martineauls that f,:::- S'loc(T 4) iff 
there exist constants C, QI, (3 '" 0 such that 

If(z) I "'C(1 + I z 12)"'dist(z, aT4)-8 for all z,:::- T4• (21) 

Let us next construct a complexification (£~ of the 
real manifold M~. For this we only have to complexify 
the space M~ as defined in (2) to a space (£M~ as follows: 

(£M~: = {l~]: [~],:::- (£]ps: ~~ - ~i - ~~ -~; - ~~ + ~~ =O}. (22) 

In (22), (£]ps denotes the complex compact five-dimen­
sional projective space. It follows therefore that (£~ 
is also a compact space, it is even a complex manifold. 16 

On <tM~ we introduce the following complex structure. 
We denote by 

K:=~4_~S, A:=~4+~s, K:=e-~o, 
(23) 

ii:: =e +~o, y: =e _ ~5, 
for any point l~] = [(~o, e, ... , ~S)],:::- (£M~. We use for the 
space (£M~ the same letters K, A, ••• as we did in Ref. 10 
for ~, but hope that there is no confusion. Let us 
further denote by Z the set Z:={K,A,K,X:,y}. For every 
{3 F Z we introduce the following open subset Us of 
(£M~: 

(24) 

All these definitions are straightforward complex ver­
sions of the respective real cases in M~. With the 
above definitions one verifies that 

(£~= u US' 
Sr= Z 

To define the complex structure we still have to give 
the local homeomorphisms 'Pa on the open sets Us' First 
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we define the mapping 'PK: UK - (£4 as follows: 

'P.: [~] - (~OIK, elK, elK, elK). (25) 

Then 'PK is a biholomorphic mapping of the set U. onto 
(£4. Next we introduce certain transformations on (£~ 
which we use to define the other homeomorphisms 'Ps' 
Let [~] F (£~ be given in the projective coordinates by 
[(~o, ..• , ~S)]. 

Definition: Ik : [d ...... [~,]: =[(- ~o, e, e, ~s, ~\ _ ~S)], 
Ii(: l~]- [e]: = [(~S, ~\ e, e, e, ~O)], 

(26) 

Iy: [d- [e]: = l(~O, ~l, ~4, e, e, ~S)]. 
It is clear from the relations (24) and (26) that for all 
{3F Z we have 

Pa=1 (when we set I. = 14: M4) 
c 

and 

IB(UK ) = UB• (27) 

Then we define the homeomorphisms CPs: Us - (£4 by 

CPs: = cp. ola' (28) 

It is easy to see that all the transformations 18> {3,:::- Z, 
are elements of the group 80(2,4)1 Z2 which acts in a 
completely analogous way on the manifold (£~ as it 
acts on M~. 2 

The charts (Us, cps)' 13 F Z, define the basis of an 
atlas for the complex manifold (£~. The mappings CPr 
then become biholomorphic mappings from Us - (£4. 
Because cp~l: 0;4 - U. gives a biholomorphic embedding of 
(£4 into the manifold (£M~, and Uk = (£~, the manifold 
(£M~ is a compactification of the space (£4 on which the 
group 80(2,4)/ Z2 acts as a group of biholomorphic 
transformations. 

It is interesting to note that the space o;~ is simply 
connected. We shall prove this in Appendix C. 

Consider now the image of the field theoretic tube 
domain T 4 under the mapping 'P~l in (£M~. It is clear 
that 

(29) 

is contained in UK' but it is even contained in the inter­
section of all the charts UB, {3F Z, as we want to show 
next. 

Lemma 3: The open setJ4 is contained in nBFZuS 
and is invariant under the action of the conformal group 
80(2,4)1 Z2 on (£~. 

Proof: It is knownl7 that the domain T 4 C (£4 is invariant 
under the action of the group Cls(M4 ) on 0;4. This group 
is even a subgroup of the group of automorphisms of the 
domain T 4' It is also clear, for instance from Ref. 18, 
that the action of 80(2,4)/ Z2 on (£~ gives locally on 
UK exactly the action of C1s (M4) on (£4. Therefore, J 4 
is invariant under the action of 80(2,4)1 Z20 Because 
J 4 C UK and wJ 4 = J 4 for all WF 80(2,4)1 Z2' we get 

J 4 =1;1 4 C IsU. = Us for all {3F Z, (30) 

because of (27). Therefore, J4C US for all {3F Z. 
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By using the explicit definitions (25) and (20) we get 
for the set J 4' in terms of the projective coordinates ~: 

J 4 = {l~] <= ct ~ : If v = (VO , v\ if- , v 3) 

with vi =Im(~jK*), then v<= V+}. 

For the boundary 'OJ 4' we get the set 

OJ4={l~)<=ct~:vjVj=0, vn;:,O}. 

(31) 

(32) 

Therefore, the real manifold M~ belongs to the boundary 
aJ 4 • 

If we denote by HU 4) the set of all holomorphic func­
tions on the domain J 4, we say that j E H U 4) belongs to 
the class 5 ~ocU 4) iff the function j has on the boundary 
oj 4 a boundary value in the sense of distributions. To 
be more precise, this means the following: For any 
point [~]E 'OJ 4' and for every chart (V, <,0) of ctM~ with 
[~]E V we have 

j0<,O-l<= S~oC<<'o(VnJ4))' (33) 

Because the property of having a boundary value in 
the sense of distributions is a local property, 15 we then 
get by using the principle of "recollement des 
morceaux" that a function J with the property (33) has a 
boundary value in the sense of distributions on the 
boundary oj 4' 

To prove the main theorem of this section, namely 
that every tempered distribution T on M4 which is 
the boundary value of a holomorphic function in the tube 
domain T 4 can be uniquely continued to a distribution 
T on M~ which again is the boundary value of a holo­
morphic function on J 4' we need the following lemma. 

Lemma 4: Let Aut(T4 ) be the group of automorphisms 
of the tube domain T 4' For every f E S~oc(T 4) we have 

wf<= S~oc(T4) 
where 

wf(z): =f(w-1z) for all WE Aut(T4 ). 

Proof: It is known that the group Aut(T 4) is generated 
by the Poincare transformations, the dilatations, and the 
inversion R, which is defined by 

Rz = - z/ Z2 with Z2 = zg - zi - z~ - z;, z r:= 74 • ( 34) 

Because the lemma is trivially true for all Poincare 
transformations and dilatations we only have to con­
sider the case where w=Ro Because R as defined in 
(34) is a biholomorphic mapping of T4 , we have 
Rfc=: H(T4). Then we have to show that there exist con­
stants C, {}', i3 "'- 0 such that 

I Rf(z) I ~ C(1 + I z 12) '" dist(z, aT 4)-8. 

Now a trivial geometrical consideration shows that the 
distance of a point z = x + iy <= T 4 from the boundary 
aT 4 is given by 

dist(z,aT4 )=c(yO-lyl), (35) 

where c is some constant. 

Because fF S;oc(T4 ), there exist constants 
C', Oi', f3' ;:, 0 with 

if(z') I ~ C'(1 + I z'1 2
)'" (y°'-I y'l )-Il' 

for all z' = x' + iy'F T 40 
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(36) 

We now have to find some relation between yO' _I y' I 
and yO -Iyl on the one hand, and I z' I and Izl on the 
other hand, where z' =x' +iy' =Rzo In Appendix B we 
will prove the following two inequalities: 

yO' _I y' I;:, i (l- I y 1 )31 Z 1-4 (37) 
and 

1 z' 1 ~ 61 Z 13( yO -I y I )-4. (38) 

Using the two relations (37) and (38) we get 

if(z') 1 ~C(1 + I Z 12 )40<' +2W dist(z, aT 4t3B'-S'" 

for all zFT4 , (39) 

with C a constant which is determined in a straightfor­
ward way 0 Because f(z') = Rf(z) for z' =Rz, the lemma 
is proven. 

Now we are able to prove the main theoremo 

Theorem II: Let f(z) E S~oc(T 4)' Then the function 
1: = fo <'oK is an element of 5 ~ocU 4)' 

Proof: Because <'oK is a biholomorphic mapping of 
VK - <'oK(VK) =ct4 with <'oKU 4) = T 4 , we get that JE HU 4)0 

Now let [U be any point in aJ 4' Then there exists a 
f3 <= Z such that [~h:: Va' let us look at <'oa( Va n J 4)' Be­
causeJ4cnar:=ZVBwe have <'oa(VanJ 4 ) = <'oaU 4 ), but with 
(28) and Lemma 3 we get 

<'o/lU 4) = <,0. olllU 4) = <'oKU 4) = T 4' (40) 

Therefore, the image of J 4 under the dIfferent mappings 
<,0 8> f3 c::: Z, is the same, namely the tube domain T 4 C ct4

• 

Because the different transformations IB are biholomor­
phic transformations on the domain J 4' we also get that 

j 0 <'oi/ = f 0 <,0 K 0 III ° <,0;1 (41) 

is a holomorphic function on <,0 aU 4) = T 4' 

The mapping <'oK ° laO <,0;1 : ct4 
- ct4 is an element of the 

conformal group C15(M4L Therefore, with the defini­
tion of Lemma 4 we can also write the function j ° <'o"i/ 
as wf with W= <'oK 0 IsO <,0;1 an element of C1s(M4)0 
Lemma 4 gives us then, thatJo<,Oi/=wfE S;oc(T4) 
= 5 ~oc(<'oa( Va n J 4))' but this proves the theorem. 

As an immediate consequence we get that for every 
Tr::: S'(M4) such that T=lim~~a lj(z), we have a unique 
extension to a distribution T fromD '(M~) which is de­
fined as 

III. EXTENSION OF DISTRIBUTIONS FROM D'(M~) 
TO DISTRIBUTIONS FROM D'(M"4) 

Let us consider the canonical projection 11M as de­
fined in (5) and let us assume that M4 is given such a 
differentiable structure that 11M is a local diffeomor­
phism" Then give a distribution T on the space ~. 
Then T determines in a unique way a distribution 't on 
111'4,19 Namely, consider any point XE M4 • Then there ex­
ists an open neighborhood fiex) such that 1IMI£; is a dif­
feomorphism of Uonto 1IM(U)' Denote by Tlu the,Eestric­
Hon of the distribution T to the open set V: =1IM(U). The 
diffeomorphism_1IM lfj induces a topological isomorphism 
of the space [) (U) onto the space [) (U) in the following 
way: 
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1fMIU(j):=jo1fj'/IU for jEOCu). (42) 

The mapping 1fj,hu also then ind.!wes a mapping of the 
space 0 I (U) onto the space 0 I (U), namely 

(1fi/l/i lU)j: = T ,u (1fM,u(I» 

= T,u(Io 1f;/IU) for 1 EO (U). (43) 

In this way we get for every point XE M4 and every 
admissible neighborhood fj of x (admissible in the 
sense that 1fMIG is a diffeomorphism), a distribution 
To: = 1f"M\UT iU:" B~cause ,!h~se distributions trivially 
coi£cide for un V * rf>, u, V admissible neighborhoods 
in M 4 , that means 

- - -Tu= Tv on un V, (44) 

we get from the principle of "rec,glleIl!.,ent des 
morceaux" a unique distrLbutiqp T on M4 such that for 
all admissible open sets U in M4 we have - -

T IU = 1f"M1IiJT IU , (45) 

where U= 1fM (U). 

We_want_to show that the above constructed distribu­
tion T on M4 is invariant under the action of the group 
~(,i14'~) of deck transformations of the covering 1fM: 
M4 -1Ii~. From Ref. 2 we know that every element 
y!= reM 4' M~) has the property 

1f MOl' = 1f M' (46) 

To show the invariance of T under every I' E r(M4'~) 
~e hgve only to show that for every admissible open set 
UC M4 we have 

(47) 

because this implies immediately that yT= T on the 
whole space M4 • Applying (45) we get for every j EO (if>, 

(YT) I riCf) = Tlr-1(U)(y-1f> = Tlr-1(U) (1 0 1'), 

where we have used the relations (42) and (43). 

Using (45) we get 

Tlr-1 (U) (fo 1') = 1fillr-1 (iJ)T I u(I 0 'Y) == TI u(Io I' 0 1fillr-1 u) 

= TI u(lo 1fil, if) = 11;,11 uTIU (1) == TI u(f>. 
(48) 

_ Havjng established the existence of a distribution 
Ton Y4 given a distribution T on M~, we want to show 
that T can be obtained as the boundary value of a holo­
morphic function when T is the boundary value of a 
function holomorphic in the domain J 4. In order to 
achieve this, we first have_to embed the manifold M4 
into a complex manifold <rM4• Because of (4), a natural 
choice is the following: 

(49) 

where 1:3 denotes the complex affine three-dimensional 
unit sphere that means 1:3 = {z!= <r4: zi + ... + z~ = 1}. 

If we remember the definition of the canonical map­
ping 11M in (5) we can immediately extend this mapping 
to a mapping 

11~ : <rM4 - <r~ 
defined by 
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(50) 

11~: z ..... (cosz, m, sinz), (51) 

where Z E <rM4 is given by -; = (z, m) with z!= <r and 
mE 1:3 • 

It is clear that 11~ defined in this way is not a covering 
map because 11~ is not a mapping onto the manifold 
<rM~. Thi~ can be seen from the fact that for all 
[~] E 1I~(<rM4) we have ~~ + ~~ == 1, whereas in <r~ there 
are also points with ~~ + ~~ = o. 

Let us therefore consider the complex manifold 
(1: 1 x 1:3)/ Z2 which is a submanifold of <r~. This mani­
fold has the property that 1I1 (L 1 xL 3)=Z. This follows 
from the fact that 1: n is diffeomorphic to the tangent 
bundle T(S,) of the real n-dimensional unit sphere. So 
we get as a special case that 1:1 is diffeomorphic to the 
two-dimensional cylinder in 1R3 and therefore 111 (L 1 ) 

=z. 
The mapping 

1T~: <r X1:3 - (1: 1 XL 3)/ Z2 (52) 

is a universal covering map. It is, as one can see from 
(51), a holomorphic mapping from the complex manifold 
<r x 1:3 onto the complex manifold (1:1 x 1:3)/ Z2 which is 
locally even biholomorphic. 20 

Let us next investigate the relation between (1: 1 x 1: 3)/ Zz 
and the domain J 4 in <r~. For this we define the set 

No: = {[~] E <rM~: [~] ~ (1:1 x 1:3)/ Z2}. (53) 

For kk No we have ~~ + ~;=o or ~o =± i~5. We are 
interested in the set No n J 4. Because J 4 C UK we can 
assume K = 1 and therefore 

~4_~5==1 or ~4±i~0=1. 

Writing ~'"=rtjl. +it'" we get for (54), 

rt4'f to = 1 and t4 = 'f rt° , 
and therefore 

rt4 =1±/;0 and t4 ='frt°. 

(54) 

(55) 

Because ~~ + ~~ = 0 we also have ~i + ... ~~ = 0, but this 
means 

rti+···+rt!=ti+···+b~ and rt 1 t 1 +···+rt4t 4 =0. (56) 

With (25) we get for z=X+iY=</iK([~])' y=(I;0, 1;1, 1;2, 1;3) 
and therefore 1 y 12 = t~ + ... + t;. 
With (55) this reads 

1 y 12 = (1 - rt4)2 +rt~ +rti +rt~ +rt; - I;~. 
As we will show in Appendix E, we have 

rtf +1)~ +rt; ~ t~ 

and therefore from (57) it follows that 

lyl2 ~ (1_1]4)2 +1]~ ~ t 
This shows that we have 

</iK(NonJ4)C{ZE T4: IYI2~ 1}. 
This, on the other hand, implies that the set (L 1 

x 1: 3)/ Z2 n J 4 has the property 

</iK«1:1 x 1:3)/ Z2 nJ 4)~ {z!= T4: Iy 12 < H. 
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In the coordinates ~, this means 

(L: 1 xL: 3)/ Z2 fiJ4::J{l~1"" J4: lfo + .. 0 + ~ <~/{/{*}. 

(60) 

Since the mapping 1T~ as .§efined in (51) is a local bi­
holomorphic mapping of a:Y4 ont2 (L: 1 XL:3)/ Z2 there 
e2'~ts for_every point x E M4 c a:M4 a neighborhood 
U(xl ~n a:M4 such that 1T~IU is a biholomorphic mapping 
of U(x) onto 1T~(U)C(L:IXL:3)/Z2' which is a neighbor­
hood of the point 1T~(X) == 1T M(X) "" M~. 

L.§t us denote by U: == 1T~( U) II J 4 the intersection of 
1T~( U) with the tube domain J 4' It is clear that then 
1T~(X) "" a U. I~ there is given a holomorphic function J 
on J 4' then flU is also a h00morphic function on U. 
But then also the function fy defined as 

(61) 

wher.:.,e V == Vx: = 1T~it( U) is the preima~e of U in the open 
set U, is a holomorphic function on Vx and the point x 
is. an element of the boundary il V;: of the 0r:en ~et V~. In 
thls :!fay w!} can construct for every point X"" M4 an open 
~et V; c a:M4 such that for a giy,en holomorphic function 
f_on J 4 there exists a function fv which is holomorphic on 
V; and which fulfills the relation (61). Furthermore 
the pgint x pelongs to G I;:. It is easily seen th~t fOr' any 
two yand W such that ~n If * cf> the functions fii 
and fw are identical on Vfi W. 

Therefore, the two functions are analytic continua­
tions_of e~ch gther and th~re e~sts a l}olol!}orphic func­
tionfon VU W such that flii ==fv andflw=fw' 

-
J..et us next introduce the union of all the sets V; in 

a:M4 , 

- -J 4: == U~ V;. (62) 
xEM4 

By construction, ]4 is an open set of the manifold a:M 
and because it is connected it is a domain. It also 
follows immediately that there exists for every func­
tion J holomorphic in J 4' a holomorphic function 1 on 
J 4 such that 

4 

(63) 

for all VCJ4 such that 1T~IV is a biholomorphic map. 
It is also clear from the construction that if c aJ-4 4' 

We can also show that the function 1 obeying the 
relation (63) is invariant under the action of the group 
of deck transformations of the covering 1T~: a:M4 

- (L: 1 x L:3)/ Z2' If we denote this group by ra: we see 
that the group ra: is isomorphic to the group r 
== r(M4' M~) and that its action restricted to M4 is ex­
actly the same as that of r. 

If therefore ~t= M4 and Vic]", is an admissible 
neighborhood !!f x, then also y Vi is _an admissible neigh­
borhood for yx and we have YXE ayV; fqr every Y"" ra:. 
To show the invariance of the function f under the action 
of the group ra: we have to show that 

- -
f,v==(yj)lv (64) 

for every Y"" ra: a~d every admissible open set V. In 
(64) the function yf is defined as follows: 

(y.f)('y):=fly-lY) for all YE]4 and ally"" ra:. (65) 
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To show the prQPerty (64) let V 2e any admissible open 
set and let Y"" V. Then y-ly"" y-1 V and therefore be­
cause of (63) and property (46), which for y"" ra: reads 

1T~oy =1T~, 

we have 

f(y-ly) = /0 1T~(y-ly) = Jo 1T~(.Y) == 1(V). 

Therefore, we get 11 v = (yf) I ii, a property which is in 
complete a~alogy to the relation (47) for the distribu­
tion T on M 4 • 

We want to finally show in this section that if the 
function J is E-n element of the set S~oc(4)' then also 
the functio!! f which is holom~rphic on J 4 has a bound­
ary value T _on the manifold M4 in the sense of distri­
butions on M4 which has the property (45), where Tis 
the boundary value of the function J on ~. 

For this we write the relation (63) as follows: 

f- - 1Tc -If-IV= Mlv Iv' (66) 

where V=1T~(VL 

If we now perJorm the limit z"" if going to the real 
boundary of V, the point 1T~(Z) approaches the real 
boundary B of V c J 4 which is a subset of the real mani­
fold M~. If therefore W is an open subset contained in 
B we know, because]"" S~OcU4)' that the right-hand 
side of (66) tends to S11lw-1TIW, Wis the image of a 
~ertain open subset W of the real boundary of the set 
V under the mapping 1T M' But this is exactly the defini­
tion of the distribution T on the open subset W c M as 
given in (45). 4 

Summarizing our results, we have shown that every 
tempered distribution T"" S I (M4 ) which is the boundary 
value of a function f holomorphic in the tube domain 
T4 , can be_uniquely extended to a distribution T on the 
mani.!old M4 which is ~ain the boundary value of a func­
tion f holomorphic in J 4' which is invariant under the 
action of the group of deck transformations of the 
covering 1T~: a:M4 - (L: 1 XL: 3)/ ~2' This also induces in­
variance of the distribution T under the action of the 
group of deck transformations of the covering 1TM: M4 
-M~. 

It is straightforward that all that we have done for the 
space M4 can be immediately written down and with 
almost no change for any direct product M~ = M4 x· •• 
XM

4
• The tube domain T4 then becomes the domain 

T~ = T 4 X· •• x T 4 and all steps can be repeated for this 
domain. 

As a result of this, we then get that the Wightman 
distributions Wn (1;u ••• , 1;n)where 1;; =X;+l - Xi' which 
are tempered distributions in 5 I (~) and boundary val­
ues of functions holomorphic in the tube domainJ~ 21, 

can be up.iquely extended to distributions inD I (~) which 
are on ~ bo_undary values of functions holomorphic in 
the domain J ~ . 
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APPENDIX A: THEOREM OF ASCOLI 

In this Appendix we shall repeat some definitions and 
the theorem of Ascoli which we applied in Sec. I of 
this paper. 

Let F be a Banach space with norm II /IF and E a 
metric space. We denote by CF(E) the space of all con­
tinuous mappings from E into F. Let H be a subset of 
CF(E). 

Definition: H is called equicontinuous on the space E 
if for every XI'=" E and for every E> 0 there exists a 
<') > 0 such that /If(x) - f(y)/iF < E for all y E E with 
dist(x, y) < <') and for all fE H. 

We call H uniformly equicontinuous if there exists 
for every E > 0 a <') > 0 such that IIf(x) - f(y)/iF <E for all 
x, y E E with dist(x, y) < Ii and all fE H. 

The theorem of Ascoli gives a simple criterion for H 
to be an equicontinuous set. 13 

Theorem (Ascoli): Let F be a Banach space, E a 
compact metric space, He CF(E). If H is relatively 
compact then H is equicontinuous. 

APPENDIX B: A LEMMA 

Lemma: Let T4 be the field theoretic tube domain and 
let f(z) be a holomorphic function on T4 • Assume there 
exist constants C', a', {3' ? 0 such that If(z) I"" C' (1 
+ 1 Z 12)0<' dist(z, OT4)-W, Then there exist constants 
C,a,{3?O such that 

I Rf(z) I"" C(l + I z 12) 0< dist(z, 0 T 4)"8 

where Rf(z) = f(Rz). 

Proof: Let z=x+iy with YE V+. Then we have 
dist(z, aT 4) = c( yO -I y I), where c is some constant we 
are not interested in. Now let z' = Rz = x' + iy'. Using 
the definition of the operator R we get 

,_ -y(r-f)+2x(x'Y) 
y - (r_yZ)2+4(x.y)2 

For the component yO', this reads 

0' _ - yO(r - y2) + 2xO(x. y) 
y - (r_y2)2+4(x.y)2 

(Bl) 

(B2) 

Let us first look at the numerator N of the expression 
(B2), 

N = _ yO(r _ y2) + 2xD(xy). 

This can be written as 

N=yOy2 + yO~ + yO Ixl 2 _ 2xox .y. (B3) 

For the space part of the vector y', we get from (Bl) 

, __ y(r _ y2) + 2x(x. y) 
y - (X2 _ y2)2 +4(x. y)2 

Let us again look at the numerator N of expression 
(B4). It can be written as 
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(B4) 

N=yy2 +M, 

where M=2xxDyo - 2x(x,y) _y~ +ylxI 2• 

We claim that the following inequality is true: 

yO~ +yOlxl2 _ 2xDx·y? I MI. 

(B5) 

(B6) 

This is true because this inequality is equivalent to the 
following: 

(y~ _I y 12)(x~ + I X 14 - 21x 12~)? 0, 

which is true because y~ > 1 y 12. 

Therefore, we get from (B6) and (B3), 

0' II yOy2_lyly2+(yO~+yOlxI2_2xDx·y_IMI) 
y - y? (r_ y2)2+4(x·y)2 , 

and therefore 

(B7) 

Because y2 = y~ _I Y 12? (yO _I Y 1)2 and (r _ y2)2 + 4(x. y)2 
"" 5 1 z 1 4 we get 

(B8) 

To get an upper bound for 1 z' 1 we only have to look at 
the denominator D of the expressions in (Bl), 

(B9) 

Because 

(BI0) 

for all z = x + iy with y2 > 0 and yO> 0, we get for (B9), 

D? (y2)2 ? (yO _I y I )4. (Bll) 

From (Bll) and (Bl) we then get 

I z' I"" 61 Z 13(yO -I y 1 )"4. (B12) 

Putting together the inequalities (B8) and (B12) gives 

(1 + 1 z' 12)0<' (yO' -Iy' 1)"6' "" C(l + 1 z 12)40<'+28' (yO -IY 1 )-3W-80<' , 

where C = 28 0<' +1 58'. But this proves the lemma. 

APPENDIX C: THE MANIFOLD <&M~ 

We want to prove that the complex manifold o:~ de­
fined in (22) is simply connected. It turns out that 
O:M~ is a special case of a more general class of pro­
jective varieties which all share this property. The 
proof I will now give is essentially due to Oka. 

Theorem: Let 0:'+2 ={z = (ZO, ••• ,zn+J, Zi I'=" o:} and 
let be 0: 1P,+l ={[z] = [(zo,"" Z'+l)]} be the (n + I)-di­
mensional complex projective space. Let f: 0:'+2 - 0: 
be a homogeneous polynomial. Let V be the following 
subset of 0: IP,+l: V: = {lz] F 0: IP,+l :f([z]) = O}. Then V 
is simply connected. 

Proof: Consider the Hopf fibering22 1T: S2,+3 - 0: IP"+l, 
where 1T is the following mapping: 

1T: z - [z] = [(zo, ••• , Z'+l)]' (Cl) 

where z F S2,+3; that means z = (zo, ••• , z,+J fulfills the 
equation 

1 Zo 12 + .•• + I Z'+l 12 = 1. (C2) 

From the definition (el) of the mapping 1T it follows that 
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all points ei'llz,:-: Sln+3, where 0 ~ ({i ~ 27T, are mapped 
under 7T onto the same point [z],:-: <r 1Pn+1. Therefore, 
the fiber of the above map is just the one-dimensional 
unit sphere 51' It is known that (Sl"+\<rlPn+l, St,lT) 
defines a fiber bundle. Next consider the set W defined 
as 

W: = {z,:-: <r 2'+2 :1(z) = o}. 

That means W is the kernel of the polynomial f in 
<r 2

,+2. If we then define the set K by 

K: = wn S2n+3, 

we get a restricted fibering23 

7TIK:K- V, 

(C3) 

(C4) 

(C5) 

whose fiber again is 51> because f was homogeneous in 
z. If we now write down the exact homotopy sequence24 

for the fibering 7T : K!.l V, we get 

••• -7Tk(SJ -7Tk(K) -1T
k
(V) -7Tk_1(SJ 

- 7Tk-l (K) - 7TH (V) •.• , 

• • • - 7T1 (51) - 7T1 (K) - 7T1 (V) -7To(SJ. 

It is known from the work of Milnor25 on singular 
points on complex hypersurfaces that the space K is 
(n -1) connected which means24 that 

7T k (K) =0 for all k"" n - 1, 

(C6) 

(C7) 

where 7Tk(K) denotes the kth homotopy group of the space 
K. Because 51 is path connected we have 7To(Sl) = 0, 

Therefore, we get from (C6) that 

is an exact sequence, but from this it immediately 
follows that 7T1(V)=0, which means V is simply con­
nected if n?! 2. 

(C8) 

Because <r~ is just the space V for n =4, and f is the 
homogeneous polynomial f(z) = z~ - zi - ... - z~ + z;, 
we get the desired result. 

APPENDIX D: PRINCIPLE OF "RECOLLEMENT 
DES MORCEAUX"26 

Let M be a differentiable manifold and let {Ux, 1\ E L} 
be an open covering of M. Let us assume that for every 
1\ E' L there exists a distribution T). on U). with the 
property that for every pair 1\,11 <=" L the restrictions of 
T). and T" to the open set Ux n U" are equal. Then there 
exists an unique distribution T on M such that for every 
I\<=" L the restriction of T to U). is exactly the distribu­
tion T).. 

APPENDIX E: AN INEQUALITY 

Let w=(wu "" wn ), V= (vu "" vn)r=: R" be two vec­
tors with [wI2=lv!2andw,v=w1V1+",+wnvn=0. Then 
we have ~ ~ vi + ... + V,-l' 
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Proof: Assume ~ > vi + ... + v;;"u then also v~ > ~ 
+. " + ~-l' but then also because of the Schwarz inequal­
ity, the following is true: 

v;.~ > (vi +, , , + v;.-1) (wi +. " + ZJ._l)?! (V1W1 +., . 

But this is a contradiction to IV· V = O. 
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In this paper, assuming that one knows one of the singularities SI of the function J(z) and its power series 
expansion on a domain D of the complex plane, we introduce some sequences of Gammel-Baker 
generalized Pade approximants with the same type of singularity Sl. Two examples are given: One concerns 
the convergence acceleration of approximations for functions with a logarithmic singularity; in the other 
one, a physical application to optical polarizability is discussed. 

1. INTRODUCTION 

Let us consider the power series 2]:'o/nz-n, conver­
gent for every zED, in the complex plane (t. In this pa­
per, we assume that one of the Singularities of the func­
tion/(z) with the Taylor expansion2]::t"nz-n on Df is 
known and we use this extra information to build se­
quences of Gammel-Baker generalized Pade approxi­
mants with the same type of singularities. We also give 
an example of approximating functions able to cope with 
two known singularities of I(z). 

2. DEFINITION OF THE NEW APPROXIMATING 
FUNCTIONS 

A. Convolution and approximation 

Let us consider the following equality: 

I(z)= k(z}®g(z} =-2
1 

. ( t"lk(t}g(z/t)dt, 
1Tl J r

k 

(1) 

where r k is a contour enclosing all the singularities of 
the function t -Ik(t). We now prove that Eq. (1) defines 
the complex convolution of the kernel k(t} with the func­
tion get}. 

Lemma 1: If 

(i) k(t}= tknrn 
n=O 

(2) 

~ 

(ii) get} = 2] gn t-n 
n=O 

for tEDg={t: It I >ug=lim sup</gnl)l/n}, (3) 
n-~ 

then 

~ 

I(t} = 2] kng i -n 
n:.::O 

for tEDf={t: It I >uf =lim sup(lkngnl)I/n}. (4) 
n-~ 

Indeed, from (1), Dk is inside the domain with boundary 
r k , and including the origin of the Z-l plane, we can then 
deform the contour of integration in (1) so that it lies in 
Dk and it is now possible to choose z such that for t E rl<' 
we have Z/tE D,I• Under these conditions, we can sub­
stitute the series (2) and (3) in (1) and this gives 
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and, from the Cauchy criterion, this series is conver­
gent for z E Dj" 

Let g'" met) be a Pade approximant of the power series 
2]~ g.t- J and letjn,m(z) be the following expression: 

}=O J 

j ... m(z}=~ r t-Ik(t}gn,m(z/t}dt. (5) 
21Tz J r 

k 

Lemma 2: jn,m(z} is a form of Gammel-Baker ap­
proximantl for a product kernel. Making a partial frac­
tion decomposition of gn''''(z/t) in (5) gives, for z suffi­
ciently large, 

n. 
jn,,,,(z) = ~ cx,k(z/{3,) (6) 

i=l 

and the result follows by analytic continuation to smaller 
z. We give now some examples of (1) and (5) for differ­
ent kernels k(z). 

(7a) 

(7b) 

(7c) 

The Pade approximants correspond to the particular 
kernel kl(t). It is easy to build similar examples but 
the following ones run in opposite direction since they 
require integrations rather than derivatives. 

Example 4. k4 (t) = log(1 - r1tI , f
4
(z) = f~ t -lg(t) dt , 

• 

(Sa) 
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Example 5. k5(t) = f.~p log-1 P dP, 
t -p 

f 5(z) = J.~ q-l f ~ t -lg(t) dtdq , 
z • 

Example 6. k 6(t)=t a ~~:~ 1 dp, f 6(z) =za i~ t-<l+alg(t) dt, 

j6n,m(z)=za l~ t-(l+algn,m(t)dt, /3>0. (8c) 
II 

Lemma 3: If k(t) has, at the point t = 1, a singularity 
of the s type, then every simple pole of gn, m(t) gives a 
singularity of jn, m(z) of the s type. Indeed, we can also 
write (1) in the form (provided that the integral along the 
infinite circle is zero) 

f(z) =g(z) ® k(z) =~ f r lg(t)k(z/t) dt 
7rz r g 

and, in the same way, we have 

The result then follows from the partial fraction expan­
sion of R"n.m(t). The six previous examples give a good illus­
tration of Lemma 3. For the properties of the Gammel­
Baker generalized Pade approximants see Ref. 1. 

B. New approximating function 

Let ~ :'"lfnz-" be the power series expansion on D f of 
a functionfiz) which has a singularity Sl at the point Zl 
of the complex plane and let k(z) be a kernel with the 
same type of singularity at the point z = 1 and such that 
k(z) = ~:=O k"z-" for zED k' Now, if we choose for g(z), 
the function with the power series expansion 
~:=ofnk~lz-n, then from (1) and (4) we havefiz)=k(z) 
® g(z) and from (5), the function i",m(z) = (1/27Ti) fr ["1 

x k(t)gn,m(z/t) dt, where gn,m(z) is a Pade approxi~ant 
of g(z), is an approximation of fiz) which according to 
Lemma 3 has a Singularity of Sl type at every z i where 
Zi is a simple pole of gn,m(z). 

Lemma 4: If k(z) =fiz) , theni",m(z)=fiz) for every 
integer n, m with n'* 0. Indeed, for k(z) = fiz), we have 
g(z)=(1_z-1)"1 and as it is known, for this particular 
g(z), g",m(z)=g(z) V n,m, n,*O. 

The case where the known singularity of fiz) is a pole 
of multiplicity m'" 1,2, . .. is not difficult and the ex­
amples in (7) show the type of kernel (2) to use. From 
now, we consider functions fiz) with one essential sin­
gularity and kernels of the type 

where f3 is an arbitrary positive real number. 

Using (8a), (8c), and the previous definition of g(z), 
it is easy to prove that the approximants jn,m(z) are 

466 J. Math. Phys., Vol. 18, No.3, March 1977 

( 9) 

where the integrand denotes the [n, m] Pade approximant 
of the power series expansion of the derivative (a/at) 
x [t Bfiz/ t)], 5BO being the Kronecker symbol. 

Remark: Let us assume that one knows r singularities 
s1' S2' ... ,sr' of fiz) and that one can write the power 
series fiz) = ~ :=of"z-" as fiz) = ~ ;=J;(z) with !;(z) 
"'~ ;.ofk,;Z-k such that fj(z) has a singularity of the s type, 
then the previous results can be applied to every com­
ponent f;(z) of fiz). We will give an example of such a 
possibility with r= 2 in Sec. 4. 

3. APPLICATION TO CONVERGENCE ACCELERATION 

A. Numerical tests 

We consider two particular functions with a logarith­
mic singularity and we compute from (9) f}O(z) and 
j~,l(Z). Let us begin with 

fiz) = z2{(1_ Z-l) log(1- Z-1) + Z-l}= f... __ l_z-<n-ll . 
~ n(n+ 1) 
n;} 

The logarithmic singularity of fiz) suggests that we take 
f3 = 1 in (9), so we have 

1 ( 1 )-1 [a ~ (z ))Jl'O 1 ( 2t )-1 f 1,O(z) "'- 1-- - t/l- =- 1--
2 3z ' at t 2 3z ' 

- 3z ( 2) fi'O(z) = -Tlog 1 - 3z ' 

1 1 1/2 - 1/12z [a ( (Z)I\J 1,1 1 1 - t/12z 
f'(z)= 1_1/2z ' attfT~ "'21-3t/4z' 

- 1 [ 32z ( 3 )J fi,l(Z) = 18 1--3-log 1- 4z . 

Table I allows us to compare the Pade approximants 
and the approximants in (9) with fiz) for some values of 
Z-l. 

We now consider 

~ 1 -2<n-1) 

= ~ (2n -1)(2n+ 1) z , 
n:::l 

still with f3 = 1, it becomes 

1 ( 1 )-1 f 1,0(z)=-1--2 , 
3 5z 

These results (see Table II) are consistent with the 
conjecture of the previous section. 
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TABLE I. 

Z-I fl,o(z) ll'o(z) f l1(Z) 1l,I(z) f(z) 

1 0.750 0.829 0.833 0.877 1 

-1 0.375 0.383 0.388 0.387 0.386 

-2 0.300 0.318 0.333 0.327 0.324 

-1 0.600 0.608 0.638 0.612 0.613 

B. Numerical approximation of Eq. (9) 

The integral in (9) is of the typelf= j~\ri\x)dx (r=(3 
- 1) and it requires in most cases a numerical approxi­
mation that we now discuss. 

Let us consider the following integral: 

JT,Sf= J~ x r(l-xYi\x) dx, r, s>-1. 

As it is well known, 2 an approximation I~,sf of r,sf of 
degree d= 2n -1 (that is exact for the polynomials of 
degree ds 2n - 1) is 

where: 

(10) 

1. The abscissas t~:~ are the real roots in the interval 
(0,1) of the Jacobi polynomial H~'S(x) of degree n, such 
that 

J >T(1_ x)SH~,S(x)H;;S(x) dx= 0nm' 

( 
(r+s+l)(r+s+2)"'(r+s+n) )1/2 

x (r +1)(r+ 2)'" (r+n)(s + l)(s +2)' o. (s +n) 

2. The weights W [,.; (i = 1,2, ..• ,n) are the Christof­
fel numbers 

/
"-1 

W."S=1 "'(HT,S(t~,S»2 z'=l 2 n 
'," ~ 1.1 ,tn, " ... ,. 

For instance, for r =(3, s = 1, we have 

H~,1{X) = [«(3 + 1)(/3 + 2)]1/ 2, 

Ht,1(X)=( (/3 + 2~«(3 +4) t2[(3 + 1- «(3 + 3)x] , 

TABLE II. 

f(z) 

±1 0.416 0.450 0.444 0.464 0.500 

±~ 0.35087 0.35200 0.35168 0.35205 0.35208 
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~'1(X)=«(3 +311«(3 +6)y/2{x2[«(3 +1)«(3 +2)+6(/3 +2)+6] 

- 2x(/3 + 2)(/3 + 4) + (/3 + 1)(/3 + 2)} , 

and this gives 

ti:i= (/3 + 1)«(3 + 3)-1, Wf,-l= {(3 + 1)-1«(3 + 2,-1, (lla) 

t8,1- (/3 +2)(J3 +4)+ [3(J3 + 2)(13 +4)]1/2 
1,2- (J3 + 1)«(3 + 2) + 6(J3 + 2) + 6 ' 

t8,1= ({3 +2)({3 +4)-[3({3 +2)({3 +4»)1/2 
2,2 «(3+1)«(3+2)+6(/3+2)+6 ' 

(lIb) 

W~:21={(/3 + 1)«(3 + 2) 

+ ({3 + 1)(J3 + 2)[(3 + 1 - ({3 + 3)~: ;)2/2}-1, i = 1,2. 

We hope to publish in the near future a program for com­
puting any ti'~ and W;,'; (see Ref. 4). In many cases, it 
is useful to include i~ the approximation of I r, "f the val­
ues of the function at the ends of the interVal. 

Lemma 5: The following expression includingf(O) is 
of degree d = 2n: 

n W r+l t s 
W1'I'1,s=B(r+l s+l)-" --.l..!L-. (12') 0," , LJ t1'.+1,8 

i=l It n 

[B(r,s) denotes the usual beta function.] Indeed, we 
have, assumingfE C~{O, 1), 

and from (10), 
(13) 

(13' ) 

The comparison between (13) and (13') gives 

j=0,1,2, ••. ,2n-1. 

(14) 

Now, from (12) it follows that 

00 f(1)(O) n 
1 T,"f = W T, "f(0) + ""--- "" W 1*1,s(t,..1,S)J-l 2n 0," L.J j! L...J k.n k,n . 

j=<J k=l 

(15) 

The right-hand side of (14) being invariant under the 
transformation r I- r+ 1, j I- j - 1, we have the equalities 

n 

6 W ,..1,S(tr+1,S)j-l_B( '1 1) '-12 2 
k,n kn - r+J+ ,s+ ,J-, , ... , n. 

k=l ' 

(14') 

The comparison between (13) and (15), taking into ac­
count (12'), (14') completes this lemma. The assumption 
fE C~(O, 1) was made only in order to Simplify the 
proof. 

Lemma 6: The following approximation including f(l) 
is of degree d = 2n. 
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n WT,S+l 
jT,'1=W T,S+1/(1) + '" i,n l(tT,8+1) 2n O,n L.J 1 _ t T,s+1 i,n , 

1=1 i,n (16) 
n Wr.s+1 

W T 
.... 

1 =B(r+1 s +1)- '" i.n (16') a , L.J 1 _ t') 8~1 • 
;=1 't n 

The proof is the same as for Lemma 5 either by using a 
Taylor series expansion near x = 1 or by changing x into 
(1 - x) and by interchanging r and s. 

Lemma 7: The following approximation including 1(0) 
and/(1) is of degree d= 2n·d: 

LT,s 1= W T+l!S+I/(O) + W "'l!S+lE('1) 
2n+l O,n,O O,n,l J 

n W""'1,s+1 
+ '" i , n I(tr+l. S+I) L.J t"'l. s+l (1 _ t",i, s+1) I. n , 

i=l itn itn 
(17) 

(17') 

n W r+l,s+! 
W 1'+1,8+1_ B(r + 1 s 1) '" k, n 

O.n;l - , + - L.J 1- t"'l,s+l • 
k=1 k, n 

(17") 

The equality of both Taylor expansions (17) and (13) for 
j=O, j=1 is trivial, taking into account (17') and (17"); 
for r~2, the coefficient of/(i)(O)/j! in (17) is 

n WT+lrS+l(tT+l,Sl-l)j"l 
W"'I,s+1 + '" k,n k.n 

0, n;1 L-" 1 _ t",i.8+1 
k=l k, n 

-A (1 t"'I, s+l)J-l 
=B(r+2 s +l)-u W"'I,s+1 - k,n 

, k=1 k, " 1 _ t1'+I,9>1 
- k.,n 

j-2 n 

=B(r+ 2 s + 1) _ ~~ W"'I,8+1(t"'l,s+I)1 
, 1=0 k=l k,n k,n 

j-2 

=b(r+2,s+1)-~B(r+l+2,s+2), 
1=0 

j=2,3, ... ,2n+1, 

where we used relations (14). The result follows then 
from the equality. 

J-2 

B(r + 2,s + 1) - ~ B(r + l + 2,s + 2) = b(r +j + 1,s + 1) , 
1=0 

j=2,3, ... ,2n+1 

is easy to prove, since 

J-2 
= f:xr+J(1_ x)S dx + ~ f:X'+ 1+1 (1 _ X)8 d:x 

1=0 

J-2 
_ ~ f:X7'>/+2(1_ x)Sdx 

1=0 

1 J-2 1 
= fo x ""i(l - x)S dx + ~ fox1'+ 1+1(1 _ X)8+1 dx • 

1=0 

We now come back to (9) which can be written 
f:tflq;n,m(z/t)dt. Since, for Z-1 little enough, the inte­
grand differs from a polynomial to the order n + m + 1, 
we have to take a quadrature formula of degree d>n+m 
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+ 1 so as not to change the order of approximation. 

_ As an illustration, let us consider the approximant 
I 1.I(Z) in Example 1 of Sec. 3 for Z·1= 1, 

1-1 1(1) 1 1112 -t , =6 a 4- 31 dt=0.8770. (18) 

Formula(17)forr=s=0, n=1 (t~1ooi, Wt:i=d/6, 
W~\o = W~~ 1,1 = 1/6) is 13°'1= (1/6)f(0) + (1/6)[(1) + (2/3}f(i) 
and applied to (18) it becomes p. 1(1) == 0,9. For n = 2, w~ 
have 

150. Of = 0.0834(j(0) + f(l) 1 + 0 .4166(j(0 .2764) + f(O. 7236) J 

and we obtainjl.l(I)=0.8793. 

4. APPLICATION TO OPTICAL POLARIZABILITY 

We do not intend here to make a contribution to the 
theory of optical polarizability, but only to use this the-
0ry in order to show an interesting application of the 
new approximants considered in the previous sections. 
All the data are borrowed from a paper by Langshoff 
and Karplus.5 

A. Summary of the problem 

The dynamic dipole polarizability of an atomic system 
is defined by the Kramers-Heisenberg formula (P 
means the Cauchy principal value), 

f
~ df/dE 

a(z) ",p -2--2 dE, 
!l E -z 

df / dE = "'L:~ofno6(wno - E) + dg/ dE, dg/ dE corresponding to 
the continuum part of the spectrum with a threshold at 
w~. Thus, on the real positive axis, a(z) has poles for 
0< ..a) < Wro and a cut for ..a)"' Woo' Let I-lk be the Cauchy 
moments 

00 dif ~ I foo dg/dE. " =f C(2k+2)_ dE. = ~ nO + dE. 
I"'k dE. L...J ~ W(E.)2k+2 

o n=l nO Woo 

for W < WOo a (w 2
) has the power series expansion a (w 2

) 

== ~;=oj.lkW2k and the physics allows us to compute a finite 
number of moments iJ. k ; the problem is then to approxi­
mate a (z) with these ones. Of course, the Pade approx­
imants are an interesting tool for solving this problem 
and a thorough discussion is given in Ref. 5. 

In order to use the results of the previous sections and 
to find approximations with poles and a cut on the posi­
tive real axis we write a(w2)=a1(w 2) +a 2(w

2) with 

and we consider the approximations (iln.m(w 2 )=ar· m(w 2
) 

+(iI~,m(w2), where a;"m(w2) is a usual Pade approximant 
of the power series a l (w

2) and (iI~.m(w2) is an approxi­
mation of a

2
(w 2 ) obtained with the help of (9). Of course, 

we have to determine the (n + m + 1) parameters k i and 
the exponent (3 from (n + m + 2) experimental data. As we 
shall see, this is not always possible. 
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The first literal expressions are 

1. n= 1, m=O 

with 

krPo=w 2 k~I1-~_1 {3 11-0 1-ko_w2 
k111-1 10' k111-1 - la' (3+1!l; 1-kl - ~, 

2. n= 1, m= 1 

(19) 

(19') 

II 2) 2 kolJ.O+(k111-1-kol1-oWi~)W2 2 II a-I {3(1-ko)11- 0+[(1-k1)(1+{3)11-1- (1-ko)3l1- ow:;'2]w
2
t dt 

a '(w =WlO 2 2 +w~ t 2 2t 
WlO-W a W~-W 

The I rtJ and wno are respectively the oscillator strengths 
and transition frequencies of the real system. 

3. n=2, m=1. 

Here we put 

g 1= 11- i k i' X 1= 11- i (1 - k i)' i = 0, 1,2,3. 

with 

b - glg2- g0g 3 
1- gog2- g i 

c = ({3 +1)({3 +2)X1x 2-{3({3 +3)XOX3 
1 {3 ({3 + 2)XaX2 - ({3 + l)xi ' 

C ({3 + 1)({3 + 3)X1X3 - ({3 + 2)2x; 
2 {3 ({3 + 2)XaX2 - ({3 + 1)2xi 

(21) 

The following conditions determine the four parameters 
k j : 

110 120 110 120 
go=7+7' gl= w4 + w4 , 

10 20 10 20 

g2=-(b 2g0+b1g 1) , g3=-(b2g1+b1g 2) 

while (3 is a solution of the equation 

C2w! + C1w; + 1 = 0 . 

These results need the following comments: 

(21') 

(21") 

1. Since the literal expressions of an, m(w 2
) are to be 

known (because of the existence of the k i parameters), 
the method is practically limited to the approximants of 
lower order (m = 0, 1,2, n = 0,1,2) but if the conjecture 
of the second paragraph is valid, these approximations 
could be better than the approximations with the usual 
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(20) 

(20') 

Pade approximants of higher order. We are already 
sure, provided that the system of k j ,{3, parameters has 
a solution to obtain exactly some (one or two) transition 
frequencies and the corresponding strengths of the real 
system. 

2. Let us assume that the poles of the integrand in 
a~m(w2) are simple, then a necessary condition that the 
system of (m + n + 2) parameters k j ,(3 has one and only 
one solution, is m = n - 1 for a~,m(w2) has n poles (iden­
tified with transition frequencies) and this leads to 2n 
relations by identifying the corresponding residues with 
the oscillator strengths. Taking into account the condi­
tion for obtaining w~, we then have 2n + 1 = m + n + 2, that 
is m =n-l. 

3. Of course, {3 > 0, but besides, (3 must be such that 
the branching points of a~,m(w2) exist only for w ~ w~. 

B. Polarizability of the atomic hydrogen 

The data borrowed from Ref. 5 are 

11-0= 4.5, 11-1 = 26.5833, 11- 2= 172.188, 11-3= 1162.09, 

wlO =0.3750, / 10 =0.4162, 

w20 =0.4444, 1 20 =0.07911, w~=0.5. 

The solution of system (19') is then 

ko=0.65769, k 1=0.79171 , {3 =8.86644 , 

and this leads to 

-10 2 0.4162 f1 t7
•

866 

a ' (w ) = (0.3750)2 _ w2 + 3.4143 a 0.25 _ w2t dt. 

The solution of (21') is 

kO=0.746715317 , k l =0.868013921 , 

k2= 0.928 80124, k3 = 0.960 574 952, 

and Eq. (21") has two roots, {31 = 76.156 82120 and 
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{32=1.906814694. For{3=i32 , the equation 1+C1 w2 +C2w
4 

= 0 has a root lower than w~, so we must take {3 ={31 and 
for this choice, we have 

C1 = - 5.635122061 , C2 = 6.54048832 , 

{3xo= 86.80210316, {3 C1XO + ({3 + l)x1 = -218.426 053 6. 

Finally it becomes 

- 2 I( 2) 0.4162 0.07911 
a' w = (0.3750)2 _ w2 + (0.4444)2 _ w2 

(23) 

We now compare i'i!1,O(W 2) with a 2,l(w 2) which, accord­
ing to Ref. 5, represents exactly a(w 2) for w <ww Com­
puting with the help of (16) for n = 2, some easy calcula­
tions lead to the approximation 

i'i!41,O(W 2) 0.4162 + 3 4143{0.030 676 7 
(0.3750)2 _ w 2 ' 0.25 _ w 2 

0.072 479 2 0.009634 4 ~ 
+ 0.25 - 0.889 58w 2 + 0.25 - 0.644 07w 2 J . 

(22') 

A look at the following table shows that the agreement 
is pretty good: 

w 0 0.1 0.2 0.3 0.35 0.3750 

i'i!!,O(W2) 4.5 4.7840 5.935 10.367 25.731 00 

a 2,l(w2) 4.5 4.7842 5.941 10.521 24.349 139.8 

On the imaginary axis, y2= _w2, it is also easy to see 
that results are very good. 
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5. CONCLUSION 

To conclude, we discuss the advantages and the draw­
backs of both approximantsfn,m(z) and!n,m(z) for a func­
tion f(z) whose Singularity is known. 

1. The Pade approximantsf",m(z), relative to!n,m(z), 

are easy to compute but they are only meromorphic 
functions and they do not include any information on the 
known Singularity off(z). 

2. In the opposite direction, the approximants f",m(z) 
convey this information which intuitively ought to make 
them a better approximation, but they are more difficult 
to compute and in most cases they cannot be computed 
exactly. Besides, it seems difficult to state some use­
ful convergence criteria. 

Thus, the choice betweenf",m(z) and!'" m(z) depends 
on whether one wants to pay the price in introducing 
extra information in the usual approximations f n, m(z). 
It seems that it could be interesting to pay this price 
for solving some problems in theoretical physics. 

Of course, when no singularity off(z) is known, the 
choice of the Pade approximants is the best one. 
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In this paper we formulate nonrelativistic quantum electrodynamics in a local and manifestly gauge 
invariant manner. This is accomplished by using the electromagnetic field strengths, rather than potentials, 
to describe the electromagnetic field and local currents, rather than canonical fields, to describe the matter. 
The exponentiated currents and field strengths form a group, whose representations can be studied using 
the Gel'fand-Vilenkin formalism. The currents and electromagnetic field strengths can be represented on a 
physical Hilbert space having positive norm. (The necessity for an indefinite metric does not arise here.) 
Furthermore, the classical equations of motion hold as operator equations on this Hilbert space. In this 
formulation, the requirement of gauge invariance is essentially replaced by imposing the Maxwell initial 
value equtions, which in turn lead to constraints on systems of GeI'fand-Vilenkin mUltipliers. 

I. INTRODUCTION 

In the standard formulation of quantum electrodynam­
ics, one begins by using potentials A(x, t) and rp(x, t) to 
represent the electric and magnetic fields, 

aA(x, t) 
E(x,t)=- of -Vrp(x,t), (1. 1) 

B(x, t) = V XA(x, t); (1. 2) 

then the potentials are quantized. The choice of poten­
tials is not unique. Classically, the same E(x) and B(x) 
fields result from any pair of potentials related by the 
transformation 

, ClX(x,t) 
rp (x, t) = rp(x, f) - -o-f - , 

(1. 3) 
A'(x, t) =A(x, f) + VX(x, f), 

where X can be a rather general function of x and t. 
This fact expresses the gauge invariance of electro­
dynamics, which is a necessary requirement on the 
theory since E(x) and B(x) are physical observables 
while A(x) and rp(x) are not. 

In quantum theory the situation is more complicated, 
as can be illustrated by considering the following two 
specific choices for the vector potential. In the Coulomb 
gauge. [(V, A)(x) = 0], the commutation relations of A(x) 
with A(x) have the nonlocal form i 

[ • i 1 
Al(x,t), AJ(y,t)]=iOljO(X- y)- 47T °XloYj Ix -yl 

(10 4) 

Furthermore, A(x) turns out not to be the space com­
ponent of a Lorentz covariant 4-vector fieldo In the 
Lorentz gauge [(V, A)(x) + orp(x)/at = 0], on the other 
hand, the commutation relations among the components 
of the free field AI' (x) = (A, rp) are locali 

[AI' (x, xo), Av(Y, Yo)] 

= - 2gl'v f (~:~3 exp[ik '(x - y)] B(ko) O(k2
), (1. 5) 

andAI'(x) is a Lorentz covariant 4-vector. However, the 
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operators must be represented on a linear space having 
an indefinite metrico It is then necessary to select 
states with positive norm to form a Hilbert space. 2 

This state of affairs is inconvenient for general dis­
cussions of gauge invariance. One must require the 
physical observables [E(x), B(x)], acting on the physical 
Hilbert space, to be the same in different gauges, but 
one cannot in general represent two different vector po­
tentials on the same Hilbert space. Thus, it would be 
useful to have a manifestly gauge invariant formulation 
of quantum electrodynamics. 

Manifestly gauge invariant formulations of quantum 
electrodynamics have been discussed previously by a 
number of authors. For example, DeWitt3 and 
Mandelstam4 showed how quantum electrodynamics can 
be written in a formally gauge invariant way by introduc­
ing path dependent fields. These, however, result in a 
nonlocal quantum field theory. 2 

An alternative approach was outlined by one of the 
present authors who showed,5 again on a formal level, 
that the electrodynamics of charged scalar mesons 
could be written in a local and manifestly gauge invari­
ant way if the mesons were described using local cur­
rents. In exploring this idea further here, we shall 
consider nonrelativistic particles interacting with an 
electromagnetic field, 6,7 because in this case much 
more is known about the properties of local currents. 

We begin by considering a single species of charged 
particle. A system of spinless, nonrelativistic particles 
can be describedB using the number density of particles 
p(x) and the particle flux denSity J(x). We use E(x) and 
B(x), rather than potentials, to describe the electro­
magnetic field. The fields p(x), J(x), E(x), and B(x) 
are physical observables and hence gauge invariant. 
This set of operators generates a closed but nonlinear 
algebra when commuted at equal timeso The interaction 
appears explicitly in the algebrao The Hamiltonian that 
gives the operator form of the classical equations of 
motion is formally the same as the free Hamiltonian, 
with the matter part of the free Hamiltonian written in 
terms of currents. Thus in this model what changes in 
passing from the free to the interacting theory is the 
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structure of the equal time algebra of observables, 
rather than the form of the Hamiltonian. This model 
thus provides an even more striking example than 
Haag's theorem9 of the dependence of the equal-time 
algebra on the interaction, for in this case the structure 
of the algebra itself changes rather than just the repre­
sentation that must be employed. 

Since the equal-time algebra of p(x), J(x), E(x), and 
B(x) is nonlinear, it is not a Lie algebra. A Lie algebra 
results if the variable J(x) is replaced by the total mo­
mentum density of the system, 

P(x) =mJ(x) + ·HEXB - BXE)(x). (1. 6) 

The Lie algebra of p(x), p(x), E(x), and B(x), in con­
trast to the nonlinear algebra of p(x), J(x), E(x), and 
B(x), does not contain the coupling constant or other 
explicit vestige of the interaction, which instead reap­
pears in the Hamiltonian. In order to obtain the correct 
commutation relations for this Lie algebra, the initial 
value equations 

(V, E)(x) = ep(x), 

(V, B)(x) = 0 
(1. 7) 

must be imposed at a fixed time. The equations of mo­
tion insure that Eqs. (1. 7) hold at all subsequent times. 
The Lie algebra can be exponentiated to form a group 
whose representations can be described in terms of a 
measure and a set of multipliers using the Gel'fand­
Vilenkin formalism. 10.11 When one works with the group 
rather than the algebra, the initial value equations (1. 7) 
get replaced by a set of constraints on the Gel'fand­
Vilenkin multipliers. These constraints on the multi­
pliers are the conditions which replace gauge invariance 
when the theory is formulated in a manifestly gauge in­
variant fashion. Finally, we note that this algebra can 
be generalized to include a magnetic charge (monopole). 

When considering more than one species of charged 
particle, one must introduce currents Pi (x) and JI(x) 
to describe each of the i different species of particle. 
These fields, together with E(x) and B(X), generate a 
closed nonlinear algebra under equal time commutation. 
A Lie algebra can be generated if each variable Ji(x) 
is replaced by 

Ji(x) + (el/mlc) Pi(X) I (dy /47T) I x- Y 1-1v X B(y). (1. 8) 

However, this algebra is nonlocal. The quasilocal 
operator 

A(x) = f (dy/47T) Ix - y 1-1v X B(y) (1. 9) 

behaves like t{le vector potential in Coulomb gauge, in 
that A(x) and A(x) commute as in Eq. (1. 4) and 

aA(x) 
B(x)=VXA(x), EJ.(X)=-~, (V·A)(x)=O. (1. 10) 

However, since A(x) is computed from B(x) here, this 
quantity is also gauge invariant. Thus, when dealing 
with several species of charged particle, one seems to 
have the choice of working with gauge invariant local 
fields which generate a nonlinear algebra or quasilocal 
gauge invariant fields which generate a Lie algebra. 
For several species of particles we do not know the 
analog, if any, of the variables p(x), P(x) , E(x), and 
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B(x) which generate a local Lie algebra in the case of 
a single type of charged particle. 

This paper is organized as follows. In Sec. II we 
briefly review the description of systems of nonrela­
tivistic particles using local currents p(x) and J(x). In 
Sec. III the representation theory for the free electro­
magnetic field is described using the variables E(x) and 
B(X).12 In Sec. IV, the results of Secs. II and III are 
combined to give a manifestly gauge invariant formula­
tion of nonrelativistic quantum electrodynamics. The 
Gel'fand-Vilenkin representation theory for this model 
is discussed, particularly with regard to the question 
of multipliers and gauge invariance. In Sec. V we dis­
cuss possible generalizations of these results to the 
case where several species of charged particle are 
considered. We end with some concluding remarks in 
Sec. VI. 

II. NONRELATIVISTIC QUANTUM MECHANICS 
AND LOCAL CURRENTS 

We employ the number density of particles, p(x), and 
the particle flux density, J(x), as variables to describe 
a system of identical, spinless nonrelativistic particles. 
In this section we briefly summarize the properties of 
the local currents which will be used in later sections. 13 

Our starting point is the local current algebra gen­
erated by commutation of the operators p(x) and J(x) 
at equal times. This is given by8 (in this section we take 
n=m=1): 

[p(x), p(y)] = 0, 

[p(x), J,,(y)] = - if1x [o(x - y) p(x)], 
II 

[Jj(x), J,,(y)] = - if1xl/[ o(x - y) J/x)] 

+ if1y J o(x - y) Jk(y)]. 
J 

(2.1) 

The dynamics is determined by a Hamiltonian which, 
for particles interacting via a two-bOdy potential, is 
given by8,13 

H=t f d3x K/(x)[1/p(x)] Ki(X) 

+ ~ f d3x f d3y : p(x)p(y) : Vex - y), 

where K(x) = V p(x) + 2iJ(x). The local current is 
conserved 

a~~x) = i[H, p(x)] = _ V °J(x), 

(2.2) 

(2.3) 

as follows from Eqs. (2.1)-(2.2). In this way of formu­
lating nonrelativistic quantum mechaniCS, the problem 
is to find a representation of the current algebra (2.1) 
in which the Hamiltonian (2.2) is a well-defined opera­
tor. This question has been studied in Ref. 14. 

To discuss the representation theory for the local 
currents it is convenient to study the group formed by 
exponentiating the currents. To do this, one introduces 
the unitary operatorsll• 13 

U(f) = exp[ip(f)] 

and (2.4) 
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V(I{>~) = exp[itJ(g)], 

where p(f) = J d3x p(X)f(X) and J(g) = J d3x J(x) 0 g(x). 
Also, I{>~(x) denotes the flow for time t by the vector 
field g. It is defined by the equation 

(2.5) 

with I{>~=o(x) =X and where "0" stands for composition, 
i. e., go I{> (x) = g(l{>(x). It can then be shown that U and 
V satisfy the group multiplication law: 

U(ftW(f2) =U(ft + f2), 

V(I{>W(j) =U(jo I{» V(I{», (2.6) 

The representation theory for this group has been 
worked out by Goldin, 11 using the Gel'fand- Vilenkin 
formalism. to We will introduce the specifics of the 
representation theory as needed in the following 
sections. 

III. THE FREE ElECTRIC AND MAGNETIC FIELDS 

In this section we discuss the representation theory 
for the free electric and magnetic fields, using a 
formalism which works directly with the operator field 
strengths E(x) and B(x), rather than potentials. 

A. Representation of the free electromagnetic fields 

We take as our starting point the familiar equal- time 
commutation relations among the components of the 
electromagnetic fieldt (we again choose c = If = 1): 

[E j (x), Ej(Y)] = 0, 

[Bj(x), Bj(Y)] = 0, 

[Ej (x), Bj(Y)] = il'.iJkOYk o(x - y). 

(3.1) 

(3.2) 

(3.3) 

In this section we shall construct a representation of 
the algebra (3.1)-(3 0 3) which accommodates the free 
Hamiltonian 

(304) 

and which is compatible with the initial value equations 

v °E(x)=O, V °B(x)=O (3.5) 

and the condition 

Hn=o, (3.6) 

where n is the vacuum state. It is assumed that n is 
a cyclic vector for the representation. 

To construct this representation, we begin by writing 
the Hamiltonian (3.4) in the factored form: 

H = .lfd3x [B(X) + i(21T2)-tvxid3y E(y) ] t 
2 Ix-yl2 

• [B(X) + i(21T2)-tvx1d3yl E(y/) ] (3.7) 
Ix- y/12 • 

To show that this expression for the Hamiltonian is 
equivalent to that given in Eq. (3.4), we multiply out 
the two factors in Eq. (3.7). The result is 

H = 1 f d3x { B(x) 0 B(x) + i(21T2)-t 
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(3.8) 

Evaluation of the commutator gives an (infinite) c-num­
ber which takes account of the normal ordering indi­
cated in Eq. (3.4). To evaluate the last term, we intro­
duce the Fourier transformt5 of the electric field, Ej (k)o 
Then the last term can be written: 

(3.9) 

where k = k/ I k I and EL (x) denotes the transverse part 
of the electric field. Thus the right-hand side of Eq. 
(3.7) is equal to 

(3.10) 

which is equivalent to Eq. (3.4) in view of the constraint 
V 0 E = 0, which implies that E = EL • 

We have chosen the zero of energy so tha t the vacuum 
state n has zero energy. Equation (3.6), together with 
the fact that the integrand of Eq, (3. 7) is positive at 
each point, implies that 

(3.11) 

This condition will lead to a functional equation which 
determines the generating functional 

L(f) = (n, exp[iE(f)]n), (3.12) 

where E(f) = J d3x E(x) of (x). To derive this equation, we 
need to use the fact that 

(n, B(x) exp[iE(f)]n) = t(V xf)(x) L(f). (3.13) 

Equation (3.13) follows from time reversal invariance 
and Eq. (3.3), and is proved in Appendix A, NOW, tak­
ing the inner product of Eq. (3.11) with the state 
exp[ - iE(f) ]n, we obtain the following functional differ­
ential equation for L (f): 

f lo 
t(V Xf)(x) L(f) + i(21T2)-t V X d 3y 1 x - Y 1-2 T of(y) L(f) = 0. 

(3.14) 

This equation has the solutiont6•11 

L(f) = exp{- t J [d3k/(21T)3] kf;*(k)(Oij - k;kj /k
2)h (k)}, 

(3.15) 

where k= Ikl andfj(k) is the Fourier transform offj(x). 
By taking functional derivatives of this expression for 
L(f) and using Eqs. (3.3) and (3.11), one can obtain all 
the equal time n-point functions involving products of 
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E(x) and B(x). Furthermore, it is not difficult to adapt 
standard arguments about Gaussian functionals to show 
that L(f) is a positive functional in the sense of Bochner 
and that it is continuous in the topology of the test func­
tion space (e. g., Schwartz space S). Obviously, L(O) 
= 1. Thus, by the GNS construction, Eq. (3.15) deter­
mines a representation of the free electromagnetic 
field. 

Remarks: (1) The constraint (V • E)(x) = 0 has been 
incorporated into the Hamiltonian, by replacing E with 
E.L' Equation (3.11) implies that 

(V 'B)(x) n = o. (3.16) 

Once the Lorentz invariance of the theory is established, 
Eq. (3.16) and the Reeh-Schlieder theorem will imply 
that 

V 'B(x) =0. (3.17) 

(2) There is a direct and simple correspondance be­
tween the above results and those obtained using the 
vector potential in Coulomb gauge. For example, using 
the standard expression for the vector potential for the 
free field in Coulomb gauget 

f d3k 
A(x, f) = [2w(27T)3]f72 A~2 e(k, X)[a(k, X) 

x exp(- ik • x) + at(k, X) exp(ik • x)], (3.18) 

where w = Ik I and k • x = wf - k' x, one can show that the 
Fourier transform of the quantity [B(X) 
+i(27T2)_lVX!d3yE(y)lx_yl-2] is 

i(27T)3/2(2w)tl2 kX 6 e(k, X) a(k, X) 
A=t,2 

(3.19) 

and the Hamiltonian, Eq. (3.7), is then just 

B. The dynamics of the free electromagnetic field 

We next indicate how to determine the dynamics, in 
particular the structure of the time dependent n- point 
functions, of the free electromagnetic field. We start 
with the equations of motion for the fields: 

E(x, f) = i[H, E(x, t)] = (V x B}(x, f), (3.20) 

Sex, f) = i[H, B(x, t)] = - (V x E}(x, f). (3.21) 

Using them, it is easy to obtain the explicit time 
dependence of E and B: 

E(k, f) = cos(wf) E(k) + sin(wf) k x B(k), (3.22) 

and 

B(k, f) =cos(wf) :ark) - sin(wt) kxE(k). (3.23) 

To compute the time dependent n point functions, it 
is useful to introduce the generating functional 

Lt(f, g) = (n, expi[E(f) + B(g)]n), (3.24) 

where 

E(f) = J d4xE(x, t) 'f(x, t) 

and 

B(g) = J d4xB(x, f) 'g(x, f). 
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One can construct an explicit expression for L t (f, g) by 
expanding the exponential in Eq. (3.24), using Eqs. 
(3.22)- (3.23) to relate the fields at time t to their value 
at f = 0, using our previous results to evaluate these 
n-point functions and finally resuming the series. The 
result is 

Lt(f, g) = exp{- t J [d3k/(27T)3]w[j(k, w) - kxi(k, w)]7 

x [li ii - ki k/k2][j(k, w) - kXg(k, w)M. 

(3.25) 

It is useful to write Eq. (3.25) in a manifestly Lorentz 
invariant form, since one can then avoid the straight­
forward but tedious task of demonstrating directly the 
Lorentz invariance of Eq. (3.25). To do this, we intro­
duce a second rank tensor T "V whose components are 
formed from the test functions f and g as follows: 

o -It -12 -13 

T"v= 
o g3 (3.26) 

-gs 0 gt 

g2 - gt 0 

Then one can write 

E(f) + B(g) = E J d4x F /l.V(x, t) T "v(x, f), 

where F"V(x, t) is the electromagnetic field tensor and 
Eq. (3.25) can be written in the form 

Lt(T) = exp {- t f d:k T"v(k, w)*k"g"~k"'T",a(k, wn} . 

(3.27) 

Hence, the representation of the free electromagnetic 
fields which we have constructed is Lorentz invariant. 

Finally, we note that the commutation relations be­
tween E and B at unequal times1 can be computed from 
Eqs. (3.1)-(3.3) and (3.22)- (3.23). These commuta­
tion relations, together with the generating functional 
(3.25), enable one to compute all the time dependent 
n-point functions. 

Remarks: (1) The theory has been divided into two 
parts; determining the representation of the equal-time 
algebra and calculating the dynamics. The representa­
tion defines the Hilbert space on which the fields act at 
a fixed time, while the dynamics governs their time 
evolution. In order for the dynamics of a given physi­
cal system to be well defined, we must select a rep­
resentation of the equal-time algebra which is compati­
ble with the Hamiltonian. To discuss Lorentz invariance 
it is necessary to know both the representation and the 
dynamics. 

(2) In the free theory which we have discussed, poly­
nomials of E(f) acting on the vacuum are dense. This 
is because the operators E(f) form a maximal commut­
ing set of observables. For the theory to be manifestly 
Lorentz covariant one would need the Hilbert space to 
be defined by polynomials of F "V (T "v) acting on the 
vacuum. But these states are overcomplete and con­
straints would be needed. This is compatible with the 
theorem2 that a local manifestly Lorentz invariant 
formulation of quantum electrodynamics using a 4-vec­
tor potential requires an indefinite metric. 
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IV. QUANTUM ELECTRODYNAMICS FOR A SINGLE 
SPECIES OF CHARGED PARTICLE 

In this section we combine the local currents with the 
electric and magnetic field operators to describe the 
electromagnetic interaction of a system of charged par­
ticles in a manifestly gauge invariant way. We first 
consider one species of particle with electric charge e 
and mass m. 18 The case of more than one species of 
particle is discussed in Sec. V. 

A. The local current algebra of the operators 
p(x), J{x), E(xl. and B(x) 

We use the canonical fields as a heuristic to motivate 
the form of the local current algebra and the Hamiltoni­
an. The number density of particles p(x), the flux den­
sity of particles J(x), and the electric and magnetic 
fields are given by 

p(x) =ljJt(x) ljJ(x), 

J(x) = (2im)-1 [ IjJt(x) ( nv _ i: A(X») ljJ(x) 

_ (nv + i: A(X») IjJt (x) IjJ(X)] , 

1 aA 
E(x) = - VAo(x) - cat' 

B(x) = (V XA)(x). 

These quantities are all physical observables and hence 
gauge invariant. Note that the mass density is mp(x), 
the charge density is ep(x), the electric current density 
is eJ(x), and the particles' momentum density is 
mJ(x). From the commutation relations for the canoni­
cal fields 

[1jJ(x), IjJt(y)t= o(x- y), 

[A .. (x),A" (y)] = - eilig",,,o(x - y), 

one obtains the following equal-time commutation rela­
tions among the operators p, J, E, and B: 

[p(x),JI(y)]=-i (:) a~l [o(x-y)p(x)], (4.1) 

[JI(X),Jk(y)]=i (!) a~l [o(x-y)Jk(y)] 

-i(~) a!k [o(x-y)Jt(x)] 

+i(:re) ElkJP(x)B}(x)o(x-y), (4.2) 

[EI(X),Bk(Y)]=i(enhlk}~ o(x-y), (4.3) 
uYJ 

[J; (x), Ek(y)] = i (~) p(x) 0lk o(x - y), (4.4) 

with all other commutators vanishing. 19 Thus, under 
equal-time commutation the local currents and the 
components of the electromagnetic field form a closed 
algebra. However, the algebra is nonlinear owing to 
the p(x) B(x) term which appears in Eq. (4.2), and 
hence it is not a Lie algebra. Another important prop­
erty of the algebra is that the interaction and the 
coupling constant, e, enter explicitly in the commuta­
tion relations (4.2) and (4.4), As a result, the algebra 
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(4.1)-(4,4) for the interacting theory is different from 
that of the free theory and hence a different represen­
tation of the local currents and fields is required. 
Furthermore, different representations are needed 
for different values of the coupling constant. 

Remark: If the particles were interacting with ex­
ternal electric and magnetic fields, then E(x) and 
B(x) would be e-number fields and the local currents 
p(x) and J(x) would form a Lie algebra. 

We next consider the Hamiltonian. In terms of the 
canonical fields it is given by 

H= :~ f d3x (V+i n: A(X») IjJt(x) 

• (V - i n: A(X») ljJ(x) + t f d3x (E2 + B2)(X). 

By using the local currents, this can be written as 

H = ~ f d
3
x K/(x) P~X) K;(x) 

(4.5) 

where 

K(x) = Vp(x) + (2im/1i) J(x). (4.5') 

At this point, one can forget about the canonical fields 
and take the local currents, their commutation rela­
tions [Eqs. (4.1)-(4.4)J and Eq. (4.5) for the 
Hamiltonian as defining the theory. 

As one check on the consistency of this description, 
one can verify that Eqs. (4.1)-(4.5) lead to the correct 
operator form of the classical equations of motion. 
These are given by 

ap(x)/at = (i/ff)[H, p(x)] = V oJ(x) 

(current conservation), 

(11c) aB(x)/at = i(l/eli)[H, B(x)J = - (V X E)(x), 

(l/e) aE(x)/at=i(l/eli)[H, E(x)] 

= - (e/e)J(x) + (V X B)(x) 

(4.6) 

(4.7) 

(the Maxwell's equations governing time evolution), 

(4.8) 

m.lj(x) =i(m/ff)[H, J/(x)] 

= ep(x) E; (x) + (e/e)[J(x) X B(x)]; - (ff2/m) oBI/OX}, 

(4.9) 

where 

Bt}(X)=K/(X) p~X) Kj(X)+K/(X) p~X) K/(X) 

- 202p(x)/ax/ ax} (4.10) 

(conservation of momentum). 

The first two terms on the right-hand side of Eq. (4.9) 
comprise the Lorentz force, while the last term de­
scribes convection. The other two Maxwell equations, 
V-E=ep and VoB=O, must be imposed as initial value 
equations in order for the total momentum operator to 
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be identifiable as the generator of translations in space. 
This point is discussed in detail in the next subsection. 

An interesting aspect of this formulation is that the 
Hamiltonian (4.5) is, formally, the sum of the free 
Hamiltonian for the particles plus the free Hamiltonian 
for the electric and magnetic fields [compare Eqs. (2.2) 
and (3.4)]. The only place where the interaction ap­
pears explicitly is in the equal-time algebra 
(4.1)- (4.4). 

B. The local Lie algebra of the operators 
pIx), PIx)' E(x), and B(x) 

To discuss the representation theory of the local 
currents, it is convenient to make a change of variables 
so as to obtain a nuclear Lie algebra. For this purpose 
we introduce the total momentum density: 

P(x) == mJ(x) + (1/2c) [E(x)x B(x) - B(x) x E(x)]. (4.11) 

Next we determine the equal-time algebra generated by 
p(x), P(x) , E(x), and B(x). A straightforward but tedious 
calculation shows that the commutation relations involv­
ing P(x) are given by: 

[p(x),Pj(Y)]==-in -}- [o(x-Y)p(x)], 
uX! 

[Pj(x), Pk(Y)] 

=in -}- [o(x-y)Pk(y)]-in -aa [o(x-y)Pj(x)] 
vyj x k 

+ i (~) I'jkJ {[V· E(x) - ep(x)] B, (x) + V 0 B(x) E "x)} 

xo(x-y), 

[Ej(X),Pk(y)] 

=-in -ail [Ej(X)o(x-y)]-inolk -ail [E,(y)o(x-y)] 
xk Y, 

+ iliOlk [V • E(x) - ep(x)] o(x - y), 

[B,(x),Pk(y)] 

=- ili -aa [B,(x) o(x- y)] - ino,k -}- [B,(y) o(x- y)] 
x k uy, 

+ ifW,k V oB(x) o(x - y), 

For a consistent physical interpretation, we require 

P= f d3x P(x) 

to be the total momentum, i, e" the generator 
of space translations. The commutator of P with 
any local operator O(x) must therefore have the form 

[O(x), p] = - iliVO(x), 

In order for this equation to be consistent with the above 
commutation relations, it is necessary to impose the 
constraints 

(V • E)(X) = ep(x) (4.12) 

and 

(V 0 B)(x) = 00 (4.13) 

These constraints can be interpreted as initial value 
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equations since it can be shown that if Eqs. (4.12) and 
(4.13) hold at a fixed time t, then they hold for all time, 
as a consequence of the equations of motion (4.6)-
(4.8). The connection between the initial value equations 
and the gauge invariance of quantum electrodynamics 
when formulated using potentials will be discussed in the 
next subsection. 

After imposing the initial value equations one obtains 
the following nuclear Lie algebra: 

il 
[p(x), PI (y)] = - in -;- [o(x - y) p(x)], 

uXj 

[Pj (x), P,(y)] 

=in -ail [o(x-y)P,(y)]-in -aa [o(x-y)Pj(x)], 
Yj x, 

[Ej (x), P,(y)] 

(4.14) 

(4.15) 

(4.16) 

=-in -}- [Ej(x)o(x-y)]-ilioj, -ail [Ek(y)o(x-y)], 
vX, Yk 

(4.17) 

[B j (x), p)(y)] 

= - ili -ail [Bj(X) o(x- y)] - inoj) -}- [Bk(y) o(x- y)], 
x) UYk 

(4.18) 

with all other commutators vanishing. 

Remark: It can easily be checked that these commu­
tation relations are consistent with the initial value 
equations and that they satisfy the Jacobi identity. 

We can also describe the dynamiCS in terms of these 
variables. For example, the Hamiltonian is still given 
by Eq. (4,5), but with K(x) given by 

K(x) =Vp(x) + (2i/n){P(x) - (1/2c)(EXB - BX E)(x)}, 

(4.19) 

instead of (4.5'). The interaction now appears in the 
Hamiltonian, as usual, instead of in the algebra. Note 
that the coupling constant e appears only in the initial 
value equation (4.12), If we choose the charge density 
ep(x) as our variable instead of the number density p(x), 
then the coupling constant would appear only in the 
Hamiltonian. Henceforth, we use units in which 
1 =c =n=mo 

C. Gauge invariance 

At this point we discuss the relationship between the 
formulation of electrodynamics using local currents and 
that using potentials, particularly with regard to the 
role of gauge invariance. In either case one obtains 
Maxwell's equations, but they come about in different 
ways. 

In terms of the E and B fields, the dynamics is deter­
mined by two first order equations of motion, Eqs. 
(4.7) and (4.8). In addition, two initial value equations, 
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(4.12) and (4. 13), must bE:) imposed in order for the 
theory to accommodate a representation of the transla­
tion group. Together, Eqs. (4.7)-(4.8) and (4.12)­
(4.13) comprise Maxwell's equations. 

Alternatively, one can write Maxwell's equations in 
the form 

a",FIJ.V =jV, 

a", *F"'v=O, 

(4.20) 

(4.21) 

where * F ",v is the dual of F IJ.v. Equation (4.21) will be 
satisfied identically if F ",v is written as the curl of a 
4-vector potential A"'; F IJ.V = alJ. AV _ av AIJ.. However, the 
transformation from F ILV to AIJ. is not unique. To deter­
mine AIL uniquely, a constraint, or gauge condition, 
must be imposed. 20 The equation of motion (second 
order in time for A) is then equivalent to Eq. (4. 20). 
Thus, Eq. (4.20) is the dynamical equation when the 
theory is expressed in terms of potentials. 

To summarize: 

(1) When working with E and B, Eqs. (4.7) and (4.8) 
are dynamical, while Eqs. (4.12) and (4.13) are initial 
value equations (constraints). 

(2) When working with the potentials, Eqs. (4.8) and 
(4.12) are dynamical. Equations (4.7) and (4.13) are 
identically satisfied, but gauge invariance is required. 

Thus, the condition that the E and B fields satisfy 
initial value equations replaces the requirement of gauge 
invariance in the formulation of electrodynamics using 
potentials. However, the dynamical equations are not 
the same in the two formulations. Note that the Coulomb 
gauge is an exceptional case. In Coulomb gauge, Eq. 
(4.12) is not a dynamical equation as it is in other 
gauges, but is instead an initial value equation. 

D. The Lie group of the exponentiated currents and fields 

Before applying the representation theory we need to 
obtain the group formed by exponentiating the commuta­
tion relations (4.14)-(4.18). Since the subalgebra 
formed by p(x) and p(x) is the same as the free p(x), 
J(x) algebra, we can use the results of Sec. II to handle 
this part of the problem. For the exponential of P(x) we 
introduce the operator 

V(1(>1) = exp[ilP(g)], 

where 1(>1 is the flow corresponding to the vector field 
g(x), defined by Eq. (2.5). Then the multiplication law 
for the p, P subgroup is given by1t 

exp[ip(j1)] exp[tp(/2)] = exp[iP(j1 +/2)], 

V(I(» exp[ip(/)] = exp[ip(jo 1(»] V(I(», 

V(1(>1) V(1(>2) = V(1(>2 0 1(>1). 

(4.22) 

It is not difficult to obtain the group associated with 
the subalgebra formed by E(x) and B(x). The multipli­
cation law is simply 

exp[iE(g)] exp[iE(h)] = exp[iE(g + h)], 

exp[iB(g)] exp(iB(h)] = exp[iB(g + h)], 

exp[iE(g)] exp[iB(h)] 
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= exp[ - i J d3x g(x) • (V X h)(x)] exp[iB (h)] exp[iE(g)]. 

(4.23) 

Since p(x) commutes with E(x) and B(x), we also have 

exp(iE(g)] exp(ip(j)] = exp(iP(j)] exp(iE(g»], 

exp(iB(g)] exp(iP(j)] = exp(iP(j)] exp(iB (g»] • 
(4.24) 

Finally, we need to know how to multiply the group 
element V(I(» together with exp(iE(g)] or exp[iB(g)]. 
In Appendix B, we show that these elements multiply 
according to the rule 

V(I(» exp(iE(g)] == exp(iE(W _ (g»)] V(I(» 

and (4.25) 

V(I(» exp[iB(g)] == exp[iB(W_ (g» ] V(I(», 

where 

(4.26) 

To summarize, an arbitrary group element can be 
written as 

r(j, g, h, 1(» = exp[iP(j)] exp[iE(g)] exp(iB(h)] V(I(» , 

(4.27) 

and the law for multiplying any two such elements is 
given by 

r(j1' g1' ht, 1(>1) r{f2, g2'~' 1(>2) 

=exp(i J d3xW_
1
(g2)(X) • (V X h1)(x)] 

xr{f1 +/2 01(>1, g1 +W. (g2),ht +W. (~), 1(>2 01(>1)' 
1 1 

(4.28) 

Remark: From the multiplication law above it can be 
checked that 

U(12, 9) = exp(i012· J d3xxx P(x)] 

is formally (since the function g(x) =X is not in the space 
of test functions] a unitary operator for a rotation by an 
angle 0 about the 12 axis. For example, 

U(12, 0) exp(iE(g)] Ut(n, 0) = exp[iE(gR)]' 

where (gR)I(X) =RIJ gJ(R-1x) and R is the matrix for a 
rotation by an angle 0 about the n axis. 

E. The Gel'fand-Vilenkin representation theory 

We are now ready to describe the representation of 
the local currents p{x) and P(x) and the fields E{x) and 
B(x) in terms of a measure and a set of multipliers us­
ing the Gel'fand-Vilenkin representation theory. 10 

Here we shall summarize the results of this theory as 
they apply in the present case. (See Ref. 11 for proofs 
in the case of the p, J algebra). 

We begin by considering the generating functional 

L(g) = (0, exp[iE(g)] 0), (4.29) 

where 0 is a cyclic vector for the representation, which 
we will always identify with the ground state of the 
Hamiltonian [Eqs. (4.5) and (4.19)]. One can write L{g) 

R. Menikoff and D.H. Sharp 477 



                                                                                                                                    

as the Fourier transform of a positive measure j.L on 
5', the real continuous dual of the space of test func­
tions. Thus, 

L(g) = 1. dj.L(G) exp[i(G, g)], (4.30) 
5 

where (G, g) means the functional G evaluated at g(x). 
The measure j.L can be used to define a Hilbert space 
H =L~ (5'). The group elements act in the following way 
on this Hilbert space. Let 'If (G) E H. Then: 

(1) The element exp[iE(g)] is represented as multi­
plication by exp[i(G, g)], i. e. , 

(exp[iE(g)] 'I!) (G) = exp[i(G, g)] 'If(G). (4.31) 

(2) The operator p(j) is defined by Eq. (4.12), or 
ep(j) = - E(V f). As a result 

(exp[iep(j)]'If}(G) = exp [- i(G, Vf)] 'If(G). (4032) 

(3) Next we have 

(v(CP )'If)(G) = X. (G) 'If(CP*G)[dj.L (CP*G)/ dj.L (G) ]1/2, (4. 33) 

where cp* is a map from 5' into 5' defined by 

(CP*G, g) = (G, cPg) 
with 

(C;>g)J(x) = (0 j<Pk)(X)(gk 0 CP)(x). 

(4.34) 

Also, X.(G) is a multiplier for V(CP) and dj.L(CP*G)/dj.L(G) 
is the Radon-Nikodym derivative. For this derivative 
to exist, it is necessary that the measure j.L be quasi­
invariant. 

(4) Finally, 

(exp(iB(h)] 'If)(G) = ZII(G) w(h*G)[dj.L (h*G)/ dj.L (G)]1!2, 

(4035) 

where h* is another map from 5' into 5', here defined 
by 

(h*G, g) = (G + V xh, g), (4.36) 

and ZII(G) is a multiplier for B(h)o 

The multipliers X. and ZII are complex valued func­
tions of modulus one. For the group multiplication law 
(4.28) to be obeyed, the multipliers must satisfy 

x.
1 
(G) x.2 (CPt (G) = X. 20.

1 
(G)" 

ZII
1 
(G) Z~ (htG) = Zb

1
<b

2 
(G), 

X. (G) ZIM*G) = ZOb(G) X. «~h)* G). 

While Eqs. (4.37) follow from the general representa­
tion theory, an additional constraint on the multipliers 
follows from the initial value equation (V -B)(x) = o. 
To satisfy (V -B) (x) = 0, we require 

exp[iB(Vf)] =1. (4.38) 

From Eq. (4,35) and the relation (Vf)*G =G, we see 
that Eq. (4.38) can be satisfied if and only if 

ZVf(G) = 1. 

The multiplier law (4.37) then requires that 

Zb(G) = Zb (G), 
J. 

where h.L is the transverse part of h, 
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(4.40) 

Thus, in the representation theory of the local cur­
rents the initial value equations, which as we saw in 
Sec. IVe replace gauge invariance, have the following 
effect. The equation V· E(x) =ep(x) is used to define 
p(x), The action of the operator exp[ip(j)] can be ex­
pressed entirely in terms of a multiplier. The equation 
V- B = 0 is equivalent to a constraint on the multipliers. 

Remark: The algebra of p, P, E, and B is the same 
for either Bose or Fermi particles. Representations of 
the algebra corresponding to systems of bosons or 
fermions are distinguished by the choice of the multipli­
ers Xq,. 11,21 In the next subsection we show that the 
multipliers Z" are related to magnetic charge. 

F. Magnetic charge 

In this subsection we show how magnetic charges can 
be incorporated into the current algebra formulation. 
We suppose each particle has a magnetic charge (mono­
pole) q in addition to an electric charge e and mass nt. 

The current algebra is given by Eqs. (4,1)-(4.4) with 
the following modifications: 

(4.41) 

and 

(4.42) 

The Hamiltonian is still given by Eqo (4.5), but the 
equations of motion are modified as follows: 

and 

(l/e) oB(x)/o t = i(l/etr)[H, B(x)] 

=- (q!c)J(x)-VXE(x) (4.43) 

mjk(X) = i(m/tr)[H, Jk(x)J 

= ep(x) Ek(x) +qp(x) Bk(x) + (1/2e)[JX (eB - qE) 

- (eB- qE)XJ]k(X) - (fi2/m) oj8kj . 

(4.44) 

We may again note that the interaction appears explicit­
ly in the current algebra, rather than in the Hamiltonian. 

The Lie algebra formed by p(x), P(x), E(x), and 
B(x) is the same as before, Eqs. (4.14)- (4.18). How­
ever, in order to interpret P as the total momentum, 
i. e" the generator of space translations, we must now 
impose the initial value equations 

(V - E)(x) = ep(x) 

and (4 045) 

(V °B)(x) =qp(x)o 

The Lie algebra again contains no explicit dependence 
on the interaction, which reappears in the Hamiltonian. 
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The coupling constants e and q appear explicitly only 
in the initial value equations (4.45). 

The representation theory follows along the lines 
indicated in the previous section, except that, to 
satisfy the initial value equation, we now require 

exp[iB(Vj)] = exp[ - iqp(f)] 

= exp[i(q/e) E(Vj)]. (4.46) 

This imposes a constraint on the multiplier Zh, namely, 

(4.47) 

where h" and hl. are, respectively, the longitudinal and 
transverse parts of h. 

Remarks: (1) The charge quantization condition for 
e and q must result from the requirement of rotational 
invariance, as it does in the usual formulation of the 
magnetic monopole in nonrelativistic quantum mechan­
ics. 22 This is similar to the way in which translation 
invariance imposes constraints (the initial value equa­
tions) on the electric and magnetic fields. 

(2) Since we are dealing with a single species of par­
ticle, the algebra with magnetic charge can be obtained 
formally from the algebra with only an electric charge 
by performing a duality rotation on E, B, e, and q.23 If 
this transformation could be unitarily implemented, 
then we could obtain a solution to the multiplier equa­
tions with the magnetic charge constraint, Eq. (4.47), 
from a solution with the constraint Eq. (4.40), corre­
sponding to no magnetic charge, which has at least 
one solution (X. = 1, ZII = 1). However, Strocchi24 has 
shown in the relativistic field theory framework used in 
Ref. 2 (the potential is local and a Lorentz 4-vector) 
that the duality rotation is not unitarily implementable. 
Furthermore, the existence of magnetic charges con­
flicts with the possibility of formulating the theory in 
terms of local Wightman fields (unless there are two 
kinds of photons). This raises the question of whether, 
in our formulation of nonrelativistic quantum electro­
dynamiCS, the multiplier equations for the magnetic 
charge case have any solution. This should not be con­
fused with the question of the conSistency of the descrip­
tion of magnetic monopoles in nonrelativistic quantum 
mechanics. That theory is consistent; however, the 
electromagnetic fields are not quantized. 

V. QUANTUM ELECTRODYNAMICS FOR SEVERAL 
SPECIES OF CHARGED PARTICLE 

To deal with several species of particles (having 
mass ml and charge el) we need to introduce the parti­
cle number density pi (x) and the particle flux density 
J I (x) for each of the i species of particle. The currents 
pi (x) and J I (x) together with the fields E and B generate 
an equal-time algebra as follows. The currents asso­
ciated with different species of particle commute. For 
a given speCies, the commutation relations for the cur­
rents are the same as we have obtained for a single 
species, Eqs. (4.1) and (4.2), but with the appropriate 
mass and charge. The commutation relations between 
E and B are still given by Eq. (4.3). The commutation 
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relation between JI and E is given by Eq. (4.4), but 
with el, m l , and pi (x) appearing on the right-hand side. 

The Hamiltonian, given by 
3 

H='E i(1f2/ml) J d3x'E KJ(X)t[l/pi(x)]K}(X) 
I J~ 

with 

K I (x) = V pi (x) + (2imt!1fl J I (x), 

(5.1) 

(5.2) 

leads to the appropriate equations of motion: Maxwell's 
equations (4.7) and (4.8) but with eJ(x) replaced by 
LeIJi(x), and current conservation (4.6) and the force 
equation (4.9) for each species of particle. The interac­
tion appears explicitly in the equal-time algebra, and 
the Hamiltonian is the sum of the (formally) free 
Hamiltonians for each species of particles and the 
Hamiltonian for the electromagnetic field. 

The nonlinearity in the equal-time algebra can be 
eliminated by replacing each current J i (x) by 

J I (x) = JI (x) + (el/mlc) pi (x) A(x), (5.3) 

where the quasilocal field A(x) is given by 

A (x) = (41T)-1 J d3y!x_y!-1VXB(y). (5.4) 

Then pl(X) and JI(X) satisfy the same commutation rela­
tions as do p(x) and J(x) for a single species of particle 
without electromagnetic interaction, Eq. (2.1). How­
ever, the commutation relation of J I (x) with E (x) is 
nonlocal: 

(5.5) 

The quantity A(x) has the same properties as the vec­
tor potential in Coulomb gauge, namely, 

1 3A(x) 
(V, A)(x) = 0, (V XA)(x) = B(x), - c at = El.(x) , 

and has the commutation relations given by Eq. (1. 5). 
Thus, one has the choice of using a local but nonlinear 
algebra or a linear but nonlocal algebra. 

Remark: The interaction of a magnetic charge ql 
associated with each species of particle can be intro­
duced in the same manner as in Sec. IV F. When one 
does this, one is lead by formal calculations to a result 
that appears to violate the Jacobi identity, namely, 

[.ri(f), [J2(g), J 2(h)]] + ' , ,+ ••• 

(5.6) 

A similar situation arises in the usual quantum mechan­
ical description of electric and magnetic charges using 
a singular vector potential. 25 In that case the problem 
can be resolved by carefully considering the domain On 
which the (unbounded) operators can be applied. We 
believe similar considerations would apply in the 
present case, 

VI. CONCLUDING REMARKS 

We have presented a formulation of nonrelativistic 
quantum electrodynamics using local currents and the 
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electromagnetic field. The formulation is local and 
gauge invariant. We expect that a similar formulation 
of relativistic quantum electrodynamics is possible, 
and in fact previous work5 on the electrodynamics of 
charged scalar mesons supports this view. 

At this point we briefly discuss the relationship 
between this approach and one which uses a local 
Lorentz covariant potential. The potential A" (x) is de­
fined on a Hilbert space H. An indefinite metric must 
be introduced to obtain a unitary representation of the 
Poincare group. Subspaces H' and H" are defined on 
which the metric is positive and zero respectively. The 
physical Hilbert space is given by the quotient space 
H phyS =H'IN". Maxwell's equations then hold between 
matrix elements of states in Hphys' It is our belief that 
by formulating the theory using the E and B fields and 
local currents, we are describing HWiS directly. 
Furthermore, the equations of motion, including 
Maxwell's, are to be interpreted as operator equations. 
As far as we can tell, these results do not violate any 
known theorem requiring the use of an indefinite 
metric. 26_28 

The local currents are fields which carry zero 
charge. Hence, an irreducible representation of the 
equal-time algebra describes a fixed charge sector. 
We believe the formal expression for the Hamiltonian, 
Eq. (4.5), can be given a well-defined meaning in more 
than one irreducible representation of the algebra and 
that these inequivalent representations correspond to 
different charge sectors. In Appendix C we give a sim­
ple example to illustrate how this can work. The condi­
tion that the ground state be translation invariant will 
select out the zero charge sector. For the charge 
sectors, the Hamiltonian will not have a unique ground 
state. A reducible representation of the equal-time alge­
bra may then be needed to obtain a representation of 
the translation group. 

When using a covariant potential there arises the 
question of which operators are physicaL There are 
several possible definitions of "physical" operators. 2,29 

In the present formulation, the local currents and the 
electromagnetic fields appear to be the natural candi­
dates for a complete set of observable fields. 
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APPENDIX A: DERIVATION OF EQ. (3.13) 

In this appendix we prove that 

(n, B(x) exp[iE(f)]n) = ~(V xf)(x)(n, exp[iE(f) ]n). 

(Al) 

First, we need to show that 

exp[iE(f)] B(x) = [B(x) - V Xf(x)] exp[iE(f»). (A2) 

This may be proved by using the relationship 
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., 1 
exp(A) B exp(- A) =: 6 ,(adA)" B, 

"=1 n. 
(A3) 

where (adA) B= [A, B], and the commutation relation 
(3.3). 

We need to assume there is an antiunitary time rever­
sal operator T having the properties that 

TE(x) T* = E(x), 

TB(x) T* = - B(x), (A4) 

Time reversal invariance then implies that 

(n, B(x) exp[iE(f)] n) = - (B(x) exp[ - iE(f)] n, n) 

=- (n, exp[iE(f)]B(x)n). (A5) 

Finally, substituting Eq. (A2) into Eq. (A5), we obtain 
Eq. (Al). 

APPENDIX B: DERIVATION OF Ea. (4.25) 

In this appendix we prove that 

V(tf» exp[iE(g)) = exp[iE(W ~ (g»] V(tf», (B1) 

where 

W ~ (g)(x) = (V <Pk)(X)(gk 0 tf>)(x). (B2) 

We start by conSidering the quantity: 

V(tf>~) = exp[ilP(h)], (B3) 

where cp, is the flow for time t by the vector field hex), 
defined by Eq, (2,5), By using Eqs. (A3) and (4.17) it 
can be shown that 

exp[itP(h») E(g) exp[ - itP(h)] =E(exp[tW] g), (B4) 

where 

(Wg)j(x) = (h °V)g/(x) + (aih) og(x). (B5) 

It then follows that 

exp[itP(h)] exp[iE(g)] = exp[iE(exp(tW)g)] exp[iP(h)]. 

(B6) 

We next introduce the function 

S(x, t) = exp(tW) g(x), (B7) 

which evidently satisfies the differential equation 

dS(x, t) = WS( t) 
dt x, , (B8) 

with the boundary condition 

S(x, 0) =g(x). 

Since Eq. (B8) has a unique solution, we can prove that 

(B9) 

by showing that the right-hand side of Eq. (B9) satisfies 
Eq. (B8). Using the chain rule and Eq. (2.5), we can 
obtain from Eq. (B9) that 

dSd~X, t) = ao< (CP')8(x)[(ojlhk ) gk + (h °V) gjl] 0 tf>'(x). 

Then, from Eqs. (B5) and (B9) we obtain 

(WS)", (x, t) = hj (x) a", a j[(tf>~)8(X) l(gjl 0 CP')(x) 
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+ dcJ(I(>~)Il(x)][(h ·V)(I(>')k(X)][(dkg.B) 0 I(>~(X)] 

+ (d",hJ)(X) dJ(I(>~).B(X)(g.B 0 I(>~)(X). 

(Bll) 

At this point we need to prove the following: 

Lemma: hJ(X) dJ(I(>~)k(X) = (hk 0 I(>~)(x). 

Proof: The flow I(>~(x) represents the position of a 
particle which starts at point x and moves in the velocity 
field hex) for a time t. As a result, it is easy to see that 
Eq. (2. 5) and its associated boundary condition implies 
that 

I(>t, (x) = 1(>~(I(>~(x)}. (B12) 

Taking the derivative of (B12) with respect to E, one 
obtains 

~ I(>~+,(x) = (~ I(>~(x) • V) (1(>~)(I(>~(x)}, (El3) 

Setting E = 0 and using Eq. (2.5), we obtain the lemma. 

After some manipulation and using the lemma, Eq. 
(Bll) can be reduced to Eq. (Bl0). Combining Eqs. 
(B6) and (B9), we obtain Eq. (Bl) when V(I(» is given 
by Eq. (B3). We then extend this result to all V(I(». 

APPENDIX C: THE HARMONIC OSCILLATOR 
HAMILTONIAN EXPRESSED IN TERMS OF 
BILINEARS 

Formally, the local currents can be defined as bi­
linear expressions in the canonical fields. A one-dimen­
sional prototype of this situation is provided by the har­
monic oscillator in which x and and p are analogous to 
the canonical fields and the bilinears S = x2 and S = xp 
+ px are analogous to the local currents. We use this 
example to illustrate how the formal expression for the 
Hamiltonian in terms of bilinears can be defined as an 
operator in two different ways. 

The canonical operators x and p = (l/i)(d/dx) are de­
fined on the Hilbert space H =L2(_ co, co), The harmonic 
oscillator Hamiltonian 

H = 1 (p2 + x2) - 1 (Cl) 

has a discrete spectrum 

HIJi n =nlJin, 
where n = 0,1,2, • 0 '. The eigenfunctions with even n 
are symmetric functions 

1j!2n(X) = 1j!2n(- x), 

while those with odd n are anti symmetric 

1j!2n+1 (x) = -1Ji2n+1 (- x). . 
The operators Sand S satisfy the equal-time algebra 

{s, 5] = 4iS. (C2) 

The harmonic o~cillator can be written formally in 
terms of S and S as 

H = i (5 - i)(1/S)(5 + i) + is - const. (C3) 

This expression can be given a well-cjefined meaning 0 

in two ways in an irreducible representation of the S,S 
algebra, as follows. 
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The Hilbert space H can be decomposed into an even 
and odd parity subspace; 

H=H+fBH_, 
where 

and 

The operators Sand S leave each subspace invariant, 
and, restricted to each subspace, form an irreducible 
representation of the equal- time algebra. Since each 
subspace is isomorphic to the Hilbert space H' 
= L2 (0 co), these representations are unitarily equiva­
lent. H' can be spanned by either {1j!2n} or {1Ji2n+1}' 
n=O, 1, 2,"', and each IJin is an eigenfunction of the 
harmonic oscillator Hamiltonian. As a result, we can 
define two different Hamiltonians on fil; 

(1) H 0 defined by H Oif!2n = 2nif!2n 

and 

(2) H 1 defined by H 1 ql2n+l = 2nIj!2n+1' 

The formal expression for the Hamiltonian in terms of 
Sand S, Eq. (C3), can be given a well-defined meaning 
corresponding to either Ho or H1, by expressing it in the 
factored form 

Ho =Hs - i(2S - l)]t(l/S)[S - i(2S - 1)] (C4) 

and 

H1 =i[s - i(2S - 3)]t(1/S)[S - i(2S - 3)]. (C5) 

Alternatively, these representations of the S, S alge­
bra could have been determined without reference to the 
underlying canonical operators x and p through the use 
of a generating functional 

L(a) = (n, exp[iaS]n) 

and the ground state conditions which follow from the 
Hamiltonians (C4) and (C5): 

[S-i(2S-1)]S1 0 =O, 

[S-i(2S-3)]n1 =O. 

(C6) 

(C7) 

Remark: In H' the operator x is self-adjoint, but p 
is not. Thus the canonical operators do not necessarily 
exist in an irreducible representation of the bilinear 
algebra, even though the bilinears and the algebra they 
satisfy were abstracted from the canonical theory. 

In the simple one-dimensional case considered here 
the representations of Sand S are unitarily equivalent 
but the Hamiltonian can be defined in two ways. For the 
local currents we believe the formal expression for the 
Hamiltonian can be given a well-defined meaning in the 
inequivalent representations which correspond to differ­
ent charge sectors. 

Finally, we note that a similar problem is encounter­
ed in distinguishing bosons from fermions when local 
currents are used in the formulation of nonrelativistic 
quantum mechanics. In this case the local current 
algebra and the formal expression for the Hamiltonian 
are the same, but unitarily inequivalent representations 
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of the current algebra are associated with different par­
ticle statistic s, 11,14 and the Hamiltonian must be de­
fined differently in each of the different representations. 
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Foster and Ray have pointed out that since tachyons are particles having energy and momentum, they 
should hence contribute to the gravitational field through the energy-momentum tensor. Following them, 
a spacelike metric for the tachyon dust model has been proposed, and the problem of condensation of 
tachyons, after a slight perturbation of the model, has been examined. The tetrad technique has been 
frequently used for the purpose. 

1. INTRODUCTION 
A. Background 

Around the turn of the century shortly before Einstein 
had published his revolutionary paper on the special 
theory of relativity, Sommerfeld l examined the problem 
of accelerating particles to velocities greater than that 
of light C(=3X1Q10 cm/sec) and concluded that at such 
velocities particles would behave in a patently absurd 
fashion as they would be accelerated upon loss of energy 
But at that time physicists were not prepared to accept 
this absurd notion. Instead, Einstein's theory remedied 
this state of affairs, by using the mass-variation equa­
tion, m = mol (1 - v2/ C

2)1/2, which shows that m increases 
infinitely as 11 approaches c. Thus the velocity of light 
was a barrier. 

This argument was too strong to assail. Yet in the 
sixties Bilaniuk, Deshpande, and Sudarshan2 reexamined 
the problem studied by Sommerfeld and proposed the 
possibility of the existence of particles moving faster 
than light. They called these, meta particles. 3 Some 
other phYSiCists, notably Terletskii4 and Feinberg, 5 

also reiterated the same conclusion. In 1967, Feinberg 
suggested that these superluminal particles be called 
tachyons. 5 

Later on, Foster and Ray6 argued that since tachyons 
have energy and momentum, they should contribute to 
the gravitational field through the energy-momentum 
tensor T iJ' Gote has also given the parallel argument 
that since tachyons have appeared in the context of the 
special theory of relativity hence they should also appear 
in the general theory of relativity 0 

Following these arguments, in the present paper, we 
have proposed a tachyon dust metric different from that 
proposed by Foster and Ray 0 6 When this metric is used 
in the Einstein's field equations, using an energy-mo­
mentum tensor for dust, solutions exist for space like 
4-velocities. Like Foster and Ray, 6 we also interpret 
it as a solution for tachyon dust. 

In Sec. 2, Part A, we choose the surface X3 = const 
as a hypersurface, such that space like geodesics along 
(Xl, :i2, t) = const will be orthogonal to it. Thus we have 
chosen a coordinate system in which coordinates Xl, 

x2, and I will be constant for each tachyon, i. e., we 
assume the motion of a tachyon along the r axis only 
and its velocity vanishing along the Xl, x2, and t axeso 
Since the meta universe (universe filled with tachyons) 
will be a space like universe, hence on the basis of 
orthogonality of r = const and (xI, x2, t) = const, we 
assume a spacelike metric 
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where jJ. = jJ.(x\ t) and V= v(x3, t)o 

On substituting the metric tensor of this metric into 
Einstein's field equations, we obtain a tachyon dust 
metric in the form 

ds2 = R
2
(r) {(dXl)2 + (dx2)2} + (dX3)2 _ R2(X

3
) (dt)2 

(1 + t)2 (1 + t)2 • 

In Sec. 2, Part B, we have obtained the momentum 
flux6 of the tachyon dust as 

where 11 is a spacelike quantity. 

In Sec. 3, we have derived the space like counter­
part of Chaudhuri's equations which represents the 
Einstein's field equations in a simple form. Here we 
have used a projection tensor Hi) to project a quantity 
from r = const to (Xl, :i2, t) = const. This tensor has 
been defined as H jj =gjj - UjU j in the notation section. 
In Sec. 4, we have considered the small perturbations 
of the proposed space like metric by the tetrad technique 
given by Ellis and Steware and Ellis. 10,11 We have 
frequently used the method of perturbations proposed by 
Johri. 12 In the last section, we have made an attempt to 
interpret the results. Here we have given the idea of 
condensation of tachyons regardless of whether or not 
we actually find tachyons existing. In the whole paper, 
we have treated tachyons as real particles rather than 
as hypothetical particles. 

B. Notation 

In this paper, space-time is represented as a four­
dimensional Riemannian space with metric tensor gil 

of signature (+, +, +, -,). Covariant differentiation is 
indicated by a semicolon (;) and covariant differentiation 
along the lines (xI, :i2, t) = const by a prime to the 
variable, L e., prime denotes % ro Round brackets 
around the indices indicate symmetrization and square 
brackets antisymmetrizationo Here, we have taken 
87TG = c2 = 1. 

The Einstein's field equations for dust-filled cosmo­
logical models are 

(1.1) 

where ua are the space like 4-velocities for the tachyoV 
fluid so that uaua = 1. The acceleration of the fluid is 

(10 2) 
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where the dot denotes a/at. 

The velocity gradient may be further split up as 

Uj;j = wi} + a/j + teH/j - tIjUj , 

where 8=u:/ is the expansion scalar, a/j=u(/'j) . , . 
+ u(juj) - "3I}Hlj is the trace-free shear tensor, and 
Wjj=u[I;JI +u[juJI is the vorticity tensor, 

Here Hij is a tensor which projects a quantity from x2 
= const to (.0, r, t) = const defined by 

H lj =gij - UjU j ' 

i.e., Hjjuj=O, H;=3. 

Here glj and u l have their previous meaning. 

The Ricci rotation coefficients are defined by 

so that 

r abc + reba = O. 

(1. 3) 

Here ea are four orthonormal vectors, hereafter, called 
tetrads of vectors which are, in general, not always 
remaining the same. 

The Lie derivative of eb with respect to ea is 

It follows that Y~b and r~b are linearly dependent, 

Y~b = r~b - rga , 

r abc = i(Yabc + Y cab - Ybca)' 

Now the Einstein field equation (1.1) can be written 
down in the tetrad form as 

= - (A - ip)Hbd - (A +ip)UbUd • 

(1. 4) 

The antisymmetry property of the curvature tensor is 
equivalent to the Jacobi identity 

(1. 5) 

The tetrads are chosen so that the spacelike vector 
es is the tachyon fluid flow vector us, therefore 

In a cosmological model filled with pressure-free 
tachyon fluid, the lines of flow are space like geodesics 
and the contracted Bianchi identities are 

p' +p8=0, 

where I} =8, + 1}2 + 1}4' 

(1, 6) 

Suppose the perturbation of the model results in the 
formation of momentum flux p + op, so that the ratio of 
increase in momentum flux to the model is K = op/ p and 
the relative expansion in this region is - M, 

Perturbation of (1. 6) gives 

as(op) + I}op + pol} =00 

Therefore 

as(~) = a3(op) _ o~ p' = _ M. 
P P P 
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(1. 7) 

(1. 8) 

This gives the ratio of growth of K with respect to r 
in the condensation. 

2. THEORY 

A. Tachyon dust metric 

Suppose a space-time has the metric 

ds2 = e"{ (d.0)2 + (dr)2} + eV(dx3 )2 - e"(dx4)2, 

where /l=/l(r, t), V= v(x3
, t), and x4=t. 

(2. 1) 

Now by Dingle's formula, 13 we have Einstein's field 
equation (1, 1) as 

~(/l ')2 + /l" + il /2e ll =A, 

t(~)2/e"+il/e"-~(/l')2=p+A, 

~(/l ')2 + /l" + t [I. 2/ e" = A, 

i/l'v -[1.'=0. 

Here Jl = au/at and /l' = a /l/ax
3

• 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

Integrating Eq. (2. 2d) partially with respect to t, we 
have 

log /l' = iv + log (2R' /R), 

where R depends on r only, or 

/l' = (2R' /R)e(I/2 }v. 

Integrating again, we have 

/l =X(t) + 2f (R'/R)e V
/
2 dr. 

Now putting v=O, we have 

/l =X(t) + 2 f (R'/R)dx3 =X(t) + 2logR. 

Equating Eqs. (2. 2a) and (2. 2c), 

~(/l')2 + /l" + il/2e" =~(/l')2 + /l" + t[(Ji,)2je"], 

which gives 

il=i(Ji)2. 

(2.3) 

(2.4) 

Equations (2.3) and (2.4) give the partial differential 
equation 

.. 1 .2 
X=2'X , 

which possesses the solution 

X = - 2 log(t + 2cdi3. 

Therefore by Eq. (2.3), 

/l = log [R (~ ) / i3 (t + 20' ) )2 • 

Since 0', 13 are arbitrary constants, hence a coordinate 
system can be assumed such that 20' = 1 =13, 

Thus the metric (2.1) reduces to 

ds2 R2(X
3

) {(dx')2+(dr)2}+(dr)2- R2(X
3

) (dt)2 (2.5) 
(1+t)2 (1+t)2 • 

B. Momentum flux of the tachyon dust 

Let us consider the metric (2.5) as the metric of the 
background model. The nonvanishing tetrad components 
corresponding to the components of the fundamental 
tensor in the line element (2.5) are given by 

(e,' )t=o = (e2
2

)t=0 = (e4
4

)t=0 = 1/R. 
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The components of ygc are given as 

[OJt=o=-Y:v=R'/R=Oo (say) 

and the other components of ygc vanish. 

The tetrad field equations (1. 4) for a pressure-free 
tachyon fluid are 

DOl +01(0 1 +02+04)=A-p/2, 

D02 +02(0 1 + O2 +04)= A- p/2, 

D(Ol +02 +04) + (O~ +O~ +O!)=- A-p/2, 

D04 + 04(0 1 + O2 + 04) = - A + p/2. 

Here D -= 0/ox3 -= 03
• 

Substituting 01 =02=0 4 =0 0 in (2.6), we have 

5DO o + 90~=A - ~p, 

DO o + 30~= - A + p/2, 

which are easily integrable (for A=O) giving 

R 9 /4=Cr+A, 

where C and A are integration constants. 

(2.6) 

(2.7) 

(2.8) 

This yields the momentum flux for the tachyon dust as 

p=8C2/271)2, (209) 

where 1) =Cx
3 
+A. 

Here 1) is interpreted as the proper path for tachyons o It 
plays the same role as proper time for tardyons 
(particles moving slower than light), because proper 
time becomes imaginary14 for tachyons. In the present 
paper, we will call 1) a proper distance which is a 
space like quantity. Instead, we find that the space-time 
is Singular on the hypersurface 1) = O. 

3. SPACELIKE COUNTERPART OF 
RAYCHAUDHURJ'S EQUATION 

In general relativity, arbitrary vector fie Ids obey 
Ricci identity, hence 

(3.1) 

Now multiplying (301) by 'If, we get 

or 

(3.2) 

The three velocities in r = const can be given by the 
tensor definedll as 

vab=H~Hgucw (303) 

Equations (3.2) and (3.3) give 

H~g(VCd)' - u~u~ - H~gU~;d + vadvg + RacbdUcud = 00 
(304) 

Splitting up the tensor vab into symmetric and antisym­
metric parts we have 

(3.5) 

where 04b=0(ab) and wab=wlabJ' i.e., v(ab)=O(ab) and 
vlabJ = Wlabl" 

Splitting 0ab we have 
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0ab=(Jab + ~Hab' 

where (J:=O, (Jab=(J(ab)' (Jabub=O, and O=zt;a. 

Thus 

(3.6) 

Here 0ab is the expansion tensor, wab is the vorticity 
tensor which describes the rotation, and (Jab is the 
shear tensor which gives distortion. 

Now multiplying (3.4) by g"b we have 

It'bH~d(VCd)' - g"bU~U~ - g"bH~Hguc;d + g"bVadvg 

+ It'b RabcdUcud = 0, 

or 

g"bH~Hg((JCd + tOHCd + WCd)' - g"bU~U~ - It'bH~HgitC;d 

+ g"b((Jad + tOHad + Wad)((Jg + tOHg + wg) 

+ g"bRabCdUCud = 0, 

or 

g"bH~Hg((J~d + to 'HCd + w~) - g"bU~U~ - g"bH~Hgu~;d 

+ ((Jg + tOHg + Wg)2 + Rcduc'If = O. 

This equation gives 

0' - u;~ + 2((J2 +t02 -twadWad ) +RCducUd=O. (3.7) 

From Einstein's field equation (1. 1) we can compute 

RCd= (T cd - tTgoo) + AgCd· (3.8) 

Now Eq. (3.7) with the help of (3.8) reduces to 

0' - u;~ + 2((J2 +t02 
- twadwad) + TCducUd- tTgcduCU d 

+ AgcduCUd = O. (3.9) 

In general, the energy-momentum tensor TCd is given 
as 

TCd= ~UcUd+ (qcUd+ ucqd) + PHcd + 1Tcd' (3.10) 

where qa is the energy flux relative to u" (which repre­
sent processes such as diffusion and heat conduction), 
P is the isotropic pressure, 1Tab is the anisotropic 
matter pressure (due to processes such as viscosity, 
and e- is the total relativistic energy of matter mea­
sured by u" given by the rotation jJ. =p(1 +E), where E 
is the specific internal momentum flux of the tachyon 
fluid 0 

From (3.10) 

T= I! + 3p (sinceu"ua = +1). (3.11) 

Now Eqs. (3.9) and (3.11) after some adjustments give 

(3.12) 

This is the space like counterpart of Raychaudhuri's 
equations which gives the field equations in the simplest 
form. 

4. PERTURBATIONS OF MOMENTUM FLUX IN 
THE PROPOSED TACHYON DUST MODEL 

Since dust is characterized as pressure-free fluid, 
hence p=O. Moreover, for SimpliCity, we take (J, w, 
and the cosmical constant A also vanishing. Hence in 
this case Eq. (3. 12) reduces to 
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8'+t82 +tp=0. (4.1) 

After a slight perturbation, Eq. (4.1) reduces to 

D28 + 28cP8 + t Dp = 0, (4.2) 

where D has its previous meaning. 

Now with the help of (1. 8), (4.2) reduces to 

D2K + 28cPK - tpK =0, 

or 

D2K + (2R'/R)DK - tpK =0. 

From Eq. (2.7) it becomes 

2 8C 4C2 

DK+ 9(Cx3 +A) DK- 27(Cr+A)2K=0. (4.3) 

Now substituting Cx3 + A = 71, Eq. (4.3) reduces to 

3
2
K + ~ 3K __ 4_ K =0 (4.4) 

3712 971 3 71 27712 , 

which has the solution 

K = Ci!1 71 11
/

36 + Ci!2TJ-7
/

36
, (4.5) 

where Ci!1 and Ci!2 are integration constants. 

Thus the differential equation (4.4) gives two solutions 

(4.6) 

and 

(4.7) 

5. DISCUSSION 

The momentum flux p(= 8C2/27TJ2) shows that the 
momentum flux of the meta universe at a certain time 
will decrease with the increase of the proper distance. 
Since there will be homogeneity in time, this process 
will continue forever. Further, the first solution (4.6) 
of the perturbation equation of momentum flux shows 
that the K (=/jp/p) will increase algebraically as 71 11

/
36 

while the second solution (4.7) shows its decrease as 
71- 7 / 36 • 

Let us suppose that like big-bang singularity (for 
tardyons) there exists an undiscovered singular point 
from which tachyons are emitting by some unknown 
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" 

process, and being superluminal particles they move 
away from the point source. Therefore, it is obvious 
that the momentum flux of the meta universe formed 
by them will go on decreasing as being a process for­
ever. Let us further assume that there exists a region 
at some distance from the point source of tachyons 
assumed above, such that its momentum flux is p + /jp 
against p. Now the solution (4.6) shows that the momen­
tum flux of this particular region will go on increasing 
as its proper distance from the point source will 
increase, and thus condensation will occur in this region. 
The interpretation of solution (4. 7) is too tedious to 
further interpret. 
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Statistical theory of effective electrical, thermal, and 
magnetic properties of random heterogeneous materials. VII. 
Comparison of different approaches 
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(Received 13 September 1976) 

A general analysis is given for the theoretical evaluation of the effective permittivity of random 
heterogeneous materials that are statistical homogeneous. The perturbative and variational formulations 
presented in Papers I-VI in this series of work are reconstructed from a slightly different point of view 
and compared with recent approaches developed by other authors. Perturbation expansions for the effective 
permittivity are derived through electric field, electric displacement, Lorentz field, and T matrix. The 
validity of various approximate solutions involving the effective-medium approximation and the cumulant 
expansion method is discussed with the aid of a diagrammatic representation of the perturbation series. It 
is confirmed that, at the present stage, the cumulant theory is the best approximation for a three­
dimensional system, while the effective-medium theory is the best for a two-dimensional system. The 
meaning and applicability of variational approaches are also reviewed. 

1. INTRODUCTION 

In earlier papers, 1-6 henceforth referred to as I-VI, 
a systematic study was made on the effective permitiv­
ity of inhomogeneous continuum media where local 
permittivity varies randomly from point to point. Vari­
ous theoretical methods including the perturbation ex­
pansion, the variational approach, the effective-medium 
(EM) approximation, and the percolation theory were 
used to analyze the overall properties of two-dimension­
al (2D) and three-dimensional (3D) disordered materials 
that are statistically homogeneous. Although our formu­
lations were carried out in the language of the dielectric 
constant, all the results obtained also hold for other 
physical constants such as magnetic permeability, 
electrical and thermal conductivity, and diffusion 
constant. 

The statistical theory of heterogeneous materials 
traces back to Brown7

,8 and has attracted frequent 
attention thereafter. Even in recent years more than 
a few researchers have attempted perturbation or varia­
tional approaches9- 1B more or less different from ours. 
The purpose of the present paper is to compare our 
formulations with other existing theories and to check 
the validity of the approximate methods. With this aim 
in mind, we shall modify the previous treatments so as 
to facilitate the comparison and discuss their applicabil­
ity from a unified point of view. The physical meaning 
in connection with the problem of electron localization 
in disordered systems are clarified in another publica­
tion,19 which also presents a summary of the results of 
this article. 

In Sec, 2 we explain basic concepts and notations used 
in the present formalism. Sections 3, 4, and 5 give 
perturbation expansions in terms of the electric field, 
the electric displacement, and the Lorentz field, re­
spectively, while Sec. 6 is devoted to the so-called T 
ma trix expansions. Finally, in Sec. 7, we review 
derivations of upper and lower bounds on the effective 
permittivity by means of variational principles, 

It should be noted that our discussion is restricted 
to continuum mixtures, There is an alternative approach 
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based on a lattice model, say a random network of 
resistors. Kirkpatrick2o,21 applied the EM approxima­
tion to bond percolation on a 2D square and 3D cubic 
lattice, and Watson and Leath22 performed a similar 
treatment for the site model. Stinchcombe23,24 and 
Essam et al. 25 investigated conduction in a disordered 
Bethe lattice (Cayley tree) that can be dealt with exactly. 
Mo re recently, Blackman26 developed a pe rturbation 
theory of conductivity in square bond networks, which 
proved to have much in common with our results. As 
suggested by Kirkpatrick21 and Blackman,26 in general, 
the continuum model shows a direct correspondence to 
the bond model rather than to the site model. A detailed 
study of this problem will appear elsewhere. 

2. DEFINITIONS AND FUNDAMENTAL EQUATIONS 

We consider a 3D (or 2D) heterogeneous material 
with spatially fluctuating permittivity E ii(r) whose vol­
ume V (or area S) is eventually brought to infinity. 
Assume that the medium is statistically homogeneous 
and postulate an ergodic hypothesis that the ensemble 
average can be replaced by the spatial average. For a 
multiphase material, then, the ensemble average of 
Eii(r) is expressed as 

(E i/r) =:0E a, iiV '" (2,1) 

" 
where Ea,iJ and v" are the permittivity and the volume 
fraction of the ath phase, respectively, 

The electric displacement Di(r) is related to the 
electric field Ei(r) by 

(2.2) 

The effective permittivity of a statistically homogeneous 
material is defined as 

(2.3) 

Here the integral is extended over the whole space V 
or Sand r 12 denotes the relative position r 2 - r 1, For 
Simplicity we shall confine ourselves to a random sys­
tem subjected to a constant-average electric field, In 
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this case Eq. (2.3) reduces to 

(Dj(rt )= Eti(E/r1), Eti= j dr2EW(r12 )0 (204) 

The problem is to determine the effective permittivity 
Eti or Ej~f from the statistical information about the 
random field {Ejj(r)}o 

Let us separate the permittivity tensor Ej/r) into 
constant and fluctuating parts as 

then the equation governing the electrostatic potential 
q,(r) becomes 

a2q,(r) a ~ aq,(r)) 
Eo -a -2- + -a - OEjir)-a-- =0 0 

Xj Xi Xj 

Introducing a Green's function g(r) that satisfies 

a2g(r) 
Eo -a-2 - +o(r) =0, 

Xi 

we obtain 

(2.6) 

(2.7) 

(2.8) 

where q,o(r1) depends only on E~j and the boundary condi­
tions. The explicit forms of the free-space Green's 
function g(r) in the 3D and 2D cases are, respectively, 

1 
g(r) = 4-- ) 

1TEor 
(2.9) 

1 1 
g(r) = -log - . (2.10) 

21TEo r 

Differentiation of Eq. (2 08) with respect to Xl, i 
yields 

E j (r1) =(E j (r 1) 

+ fdr2 aag (r12) -a a [OEjk(r2)Ek(r2)], 
XI,i X 2,i 

(2.11) 

which is equivalent to Eq. (2.8) in I or Eqo (2 06) in V. 
After integrating by parts we have 

(2.12) 

Here E~(rJ is independent of the random variable oE ij (r1) 
and 

(2013) 

For a 3D material, the Green's function tensor Gjj(r) is 
given by 

(2014) 

The letter P indicates that the integration around a 
singular point r 12 = 0 is taken in the sense of the princi­
pal value. Similarly, the 2D Green's function tensor 
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has the form 

(2.15) 

Our previous formulation developed in I-V started 
the iteration process with Eqo (2 011), but Dederichs 
and Zeller9

- 11 founded their approach on Eqo (2012)0 
As a matter of fact, the latter makes closer contact 
with the standard methods of the Green's function 
theory in quantum mechanicso In operator notation we 
may write Eqo (2012) shortly as 

(2.16) 

The product AB of the two operators A and B means 

(2.17) 

In particular, the permittivity operator OE is defined by 

5e ij (rU r 2) =oE j/r1)0(r12), 

while the unit operator implies 

1jj(ru r 2) = OjjO (r12). 

(2.18) 

By the use of a T matrix, Eq. (2.16) is transformed 
into 

E = EO + GTEo, T = OE + 5eGT . 

Averaging Eqs. (2.16) and (2.20) we find 

(T) = 5e* + oE*G(T), 

(2.20) 

(2.21) 

We can derive similar expressions for the electric 
displacement D. Let Yij(r) be the inverse matrix of 
Ei/r) and define yTj by 

(Ej(r) = (I' ij(r)D /r) = I' Tj(D j(r). 

If we put 

01' ij(r) =1' ij(r) - YoOjj, D~(r) =YoE~ (r), 

it follows from Eq. (2.12) that 

Di(r 1) = D~(r 1) + J dr 2 r ij(r 12)01' jk(r2)Dk(r2), 

where 

Yorjj(r12)= - ojjo(r12) -EoGji r 12L 

It is easily seen that for a 3D material 

while for a 2D material 

(2.22) 

(2.23) 

(2024) 

(2.25) 

(2027) 

Thus, the operator equation corresponding to Eq. (2 016) 
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is 

(2,28) 

For convenience we are concerned mainly with an 
inhomogeneous material having isotropic permittivity 
e(r) at point r. It is straightforward to extend the treat­
ments to locally anisotropic materials such as random 
polycrystals. For such systems we refer the reader, 
for example, to Molyneux27,28 and Dederichs and 
Zeller. 9-11 When the medium is statistically homoge­
neous and locally isotropiC, the n-point moment of 
oe(r) becomes 

(oe(r1)oe(r2)··, oe(rn) = (oe(O)oe(r12)··, oE(rtn) 

= «(OE )n)h(r 12' r 23' •. , , r n-l,n), (2,29) 

As the n-point cumulant or semi-invariant we have 

f(r 12 , r 23 , ... ,rn-1,n) being called the normalized n-point 
correlation function. In Appendix A it is shown that the 
correlation function f(r 12, r 23 , ... ,r n-l,n) [not 
h(r12 , r 23,. <., rn-1,n)] for a two-phase mixture is inde­
pendent of the phase permittivities. 

Hereafter we shall restrict ourselves to the behavior 
of a symmetric cell material. The cell model was first 
proposed by Miller29

,30 and discussed in detail by Brown15 

and in VI. The most reasonable definition of a sym­
metric cell material is as follows: 

(i) The space is completely covered by nonoverlapping 
cells within which the material property is constant; 

(ii) cells are distributed in a manner such that the 
material is statistically homogeneous; 

(iii) the material property of a cell is statistically 
independent of that of any other cell; 

(iv) the material property of a cell is statistically 
independent of the geometrical distribution (shape and 
arrangement) of cells. 

Clearly, the assumptions made by Dederichs and 
Zeller9

-
11 are equivalent to the above four postulates, 

Furthermore, a completely random material may be 
regarded as a limiting case of a symmetric cell material 
in which cells have spherical shape and infinitesimal 
size. Note that the completely random material is not 
only statistically homogeneous but also statistically 
isotropic. 

For a symmetric cell material we obtain 

(2,31) 
a a a 

where ~ a(r) is an indicator in the sense that ~ a(r) = 1 
or 0 according as r lies inside or outside the cell O!, 
The permittivity E a of the O!th cell is independent of 
~ a(r) as well as of Ea for !3 * o!, It turns out that 

(~~a(rl)~a(r2~ =P(rU r 2), (2.32) 

~~ a(rl)~ a(r2)~ a(r3)) =P(ru r 2, r 3), (2,33) 
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(~~ a(r 1)c,(r2)~ a(r 3)~ a(r4)) =P(ru r 2, r 3, r 4), (2.34) 

I~~~ a(rJ~ a(r2)~a(r3)~8(rJ =P(r1 , r 2;r3, r 4), (2,35) 
'\ a*a ~ 

(~~~ a(rl)~a(r2)~a(r3)~ a(r4~ =P(ru r 4 ;r2, r 3), (2,36) 

/~~~ a(rl)~8(r2)~ a(r3)~a(rJ =P(ru r 3;r2 , r 4 ), (2,37) 
'\ a*a '/ 

and so on. Here, for instance, P(ru r 2 , r 3, r 4 ) designates 
the probability that the four points ru r 2, r 3 , r 4 are in 
the same cell, and P(ru r 2;r3, r 4) Signifies the probabil­
ity that two pairs of points, (r1, r 2) and (r3' r 4), are in 
two different cells. It has been stated in III that for a 
completely random material 

3. PERTURBATION EXPANSIONS IN TERMS OF 
THE ELECTRIC FIELD 

We will first seek perturbation series for Oe* in 
terms of the electric field E, Successive substitution of 
Eq. (2,16) in itself leads to 

., 
E = ~ (GOe)nEO, (3.1) 

"=0 

whence 
., 

(E) = ~ (GOe)n)EO, (3.2) 
n=O 

., 
Oe*(E) = (OeE) = ~ (O€(Go€)n)EO. (3.3) 

n=O 

Eliminating EO from these equations we find 

E = II + G(OE - (O€») + G(OeGO€ - O€G(O€) 

- (OeGOe) + (Oe)G(Oe») + •• '](E) 

(3.4) 

Oe* = (Oe) + [(OeGOe) - (Oe)G(Oe)] 

+ [(OeGoeGOe) - (OeGOe)G(Oe) 

- (Oe)G(OeGOe) + (Oe)G(Oe)G(O€)] + ' . , 

(3.5) 

For example, the second-order term appearing in 
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Eq, (3,5) is explicitly 

OEi~) = J dr2 Gij(rI2)l(6E(rl)6e(r2)) 

Especially when Eo = (E), we set E' = Oe and E'* = OE*; 
then Eq. (3.5) simplifies 

e'* = (e'Ge') + (e'GE'Ge') + [(e'Ge'Ge'GE') 

- (e'Ge')G(e'GE')] +"', 

which is nothing but Eq. (2.28) of I. 

(3.6) 

(3,7) 

Now we shall replace the many-point moments by the 
corresponding cumulants; that is, 

(OE(r 1))= (oE(r1 ))c' 

(oE(r 1 )oE(r 2)) = (oE(r l)oE(r 2)) c 

+ (0E(r 1 ) (0E(r2) , 
c c 

(3,9) 

(OE(r 1)OE(r2)OE(r3) 

= (0E(r1 )0E(r2)0E(r3)) + (0E(r 1)0E(r2)) 
c c 

x (0E(r3)\ + (0E(r1 )0E(r3)\(0E(r2)\ 

+ (oE(r 2)odr 3)) c (oe(r 1)) c + (oe(r 1)) e(oE(r 2)) c (odr 3)) c' 

(3.10) 
and so on, Insertion of these equations into Eq, (3,5) 
yields 

od!) = (oE(r )) (3,11) 
IJ 1 C' 

6 

xl (OE(r l)odr2)odr 3)odr 4)\ 

+ (oE(r l)oe(r 2)0e(r 4)\ (odr 3)) c 

+ (oe(r l)oE(r 3)oe (r 4)\ (oE(r 2) c 

+ (oe(r l)oE(r 4) \ (odr 2)0E(r 3)) c 

+ (0E(rl)0e(r3)\(odr2)oE(r4))c 

+ (odr I)OE (r 4)) c (oE(r 2)) c (oe(r 3)) J 
'" 60e\j,m). 

m=l 

(3,14) 

Higher-order terms can be derived in like manner, 

A convenient way of representing various contribu­
tions to 6e* is to employ cumulant diagrams explained 
in IV and V, Cumulant diagrams consist of cross ver­
tices, dashed vertical lines (interaction lines), and solid 
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horizontal lines (propagators). Diagrams of this type 
are constructed in accordance with the following rules: 

(i) Represent the points ru r 2, . " by means of nodes 
on the horizontal base line; 

(ii) assign the Green's function G(r i, i+l) to a propaga­
tor connecting the points r i and ri+l; 

(iii) allot the s-point cumulant (oe(rj)o€(rJ)o ° ·)e to a 
cross vertex from which s interaction lines emanate; 

(iv) take the operator product of all the Green's 
functions and cumulants described above. 

The prescription for drawing third-order diagrams is 
illustrated in Fig. 1 and a diagram equation correspond­
ing to Eq, (3,5) is presented in Fig. 2. By careful 
inspection of these diagrams we observe that the effec­
tive permittivity IiE* is nothing but the sum of all possi­
ble proper diagrams, which is usually called the mass 
operator or the proper self-energy part. 

In order to calculate the leading terms of Eq, (3.5), 
we need only to utilize the results given in I-V, In 
fact, the second-order term oeg) is rewritten by partial 
integration as 

OE~2) = f
dr2 

ilg(rI2) il(odrl )0E(r2))c 
lJ ilXl,i ilxZ,i 

= _ «OE)2)c fdr12 ilg(r I2 ) ilj(rl2) , (3015) 
ilXl2 ,i ilX12,i 

which implies Eq. (2.30) of lor (2,23) of V, Thus it 
follows that for any statistically isotropiC material 

oe(2) = _ ! «OE)2)0 
d Eo 

(3,16) 

and for a symmetric cell material composed of uniform­
ly oriented ellipsoids or ellipses 

(3,17) 

where d is the dimensionality of the medium and Lii is 
the depolarization or demagnetization tensor of cells, 
Similarly we get 

(3,18) 

(3,19) 

which reduce for a spherical-cell material to 

O 
(3,1) _ 1 «oe)3) 

E -.>2~' 
a· Eo 

(3,20) 

oe(3,2) = ! «OE)2)/oe)e 
d E~ 

(3,21) 

Referring to the calculations in III and V we are able 
to determine fourth-order terms for completely random 
materials as 

OE(4,1)=_ \ «OEt)e, (3.22) 
d Eo 

(3023) 

(3024) 
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I " I )(.C 
I \ I ' , 

I , I I , 
6E(1j ) SE(tZ) Sf(r3) b~(r,) bf(rz) Sf(r3) 

I 
, 

I , , 
I 

I , I 
I \ 

I. ~ ~ 

r, G(~2) rz G(r23) r3 rl G(r,2) r2 G(r2:v '3 

(a) (b) 

FIG. 1. Prescription for drawing third-order diagrams. The 
diagram (a) represents 6E(3,1) '" <6EGOEOE\ and the diagram 
(b) represents O€(3,2)", <6€G~€)cGO€)c' 

" (4,4) _ !J (2)" (2) _ 1 «OE)2>~ uE - - uE uE - - -:J2 3 , 
Eo d Eo 

(3.25) 

l-~ «Od2>~ in 
d3 3 

OE(4,5) = Eo 

o in 3D, 

ID or 2D, 
(3.26) 

OE(4,6)= C ~)20E(2)O€(l)I5E(1)=_! «I5E)2>/OE)~. 
'\ Eo d Eo 

Diagram equations expressing OE(4,4) and I5E(4,6) are de­
picted in Fig. 3, In general, nested diagrams are fac­
torizable into lower-order one-vertex diagrams, where­
as crossed diagrams are not reducible to one-vertex 
diagrams, 

Contributions from single-site diagrams including 
one-vertex and nested diagrams are counted by the 
following simple recipes: 

(i) Assign the sth-order cumulant «OE)S)c to s dashed 
interaction lines originating from the same cross 
vertex; 

(ii) allot -l/Eo to each propagator; 

(iii) allot 1/ d to each independent propagator; 

(iv) take the product of all factors thus calculated, 

¥ JI ~ JI ~ , , ,.' , , 
+ 

, , 
+ ' .' + 

, , ''''''\ , , , , lit , + , , . , , . \ 
, .. , . , , . \ , . , ... , ~ 

, . , 
(1) (2) (3.1) (3.2) (4.1) 

)( I~~ l( If If " , , , , " " + '. ~\ + ' , 1,' l , . If. '\ + ' ~ \ + " ,( \ " , , ,t': \ '\ I, \ \ , I, , \ , 1\ \ , , . '-'----'--" ~ 

(4.2) (4,3) (4.4) (4.5) 

x , , , 
+ '¥ v' i-

, ' : ' ' , . , 

(4.6) 

FIG. 2. Diagrammatic representation of Eq. (3. 5). 
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I I .L .J.. 

FIG. 3. Process for factorizing nested diagram into lower­
order one-vertex diagrams. The diagram equations (a) and (b) 
correspond to Eqs. (3.25) and (3.27), respectively. 

From a slightly different point of view, single-site 
diagrams can be summed by means of renormalized 
propagators as shown in Fig, 4, As for crossed dia­
grams, on the other hand, we are not successful in 
evaluating all contributions rigorously, but some of 
them are determined in conformity with the following 
additional rule: 

(v) For a 3D material, associate zero with crossed 
diagrams which are contained as addends in Fig, 5(aL 
Also in the 1D and 2D cases, contributions from these 
diagrams can easily be computed, although they do not 
vanish as in a 3D case, Vanishing crossed diagrams in 
ID or 2D are illustrated in Fig, 6 where closed-circle 
vertices indicate moments of OE rather than its 
cumulanL 

Let us derive several approximate solutions for I5E* 0 

First we pick up only one-vertex cumulant diagrams; 
namely, 

, 
\ 

o * = (0 ) _ «(OE)2\ + «OE)3\ _ «(I5E)4>c + ... 
E E c dEo (dEO)2 (dE o)3 , (3,28) 

whence 

= f 1 (EZ·/dEO)/(z'ldEO)dz 

a 

(3,29) 

(see IV). The non-self-consistent cumulant solution E6 
and the self-consistent cumulant solution E~ are given 

~ 
:If( ¥ ¥ I' 

(a) 
I .. ,!\. , ' - I + .. + , , + I~\ + · , , ' , ~ L.......1 ~ 

~ 
lI' ~ It f-

(b) · n' "," = , + + " ' + .. "',, \"', + , , , 
, I " · bd ~ " / \ ;" ... 

(c) = =- + + ... 

FIG. 4. Sum of all possible single-site diagrams in the wide 
sense. (a) Direct expression up to third order. (b) Indirect 
expression in terms of renormalized propagators. (c) Defini­
tion of a renormalized propagator. 
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(a) 

(b) = 

(c) = = 

+ 

, , , 
I 

.L 

~ ~ 
"1" 

I ): \ + 
I 1\ \ 

~ 

,;ro, ~ 
I' .. " I: '1, \ c', , , ) 

" )C. " ;f-" I' ~', '\ , ) , /' ,,'" + ,',' i, ... " + 
//;\"" 1"\' 

• " I~' " .. 
+ : ~ + ,':\ + /: '.'.. + , , , 
~ 

, , , , , , , 8 

+ + lL + 

FIG. 5. Crossed diagrams whose contribution is zero for the 
3D case. (a) Sum of vanishing crossed diagrams. (b) Definition 
of a wavy interaction line. (c) Definition of a double line 
propagator. 

by 

Eri= J1 (EZO/d<o»/(zO/d<<»dz, 
o 

(3.30) 

(3031) 

where we have put Eo=(E) and Eo=E~, respectively. 
Diagrammatic representation of OEt and OE~ is shown in 
Fig. 70 We should notice that the seU-consistent cumu­
lant approximation takes care of all single-site cumu­
lant diagrams. 

Next we use moment averages instead of cumulant 
averages in Eqo (3.28); then 

(a) 

(b) 

(c) 

= 

= = 

I , , , 
.L 

[ ,~, ,'-, 
+ ,,',' 'l, \ 

4 • ( ) • 

• l-
" II\. + I' + '1 \ + , , 
~ ~ 

+ 

,'\1'f, ] , < \ 
I 1\ \. 

~ 

.. 
" \' 

,'1 \', , , , ... 
• ! , 

+ 

+ 

(3.32) 

FIG. 6. Crossed diagrams whose contribution is zero for the 
ID or 2D case. (a) Sum of vanishing crossed diagrams. Each 
difference in square brackets contributes zero. The solid line 
cOlIDeciing the two closed-circle vertices indicates that the two 
points should be taken as the same (see IV for details). 
(b) Definition of a wavy interaction line. (c) Definition of a 
double line propagator. 
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.L ~ ~ I ! , , 

+ 
(b) 

= + ~ + lL + 

1 = --=r 
Ec 

FIG. 7. Diagram equations expressing 6€t and 6€t. (a) Non­
self-consistent cumulant solution 15€6. (b) Self-consistent cu­
mulant solution lifc. 

When Eo = (E) this series reduces to 

(3033) 

which coincides with Kroner's approximationo 12,31 Fur­
thermore, substitution of Eo=E~M into Eqo (3032) yields 

(3034) 

As argued in IV, V, and Ref. 19, the solution of Eqo 
(3034) is equivalent to the self-contained single-site 
approximation32 or the EM apprOximation. 33-38 Actually, 
it is readily seen that the self-contained single-site 

(a) ~E~ = 

SE~M = 

= 
(b) 

= = 

= 

! • • .. 
+ " II' ",,, , , , + , , , + ' I ," + 

0 o , 
' 0 

, ,', ,'\ .. 
.L L.......I ~ I , , > 

~ 

o 
o 
.L 

= 

+ 

1 - -::r-
€EM 

, , , 
+ 

,'. 
0 0'. 
0 

b J.. 

+ 

r = 

= 

i 

I~. ~ 

+ , .. ': .:. 
I + ,. : 

I : . 
, 

~ 

SE - bE~M 

E - E;M 

+ lL + ... 

FIG. 8. Diagram equations expressing li€* and 6€~M. 
(a) Kroner's approximation liEK • (b) Self-contained single-site 
approximation 6€~M. 
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solution 

OE* _ (0) (OE (OE - OE~M» + (OE (OE - OE~M)2) 
EM - E - d€~M (d€~M)2 

(3.35) 

satisfies Eq. (3.34) irrespective of Eo =€ - OE. Diagram 
equations for E~ and E~M are given in Fig. 8. 

4. PERTURBATION EXPANSIONS IN TERMS OF 
THE ELECTRIC DISPLACEMENT 

In this section we expand the electric displacement 
D instead of E. Starting from Eq. (2.28) we have 

D = [1 + r(oy - (oy» + r(Oyr6y - Oyr(Oy) 

- (Oyr6y) + (Oy)r(Oy» + ... )(D) 

Oy* = (Oy) + [(OyrOy) - (Oy)r(Oy)] + [(OyrOyroy) 

- (oyrl'iy)r(Oy) - (Oy)r(OyrOy) 

+ (Oy)r(Oy)r(Oy)] + ... 

= (Oy) c + (OyrOy) c + [(Oyr6yrOy)c 

+ (Oyr(OY)crOy)c] + ... 

n=1 

(4.0 

(4.2) 

The prescriptions (i)-(iv) for constructing diagrams 
described in Sec. 3 apply equally well to the present 
case. 

The second-order term Oy(2) is calculated as 

oyl]) = J dr 2 r;/r l2)(oy(rl)oy(r2»c 

= «(Oy)2)c L ~ + far l2 ~ [Yo Jt uX l2 ,; 

X (g(rr») of(r l2 11 . (4.3) 
\ Yo aX l2,iJ 

Accordingly, for a statistically isotropic system 

Oy(2)=_ (1-~) «(0~:2)c, (4.4) 

and for an ellipsoidal (elliptic) cell material 

oy~2) = _ (0 .. _ L .. ) «(oy)2)c (4.5) 
'J 'J'J Yo • 

Likewise, formulas corresponding to Eqs. (3.21)­
(3.28) are: 
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(4.7) 

" (4,1) _ (1 !)3 «(Oy)4)..£. 
uy - - - 3' 

d Yo 
(4.8) 

" (4,2)_" (4,3)_ (1 !)2 «(Oy)3)/OY)c 
uy -uy - - - 3' 

d Yo 
(4.9) 

" (4,4) _ (1 !) 2 «(01' )2)~ 
uy - - \' - d y~' (4.10) 

- (1-!f «(Oy~2)~ in ID or 2D, 
oy(4,5) = d Yo (4.11 ) 

«(oy)2)2 
in 3D, -~ 

3y~ 

(4.12) 

the proof of these equations is shown in Appendix A. 

We note that the process of factorizing single -site 
diagrams as in Fig. 3 also holds for 01'. More generally, 
the expedients (i)-(iv) for counting contributions from 
single-site diagrams and the procedure for renormaliz­
ing propagators stated in Fig. 4 are available with 
appropriate changes such as OE - oy, Eo - Yo, and 1/ d 
- 1 - 1/ d. However, crossed diagrams as expressed 
by Fig. 5 do not vanish even in a 3D case, so that 
recipe (v) is invalid. In a 1D or 2D case, crossed 
moment diagrams comprised in Fig. 6 are found to 
contribute zero to 01'* as well as to OE*. 

As the non-self-consistent and self-consistent cumu­
lant solutions we get 

1 
1'* = j" (yz (d-Ur I d(Yl)/ (z (d-l)r I d(r» dz 

o , 0 ' 
(4.13) 

1 * * y~ = J (yz (d-ur Idr e>/ (Z(d-l)Y IdYe) dz. 
o 

(4.14) 

Besides, Kroner's approximation provides 

*_( )/(2d-1 )y-(d-1)(y») 
YK-Y\ (d-l)y+(Y) , (4.15) 

while the self-contained single-site approximation leads 
us to 

Y -YEM -0 ( *) (d-1)y +ylM - . 
(4.16) 

Out of the four approximations y~, Yt, Yk, Y~M men­
tioned above, y~M alone satisfies the relationship 

(4.17) 

which should be true for the exact solution. Equation 
(4.17) means that E~M and y~M are of the same degree 
of apprOXimation, owing to the self-containedness con­
dition that correction terms due to exclusion effects 
are self-contained within the approximation under 
consideration. 32 

Finally we compare merits and demerits of the 
approximate effective permittivities E6, 1/Y6, E~, 
l/Yt, E~, l/y~, E~M=l/Yh. For a 1D material, 1/Y~, 
1/Y~, l/y~, and Ehl=l/y~M produce an exact result, 

E* = 1/ (l/E) = 1/ (y) 

(4.18) 
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whereas E6, E*, and Et are not correct in fourth or 
higher order 0 In the 2D problem, it was pointed out in 
V that E~M = l/Y~M is not only the best possible single­
site approximation to the effective permittivity E* = 1/y*, 
but also it includes contributions from important crossed 
diagrams. In fact, both E~M and y~M prove to be strictly 
valid up to the fourth order. In a 3D case, crossed 
cumulant diagrams comprised in Fig. 5 vanish for OE, 
so that E~ is considered to be the best approximation 
at the present stage. As an estimate of y*, however, 
we need to employ l/f~ instead of Yt, because the 
counting rule (v) does not apply to oy*. Recall that E;'; 
is exact up to the fourth order but y;'; is not true in the 
fourth order. 

Another merit of E~M = 1/Y~M for a 2D material is that 
it is compatible with the so-called "phase interchange" 
theorem. 39-41 Let us specify by E*(E1,E2 ) the effective 
permittivity of a 2D binary mixture with phase permit­
tivities E, and E2 • The phase interchange theorem 
asserts that 

(4.19) 

where E*(E 2 ,E1) is the effective permittivity when the 
constituting phases are exchanged. We have not changed 
interphase geometry, but only changed phase proper­
ties. In the 3D case, this theorem can no longer be 
applied, though an inequality 

(4.20) 

holds instead of the above equality. 17 When the consti­
tuents with E1 and E2 occupy fractions of the total volume 
v 1 and V 2 , respectively, the 2D EM solution takes on the 
form 

Therefore, it is easy to demonstrate that Eq. (4.19) is 
actually satisfied by E~M = 1/Y~M but not by E6, 1/ Y6, 
E;';, 1/y;';, Ek, l/Yk' This also ensures the accuracy of 
the EM approximation in 2D. 

5. PERTURBATION EXPANSIONS IN TERMS OF 
THE LORENTZ FIELD 

Next we shall develop another type of perturbation 
formulation taking account of the fact that the Green's 
function G has a singular point r 12 = O. Let us introduce 
a kind of Lorentz field such that 

and define 

( ) dOE(r) d[E(r) - Eo) (5 02) 
K r = oE(r) + dEo = E(r) + (d - 1 )Eo 

By virtue of Eqo (2.14) or (2.15) the basic integral 
equation (2012) is converted into 

Fi(r) =E1(r) + J dr2Aij(r12)K(r2)Fj(r2)' (5.3) 

or 

(5.4) 
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with 

in 2D, 

Equation (5.3) or (5.4) is essentially equivalent to 
that employed by Brown,7.8 Finkel 'berg, 42.43 or 
Davies. 44 

(5.5) 

Analogously to Eqo (2.4), the effective constant K;j 
is defined by 

(K(r)Fi(r» = Ki/Fi(r» (5.6) 

which, for a statistically isotropic medium, gives 

* dOE * d(E* - Eo) 
K =OE*+dEo =E*+(d-1)Eo ' 

Formal interation of Eq. (5.4) shows 

IC* = (K) + l(JcAK) - (K)A(K)] + l(KAKAK) - (JcAK)A(IC) 

- (K)A(KAK) + (K)A(K)A(Jc)] + ... 

= (K\ + (K AK)c + [(K AKAK) c + (JcA(K)cAK)c + ... 

ro 

=~IC(n). (5.8) 
n=l 

In the completely random case, leading terms of K* 
up to fourth order are expressed as follows: 

K(2) = fdr2(~Oi!i)o(r12) +EoGi(i)(r12») (K(r1)K(r2 »c 

K(3,1)=0, 

(5.12) 

(5. 13) 

in 1D or 2D, 

(5.15) 

in 3D, 

(5.16) 

whose detailed derivation is presented in Appendix Co 
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Equations (5.11) and (5.16) suggest that the decom­
position law as shown in Fig. 3{b) is not available to K. 
Unfortunately, therefore, contributions from nested 
diagrams cannot be evaluated by using the rules 
(i)-(iv) elucidated in Sec. 3. However, it is easily 
seen that every single-site diagram vanishes when 
(K)c=(K)=O. Choosing Eo=E* we obtain 

(5.17) 

(5.18) 

in other words, the self-consistent cumulant solution 
K'(; proves to agree with the EM solution KtM' Because 
of the self-containedness of the approximation involved, 
K~M might be expected to provide the same result as 
that of EtM or YtM' Actually, the combination of Eq. 
(5.2) reproduces Eq. (3.34) or (4.16). Moreover, it 
follows from Eq. (5.15) that crossed diagrams illus­
trated in Fig. 5 contribute zero as far as the value of 
K* for a 2D material is concerned. This implies that 
K~=KtMand so EtM and YtM give very accurate esti­
mates, thus confirming that the self-contained single­
site theory for E* and y* serves as a better approxima­
tion than the cumulant expansion method in 2D systems. 

Unless we set Eo=E*, on the other hand, we arrive at 
worse approximations than K~ or KtM" In this case, 
Eqs. (5.17) and (5.18) must be replaced by 

K * = (K) c = (K) 0# 0, (5. 19) 

which corresponds to Eqs. (3.28) and (3.32). The ex­
pression (5.19), together with Eq. (5.7), gives 

E -Eo __ E_~ __ ~_ 5 20 * ( ) ( ) E* + (d - 1 )Eo - E + (d - 1 )Eo c - E + (d - 1 )Eo ' (. ) 

or 

E* = \E + (;-1)E~)/(€ + (d~ 1)E~)' (5.21) 

If we interpret Eo as the permittivity of a particular 
phase of the material under investigation, say the 
permittivity of a matrix of a suspension, Eq. (5.21) re­
duces to the famous Maxwell-Wagner formula45 ,46 in 
the classical theory of dilute suspensions. Of course, 
this formula was originally proposed as an approximate 
solution in the dilute limit, but Eq. (5.21) was found 
by Hashin and Shtrikman47 to give an upper or lower 
bound for the effective permittivity of a multiphase 
medium, when Eo is the maximum or minimum of the 
phase permittivities. Meanwhile, the result for Eo = (E), 
that is, 

E6p = \E + (dE_1W» /\E + (d~ 1)M) (5.22) 

agrees with the optical potential approximation dis­
cussed in the subsequent sections. 

6. TMATRIX EXPANSIONS 

Although T matrices have been widely used in the 
quantum mechanics of disordered systems, it seems 
that there have appeared only two attempts to handle 
classical mixtures by means of T matrix expansions; 
one is an approach to the continuum problem made by 
Dederichs and Zeller9

-
u and the other is an analysis 
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of the network problem due to Kirkpatrick21 (see also 
Blackman26). The aim of this section is to clarify the 
meaning of the T -matrix expansion in our formulation 
and to demonstrate the relationship to the expansions 
derived in previous sections. By repeated application 
of Eqs. (2.20) and (2.21) we have 

T = Oe + OeGOE + OeGOeGOe + •.. 

(T) = (Oe) + (OeGOe) + (OeGOeGOe) + ... 

= Oe* + Oe*GOe* + Oe*GOe*GOe* + •.. 

or inversely, 

Oe* = (T) - (T)G(T) + (T)G(T)G(T) - ... 

= (T)(l + G(T)t1. 

(6.1) 

(6.2) 

(6.3) 

It is interesting to note that the self-consistency condi­
tion Oe*=O is equivalent to the statement (T)=O. 

In analogy with the T matrix for the whole system, 
we define a T matrix f" for a single cell 0' as 

(6.4) 

where Oe =L;"Oe". Then, the familiar T matrix expan­
sion in the multiple scattering theory becomes 

T=6t" + 66t"Gta + 666t"GtaGtr+ "', (6.5) 
",,*8 ",~8*r 

each sum being taken so that no two successive sub­
scripts are equal. From Eqs. (6.3) and (6.5) we find 

(T) =6<t",) + 6~ (t",Gta) + ~66 (t",Gt8Gtr) + ..• , 
'" ",*8 "'*8~r 

(6.6) 

and 

Oe* =6(t",) - (~6 (t",)G(ta) - 6I:(t",Gtll)\ 
a aB affl l 

+ (.0 6.0 (t",)G(tll)G(t) - ~ 6 6 (t",)G(taGtr) 
",ar ",an 

- .066 (t",GtIl)G(t) + ~66(t",GtIlGtr)\ 
"'~Ilr "'~Mr J (6.7) 

In full notation t", is expressed as 

(6.8) 

Integration of Eq. (6.8) with respect to r 2 gives 

x j dr 2 Gik(r12)t",k/r2). (6.9) 

In Appendix D we establish that for ellipsoidal or 
elliptic cells 

t""ij(rl)=t",ij~,,(rl)' (6.10) 
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If the medium is completely random, the result is 
simplified to 

t", ij(r u r 2) = t", ij(r 1)0 (r 12) 

= t",Oij~ ,,(r1)0(r12), 

with 

(6011) 

(6012) 

(6013) 

Comparing Eq. (6.13) with Eqo (5.2) we conclude that 
the factor l", in the T matrix substantially represents 
the quantity K in the cell (}'. 

In the completely random case the expansion series 
(6.7) is transformed into 

6E* =6 (t,,) -~(t"Gt,,) + (6 (t"Gf"Gt,,) 
"" " 
- 66 (f"GfeGf,,) + 66 (t"GteGt,,») 

,,*e ,,*e 
(6.14) 

which is readily verified by means of Eqo (6.12)0 Here 
the bar indicates an average over the phases of a single 
cell according to their frequency. This average is taken 
only over the material properties of cells; for instance, 

f", ij(rH r 2) = ([,,)0 ij~ ,,(r1)0 (r12 ). (6.15) 

As an explicit form of Eqo (6014) we can write 

oE*=(0-('t'/ J dr2 Gi (i)(r 12)Or12 

+(03 I j dr 2dr3 Gik (r12)Gk (i)(r23)0 r120r23 

- (1'/ j j dr 2dr 3 Gik(r12)Gk(i)(r23)Or13 

X(I-o r1) + ('{2)('{)j I dr2dr3Gik(r12) 

X Gk(,)(r23)0 (1-0 ))_... (6.16) , r13 r 12 ' 

making use of such relations as Eqs. (2.32)-(2.43). 
We remark that the T matrix expansion (6014) is valid 
even for ellipsoidal or elliptic cell materials if every 
term is integrated over r z (refer also to Ref. 9). 

The first approximation to O€* in Eq. (6.14) will be 

yielding 

E* =E/i.d + l)E - Eo). 
\E + (d -1)Eo 

(6.17) 

(6.18) 

This is just Kroner's approximation (3.33) in the case 
of Eo = (E). As the next step we make the approximation 

O€* =6(t,,) - ,0 (f"Gf,,) + 6 (f"Gf"Gf,,) - 0 o. 
"'" '" 

(6.19) 

The above assumption is equivalent to 

(6020) 
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which implies Eq. (5 021)0 The approximation (6019) 
when Eo = (E) is called the optical potential approxima­
tion9

-
11 and gives an identical result with Eqo (5.22)0 

Lastly let us choose Eo=E* so that oe* =0 0 Then 
Eqso (6.17) and (6.19) become 

6 (f,,) =0, (6021) 

" 
6 (f,,(l +Gt"t1)=0, (6.22) 

" 
both of which lead to 

we have thus obtained Eq. (3034) againo As a matter of 
fact, many terms entering in Eqo (6 0 14) vanish under 
the condition t,,=O. In particular, all terms up to the 
third order contribute nothing, while there is only one 
possible nonzero term in the fourth order 0 That is to 
say, 

OE* = (tz)2 j J I dr 2dr3dr4 Gik(r12)Gkh(r23) 

(6.24) 

Analogously to the calculations in earlier sections, it is 
shown that this leading term amounts to zero in ID or 
2D and to ('[2)2 /27e~ in 3D. For a cell material consisting 
of ellipsoids or ellipses, nevertheless, it must be 
noticed that third-order terms Z;Z;"*e(t,,GfeGt,,) cannot be 
discarded, because the integral of f" rather than f" 
itself is equal to zero. In addition, we may point out 
that the arguments based on T matrix expansions 
are applicable to the reciprocal permittivity oy* as 
well as the permittivity oe* 0 

7. VARIATIONAL TREATMENTS 

We now turn to a discussion of variational methods. 
Variational principles have been repeatedly employed 
to obtain upper and lower boundS for the effective prop­
erties of inhomogeneous materials. Since different 
approaches including our work in II have recently been 
made, 9,11,14,16,18,28 we shall mention here the main re-
sults and add a few comments. 

The statistical variational principles usually adopted 
are as follows 2,9,ll: 

I dr(Ej(r)et/E /r) ~ I dr (Et(r)E(r)Et(r), 

I dr (Dj(r)Yt/E /r) "" I dr (Dt(r)y(r)Dt(r), 

(7.1) 

(702) 

where the superscript A refers to a trial function. In­
stead of a boundary condition we impose the require­
ment that any trial function must have the same aver­
age as the true function. Denote by X • Y the spatial 
average of the inner product of the two vectors X and 
Y; in a 3D case, for example, 

(703) 

Then, the inequalities (7 01) and (702) are expressed as 

(704) 
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(7.5) 

Dederichs and Zeller9,ll have introduced random 
operators P and Q such that 

EA==P(E), P==1 +GOP, (7.6) 

(7.7) 

In order that these equations actually give trial func­
tions, it is sufficient that 

(OP) == 0, (OQ) == O. (7.8) 

Substituting Eq. (7.6) into Eq. (7.4) we find 

(E) . e*(E) ~ (E) . (pteP)(E). (7.9) 

Here the dagger indicates an adjoint operator; namely, 

P;j(ru r 2) =P ji(r2, r 1). (7.10) 

Since the inequality (709) holds for any (E), we may 
write symbolically 

e* ~ (preP), (7.11) 

which means that every eigenvalue of e* is smaller 
than or equal to the corresponding eigenvalue of 
(pteP). Similarly, 

1'* ~ (Qt'YQ). (7. 12) 

The above two inequalities enable us to derive upper 
and lower bound on e* (=1'*-1); the breadth of gap 
between the bounds depends on the choice of OP and 
OQ. 

(i) The simplest assumption we can make is 

OP=O, OQ=O. 

As shown in II, this leads to Wiener's elementary 
bounds 

(e-1)-1 ~e* ~ (e), (1'-1)-1 ~'Y* ~ (1'). 

(ii) Next we choose 

OP =e' =E - (e), OQ='Y' =1' - (1'); 

or equivalently, we suppose 

EA = (E) + E(l) = (E) +Ge'(E), 

DA == (0) +D(l) == (D) + r'Y'(O), 

(7.13) 

(7.14) 

(7.15) 

(7.16) 

(7.17) 

where E(l) and D(ll have been defined in Eqs. (3.4) and 
(4.1). In Appendix E it is proved that 

(7.18) 

Therefore, insertion of Eqs. (7015) into Eqo (7.11) and 
(7.12) yields 

e* ~ <e) + (e'Ge') + (e'Ge'Ge'), 

y* ~ (I') + ('Y'r'Y') + (y'r'Y'r'Y'). 

(7.19) 

(7.20) 

The right-hand sides are just the perturbation expan­
sions of e* and 1'* up to the third order. 

(iii) In place of Eqs. (7016) and (7017) we utilize 
the trial functions 

(7 0 21) 
n=O 
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N 
OA=(O) +O(l) + 0'0 +D(N)= 60(n), 

which, for N=2, imply 

OP =e' +e'Ge' - (e'Ge'), 

OQ='Y' +'Y'ry' - ('Y'ry'). 

"=0 

In the same way as we did in (ii), we obtain 

e* ~ (e) +e' (1) +.0. +e' (2N+1), 

(7.22) 

(7.23) 

(7.24) 

(7.25) 

(7026) 

here, for instance, e'(n) is taken to be the value of 
OE(n) when eo = (E). Consequently, it is concluded that a 
finite perturbation series of e* or 1'* terminated at odd 
order provides an upper bound (for details see II and 
Ref. 9)0 Needless to say, a lower bound for e* is de­
rived from the expansion series of 1'* =e*-l up to the 
(2N + l)th order. 

(iv) The previous bounds can be improved by the in­
clusion of a set of adjustable constants {An} and W-n} 
such that 

(7027) 

(7.28) 

The multiplicative constants are to be chosen to mini­
mize the upper bound when Eq. (7.27) or (7.28) are used 
as an admissible solution. The cases of N = 1 and 2 
have already been investigated by several 
authors. 2,9,11,14,16,18,28-30,48-50 

For simplicity consider the case of N = 1, which 
corresponds to assuming that 

(7.29) 

Analogously to Eqs. (3.17) and (4.17) of II, and Eqs. 
(2.28) and (2.29) of V, then, we have for the eigen­
values et and yf (= l/ef) 

* (. (AY)(E'2)/(e)2)2) 
E j ~(E) \1- AF)(E'2)/(E)2+Ap)(e'3)/(E? ' (7.30) 

(7.31) 

The coefficients Al2), Al3 >, Bl2>, BP) are the eigenval­
ues of 

Al~) = - e~~2)/ «E'2)/ (E») 

(7 0 32) 

(7.33) 

(7 0 34) 
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(7.35) 

We remark that Eq. (7.31) gives a lower bound on Et, 

E'!' "" 1 ~ _ IB~Z) «1/ E)'2) \ Z 

• (liE) t \' (liE? ;/ 

x (.,(Z) «l/E)12) +B(3) «1/d 3
)\ _q_l 

,\1 (lId i (1/E)3 J J ' (7.36) 

somewhat different in form from Eqs. (4.17) in II and 
(2.29) in V. 

If the medium is statistically isotropic, Eqs. (3.16) 
and (4.4) show that A (Z) = 1/ d and B(Z) = 1 -1/ d. For a 
symmetric cell material or for a two-phase material, 
we have B~~) =OjJ -AW and Bn) =Oij - 2A~}) +An) luse, 
Eqs. (2.25), (7.34), and (7.35)). For a spherical-cell 
material with A (3) = 1/ d2 and B (3) = (1 - 1/ d)2, further­
more, the bounds are expressed by 

(7.37) 

(7.38) 

Especially when the system consists of two phases 
with permittivities El (= l/Yl) and Ez (= l/yz), these 
inequalities reduce to 

*< + (E 1 -E2)ZV1VZ (7.39) 
E ~ E1V1 EzVz - [(d _ 1)E1 +Ez]V1 + lEI + (d - l)EzJvz 

and 

* < + (d -1)(Yl-Y2)ZV1VZ 

I' ~Y1Vl Yzvz - ~+(d-1)yzlv~d-1)yI+Yz:rv;' 

the latter being transformed into 

E* "" E1Ez (E2VI +E1V2 

(d-1)(E1-E2)ZV1V2 \-1 
- [(d - 1)E;+E~ + lEI + (d -1 )e;rv;; . 

(7.40) 

(7.41) 

(v) Another type of trial function applicable to sym­
metric cell materials is 

(7.42) 

According to the arguments advanced by Dederichs and 
Zeller,9,l1 the use of this trial function results in 

e* .,,; (e) + 6 (f",(1 + Gf",)-l), (7.43) 

'" 
whence the bound thus presented agrees with the optical 
potential approximation (6.19). Defining the T matrix 
t", for I' as well, we get a similar expression 

1'* .,,; (y) + 6 (f",(1 + rf",)-l), (7.44) 

'" 
which provides us with a lower bound on e*. The in­
equalities (7.43) and (7.44) reduce for a spherical-
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cell material to 

(7.45) 

y*.,,; \(d -l~ + (1'1 / (d - f)Y:tlYl)· (7.46) 

In the case of binary mixtures, Eqs. (7.45) and (7.46) 
coincide with Eqs. (7.37) and (7.38), respectively; 
for Eqs. (7.45) and (7.46) in fact yield Eqs. (7.39) 
and (7.40). Notice that this coincidence is only acci­
dental and occurs neither for more-than-two phase 
materials nor for nonspherical cells. 

(vi) Upper and lower bounds for the effective permit­
tivity E* of a statistical isotropic material were de­
rived by Hashin and Shtrikman47,51 and Prager5Z without 
knowledge about correlation functions. Hashin and 
Shtrik~an47 found that their bounds for a two-phase 
mixture are the best possible in terms of phase permit­
tivities and volume fractions alone. In order to rede­
rive the Hashin-Shtrikman bounds, Dederichs and 
Zeller9

•
11 proposed an admissible solution 

where 

Cj = - l/dEo, 

T=OE+OECjT=5E (1+~)-1. 
dfEo 

As a matter of fact, it is not difficult to show that 
Eqs. (7.47)-(7.49) lead to 

E*"'; ~ + (dE_1)E~) / ~+(dl_l)Eo)' 

(7.47) 

(7.48) 

(7.49) 

(7.50) 

whenever E(r) "';Eo' Similarly, for the reciprocal per­
mittivity 1'* = l/E*, 

1'* ~ (d -~)y +1'0)/ (d -1~ +1'0)' 
(7.51 ) 

if y(r) ~Yo' Hence the lower bound on E* is 

E* "" (e + (; -Ilea) / \E + (/-l)Eo)' 
(7.52) 

provided that E(r) "" Eo' If we take Eo to be the maximum 
or the minimum of the phase permittivities, it is con­
firmed that the Maxwell-Wager formula gives an upper­
or lower bound on E*. 
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APPENDIX A 

Consider a two-phase material with phase permitti­
vities EI and Ez, and introduce an indicator T/ (r) such 
that T/ (r) = 1 or 0 according to whether the point r belongs 
to the first or the second phase. Then we get 

(Al) 
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so that 

(oE(rl )oE(r2) •• oOE(rn»c 

(A2) 

and 

«oE)n>c= (E l - E2)n~n>c' (A3) 

Thus from Eq. (2.30), it follows that the correlation 
function j(r12 , r Z3, ... ,rn_l ,n) is determined by the phase 
concentrations and geometries independently of the 
permittivities El and E2. This conclusion is a generaliza­
tion of the statement given by Schulgasser, 18 who argues 
the three -point correlation alone. 

APPENDIX B 

It is a simple matter to establish Eqs. (406)-(409) 
and (4012); as an illustration 

x (01' (r 1 )01' (r 2 )01' (r 3) c 

= {(Oy)3)c I drlZ r ik(r12 )Or 
12 

= «oy)2).(OY)c jdrl2 far23 r ik(r12) 

x rk(o(rZ3)Or 13 

(B1) 

(B2) 

We now turn to a calculation of 01'(4,4) 0 By definition, 

oyC4,4) = «oy)2>~ I dr12 I dr23 ] dr34 r Ik(r12)r kll(r23 ) 

x r hUl(r34)Or14orz3' (B3) 

As in III-V, the null function or will be taken to be the 
limit of a characteristic function Ip(r) that assumes the 
value 1 or 0 according as r§ p. By reference to Eqso 
(4.3) in III and (4.19) in V we introduce 

J p,l/r 23) = - f drl2G jj(rl2)Ip(rl3) 

(B4) 

499 J. Math. Phys., Vol. 18, No.3, March 1977 

for r<p, 

forr>p, 

for r<p, 

forr>po 

The formula corresponding to Eq. (C4) in III is 

J p,iir 23)=- I drl2Gik(rl2)Jp,kJ(rl3). 

(B5) 

(B6) 

(B7) 

Making use of Eqs. (2.25), (B4), and (B7), we have 

01'(4,4) = -lim (1 _ !) 2 \(OYr)~ 
p,o d Yo 

x Al - 1 J'" I p(Y23)C p(r23 ) d \ (BS) 
'\ l-l/d rZ3 Y 23} 

0 

o 

Substitution of Eqso (B5) and (B6) into Eqo (BS) yields 

(B9) 

The procedure to evaluate 01'(4,5) goes in like mannero 
The term oyC4,5) is given by 

(BID) 

Converting r in Eq. (BID) to G, we obtain for the 3D 
case 

In the 2D case, the result is 

(B12) 

The validity of Eqo (40 11) when d = 1 is almost evident, 
because 01'* = (01') in IDo 

APPENDIXC 

Analogously to the proof of Eqso (4.6)-(4.12), we can 
prove Eqso (5010)-(5.16); it is only necessary to use 
Eqo (5 05) instead of Eq. (2.25). By way of example let 
us show the results for K(3,l), K(3,2), K(4,4), K(4,5): 

K(3,ll=(x3)c] arl2] dr23Alk(rl2) 

(e1) 
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K (3,2) = v<2)/J<)c/dr11drZ3 Aik(r12)Akm(r23)Or13 

=(K2)c(K)C(~ + ~EO !dr12G;<o(r12)Or12 

=0 in 3D, 

In contrast to the 3D case, Eqs. (C4) and (C6) hold 
regardless of the form of Ip(rzs) or C p(r23 ). 

APPENDIX D 

Substituting Eq. (6.10) into Eq. (6.9) we obtain 

(C2) 

(C3) 

(C4) 

(C5) 

(C6) 

x I dr2Glk(r12)~ ,,(rz). (D1) 

According to Eqs. (3.13) of I and (3.6) of V, it holds 
for a cell material composed of uniformly oriented 
ellipsoids or ellipses that 

This leads to 

(D2) 

(D3) 

from which Eq. (6.11) follows. Since the solution of 
Eq. (6.8) is unique, the proof of Eqs. (6.10) and (6.11) 
is completed. Especially for a completely random 
material, the depolarization tensor becomes Lij 

=0 ii d and ~ ,,(rl)~ ,,(rz) vanishes unless r 1 = r z' From 
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Eq. (D2), thereupon, we find 

~ ",(rl)Cik(rlZ)~ ",(rz) = - ;:~ ,,(r1)6(r1Z)' 
o 

(D4) 

In this case, insertion of Eq. (6.12) into Eq. (6.8) gives 

(D5) 

which implies Eq. (6.13). 

APPENDIX E 

Equation (7.18) is a dielectric analog of Eq. (31) in 
ReL 11 and has already been used implicitly in n. In 
full notation we can write GtEoG as 

f dr3Ctk(r13)EoGk/r3Z) 

(El) 

By integration by parts the right-hand side is trans­
formed into 

= - G i/rlZ) = - C1/r12)' 

Similarly, 

(E2) 

(E3) 
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The problem of determining the Lagrangian theories whose equations of motion are invariant under a given 
transformation group is formulated and studied. 

1. INTRODUCTION 

It is known that, for a mechanical system defined 
from a Lagrange function, the invariance of the equa­
tions of motion under a transformation group does not 
necessarily imply the invariance of the Lagrangian. 1-4 

The reason is found in that the equations of motion re­
main unchanged if the Lagrangian is modified by the 
addition of a total derivative with respect to time. So, 
invariance is preserved if, under the action of any ele­
ment of the group, the transformed Lagrangian only 
differs from the original one by such a derivative. By 
writing the conditions expressing the group law we find 
an interesting structure in which the basic equations 
were established in Ref. 2. The invariance of the 
Lagrangian up to a derivative at first implies the 
existence of a "gauge function" defined on the product 
G x M, where G is the group and i'vI is the configuration 
space including the time. The group property then 
furnishes a functional equation to be satisfied by any 
gauge function and depending on a second function de­
fined on ex G. This last function must, in turn, obey 
another functional equation which is identified as the 
functional equation of what is called "exponents" (or 
2-cocycles) of G. 5 These exponents are related to the 
central extensions of the group G. 

It follows that the problem of determining the La­
grangian systems invariant under a given transforma­
tion group requires the successive solutions of the above 
functional equations, starting from the exponents to end 
with the Lagrange function. In these questions, which in 
fact belong to the domain of cohomology theory, some 
partial answers and examples are already known, 2-5 

Here we intend to examine the whole of the problem as 
directly as possible. We limit ourselves to the case 
where the configuration space is a Coo manifold and G a 
Lie group. The equations will be solved only locally 
both on the group and on the configuration space. This is 
not necessarily a restriction because a local Lagrangian 
may lead to equations of motion which have a sense 
everywhere in the configuration space except for singu­
larities, and an example of such a situation will be 
given. Moreover, the construction of conserved quanti­
ties by Noether's theorem only needs the invariance 
under a local group. 

In Sec. 2 the equations defining the problem are estab­
lished. Section 3 is devoted to the equation for the ex­
ponents; after introducing some differential forms from 
any exponent, we reciprocally deduce a general formula 
giving the local exponents in terms of the closed left 
invariant 2-forms on the group. The local gauge func­
tions are examined in Sec, 4; for transitive groups, by 
an alternative reasoning as that of Ref. 2, a complete 
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solution is given, while for intransitive groups the prob­
lem is reduced to the solution of a system of partial dif­
ferential equations. Section 5 deals with the determina­
tion of the Lagrange function. Finally we show in Sec. 
6 that the conserved quantities given by Noether's the­
orem generate an algebra which is identical to the cen­
tral extension defined by the associated exponent, and 
in Sec. 7 we give some new examples. 

2. BASIC EQUATIONS 

The space of the "events" (t, q), where q belongs to 
the configuration space of the system, is denoted by M 
and assumed to be a Coo manifold. A group G is also 
given which is a Lie transformation group of M; the 
transformed element of x EO AI by WE: G will be denoted 
by xW. 

Let L (x, i) be a Lagrangian describing the system, 
where x E: AI and i corresponds to the derivative dx/ ds 
with s an arbitrary parameter; the function L is a homo­
geneous function of the first degree with respect to X. 
One knows1 that the equations of motion are unchanged 
if (and only if) one replaces L by a function of the form 

LA(x,i)=:L(x,x) +A(;), (2.1) 

in which JI. is an arbitrary real function and it is defined 
by 

....-'----. 'k a JI.(x) ==x -kJl.(X), 
ilx 

(2.2) 

the quantities Xk representing the coordinates of x in 
any chart on AI, For these equations being derived by 
the action principle one immediately sees that equiva­
lent equations are obtained for the variables x W

, with 
W fixed, if one uses the transformed Lagrangian Lw 
which is defined by 

Lw(x'" ,iW) =L(x,x), (2.3) 

where the variables iw are given by the formula 

• k •. a k 
(XW) =: X· eX i (XW) • 

Invariance of the equations of motion under the action 
of the group G means that the variables XW obey the 
same equations as the variables x; thus the equations of 
motion will be invariant under the group G if a function 
Jl.W(x) exists such that 

(Lw) '=L Y W Ec. G 
AW 

(2.5) 

or, explicitly, 
....-'--... . 

L(x,x) + JI. W(XW) =: L (XW ,XW). (2.6) 

By writing this condition for w =: w1W2 and using the 
group law, one easily finds 
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d[A W1 W 2(X) - A W2(Xwj1) - A W1(x») == 0, 

where the differentiation operates on the x variable. An 
integration then gives 

-1 
A w1w2(x) = A W2(xw1 ) + A "'1 (X) - A(Wt> W2)' (2.7) 

This last equation imposes some restriction on the 
function A: Expressing the equality A ("'1"'2)"'3 = AW1 (W2W3), 

one obtains 

A(W1, W2W3) - A(W1W2, w3) = A(Wt> W2) - A(w2, W3). 

From (2.7) and (208) one derives the equalities 

Ae(x) = A(e, w) = A(W, e) = A(e, e), 

where e stands for the neutral element of G. Next, one 
observes that the preceding equations are left unchanged 
if one replaces A by A- A(e,e), and A by A- A(e,e); so 
one may impose the conditions 

Ae(x)=O, 

A(e,e)=O. 

(2.9) 

(2.10) 

A real function satisfying (2.8) and (2.10) will be 
called an exponent5 (or a 2-cocycle) on the group G, and 
a real function satisfying (2.7) and (2.9) will be called 
a gauge function on M associated with A.2 We are in­
terested in the problem of determining the Lagrangians 
leading to equations of motion invariant under the group 
G. For that purpose we have to solve successively the 
Eqs. (2.8), (2.7), and (2.6). In what follows, the solu­
tions will be given only locally as well on the group G 
as on the space lVI, and we shall refer to them as local 
exponents or local gauge functions. In fact we are only 
interested in determining the classes of Lagrangians 
modulo a transformation such that (2.1) is satisfied. 
Two functions A "'(xW) differing by an expression of the 
form 

k(w, x) = <I> (x) - <I> (x"') - IJ. (w), (2.11) 

lead to equivalent Lagrangians and will be called equi­
valent gauge functions. 2 The associated exponents then 
differ by the function 

(2.12) 

and will be called equivalent exponents (mod,u).5 An 
exponent or a gauge function equivalent to zero will be 
called trivial. 

3. CONSTRUCTION OF LOCAL EXPONENTS 

We restrict ourselves to the case of continuous 
exponents. In fact this amounts to considering only C~ 
exponents in view of the theorem of Bargmann5 which 
asserts that, on a Lie group, any continuous local ex­
ponent is locally equivalent to a C~ one; moreover, if 
A=:O (modlJ.) is a C~ local exponent, and if IJ. is con­
tinuous in the neighborhood of e it is also C~ in some 
neighborhood of e. We begin by aSSOCiating some differ­
ential forms to any C~ exponent A; if A is only a local 
exponent, subsequent results remain valid in a neigh­
borhood of the neutral element. The left and right trans­
lations by WE G will be respectively denoted by y wand 
Ow and the symmetry W - w- 1 by S; if X is a left invariant 
vector field on G, the transformed6 X = - S*X is right 
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invariant and coincides with X at e, Xe =Xe , and the 
brackets are connected by the relation 

[X, yJ = - Lx, Y). (3.1) 

Let us now write the Eq. (2.8) for w1 = W, W2 = exp(tX), 
and W3 == w'. Taking the derivative with respect to t, 
at t==O, we obtain 

(3.2) 

where X' represents the vector field X acting on the 
variable w' and where we have put 

<I> (X)(w) = :tA(W, exptX) I too =X'A(W, w') I wO=; (3.3) 

~(X)(W')= :tA(exptX, w') It=o ==XA(W, w') I woe' (3.4) 

If W (resp. w') is held fixed, the last member of (3.3) 
[resp. (3.4)] is a linear form on X", (resp. X",.) and it 
then defines a differential 1-form <I> (resp. ~). We 
easily see that <I> and ~ are C~. From (3.2) we now 
deduce 

Proposition 3.1: The following 2-forms: 

F = - 2d<I>, F == 2d<I> , (3.5) 

are respectively left invariant and right invariant and 
connected by the symmetry F==S*F. 

Proof: Let Y be a left invariant vector field. By 
applying Y' - Y to Eq. (3.2), antisymmetrizing with 
respect to X and Y, and using (3.1) and (3.2), we find 

- (X<I>(Y) - Y<I>(X)- <I> ([X, Y]»(",) 

== (X~(I') - I'~(X)- <I> ([X, I')))(w'); 

that is 

F(X, Y)(w) =F(X, I')(w.)' 

Since wand w' are independent variables, the two 
members of this last equation are some constants that 
evidently express the left (resp. right) invariance of 
F (resp. F). The same equation then means that each 
of F and F is transformed into the other by the sym­
metry S. 

The 2-forms F and F are therefore closed and left 
or right invariant. They may be characterized as 
follows: 

Proposition 3.2: Let {Xc>} be a basis of the Lie alge­
bra of G, let {s"'} (resp. {r'}) be the dual baSis of {X,,( 
(resp. {x,,}), and let 0'''8 be the associated structure 
constants. 

(1) The 2-forms F and F are of the general form 

(3.6) 

where the constant coefficients F ,,8 are antisymmetrical 
and satisfy 

(3.7) 

(2) For a trivial exponent the coefficients F 0:8 are 
gi ven by a formula of the type 

F"'8=C~afr. (3.S) 

PrOOf: (1) Since the forms ?;'" (resp. 1;"') are left 
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(resp. right) invariant, formulas (3.6) represent the 
general form of left or right invariant 2-forms, the 
coefficients F "'~ being some constants, antisymmetrical 
with respect to the interchange of the indices, and 
equal in the two formulas in view of the symmetry re­
lation between F and F. Relation (3.7) immediately 
follows by expressing F and F as closed and by using 
the formula 

dt,'=- iC~B t,"'1\~. 

(2) If A is given by 

A(W, w') = /.J.(ww' ) - /.J. (w) - /.J. (w'), 

where jJ. is Coo in the neighborhood of e, definition 
(3.3) locally gives 

<l>(X)cw) =XjJ.(w) - X/.J.(e) =d/.J.(X)cw) - d/.J.(X)Ce). 

Then, we have 

(3.9) 

(3. 10) 

F(X, Y) = - 2d<l>(X, Y) = (- X<l>(Y) + Y<l>(X) + <l>«(X, Y]))Cw) 

= - X djJ. (Y)cw) + Y d/.J.(X\w) + d/l([X, Y])Cw) 

-d/l([X, Y])ce) 

or simply, since djJ. is closed, 

F(X, Y) = - djJ.([X, Y])(e). (3.11) 

By choosing X and Y among the Xa we find (3.8) with 

f,=-X,jJ.(e). (3.12) 

Remarks: (1) The coefficients F aB may be defined 
directly from the exponent A by the following formula, 
easily deduced from (3.3), (3.5), and (3.6), 

F,,~ = (X~X'", - X~~)A(W, w') I w=che' (3.13) 

(2) The particular expression (3.8) automatically 
satisfies condition (3.7) in virtue of the Jacobi identity 
for structure constants. 

(3) Formula (3.11) shows that for a trivial exponent 
A '" 0 (modjJ.), the condition djJ. e = 0 leads to F = O. The 
converse is true in the sense that if F = 0 then A is 
trivial and a function /l may be found such that djJ.e = 0 
and A = 0 (mod/l). That result will appear as a conse­
quence of the general expreSSion (3.24) which we shall 
demonstrate below. 

Up to now we have associated a closed left invariant 
2-form F to any Coo exponent A. Conversely, we will 
prove that any such 2-form determines a family of 
Coo local exponents by giving an explicit construction of 
the latter 0 Let V be an open neighborhood of the neutral 
element and let w a be a coordinate system in V, for 
which the coordinates of e vanish, and such that if 
w = (W"')E V and 0 "" t"" 1 one also has tw = (tW"')E V. 
Our main tool will be Poincare's lemma. 7 We shall 
use it under the following form: 

Poincare's Lemma: Let B be a closed m-form (m 
> 1) on V. The general solution of the equation dA = B 
on V is given by the formula 

A(Z2' •.• ,Zm) = da(Z2' ..• ,Zm) 

(3.14) 
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in which a denotes an arbitrary (m - 2)-form (or da 
=c!e if m = 1) and Z2, ••• , Zm arbitrary vector fields, 
[w] being the vector field whose the components at the 
point (w a

) are equal to w"', and ht being the "homothety" 
(w a ) - (tw"'). 

Given a closed left invariant 2-form F we have to 
solve successively the equations (3.5) and (3.2) with 
the following conditions, derived from (2.10), 

(3.15 ) 

Poincare's lemma immediately gives the solutions 
of (3.5) (note that ht*[w]==[w]), 

r dt 
<l>(Z)cw) =dcp(Z)cw) - Jo TF([w], ht*Z)Ctw), 

(3.16) 
- - t dt-
<l>(Z)cw) =dcp(Z)cw) + J 0 TF([w], ht*Z)ctW), 

in which we have, due to (3.15), 

dcp e = dcp e = O. (3.17) 

In order to solve (3.2), let us introduce the function 

/l Wo (w) ==A(W, w-1W O)· 

Owing to the formula 

(X/)cw-1Wo) = - X . f(w- 1wo) 

which results from the definition of X, by putting 
W' =W- 1WO in (3.2), we find 

X/lw =-<l>(X)+~(X)oow oS. 
o 0 

The last term transforms as follows: 

~(X) 0 owo 0 S= - ~(S*X) 0 SOYwii' = - S*iP(X)oy w01 

==-S*~(Yw-1X)OY -1=-Y*_IS*iP(X) 
0* Wo Wo 

= - S*6* ~(X), Wo 

so that (3.19) gives 

d/l =-<l>-S*6*~. Wo Wo 

(3.18) 

(3.19) 

The differential form in the right member is indeed 
closed as shown by (3.5) and the assumed properties of 
F and F. Poincare's lemma then gives 

flw (w)=- -(<l>+S*6t, ~)(lw])cuw) l ' du 
o 0 u 0 

(3.20) 

in which we have incorporated the initial condition 
A(e, wo) = 0 which for any exponent follows from (2.10). 

This last expression will be cast into a simpler form 
by specializing the coordinate system, namely by 
choosing the canonical coordinate system associated 
with a basis {xJ of the Lie algebra of G. In such a 
system we have the following relations: 

w- I = - w, (uw t' =uw-1
, s*lw] = lw], 

and (3.20) becomes 

/lw(w)=-Jw<l>-r'-'6~~, (3.21) 
o e e 0 

the integration paths being straight lines in canonical 
coordinates that are segments of one-parameter sub­
groups. Returning to the definition of flwo' putting 
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e~\WW' 

~'W, 
FIG. 1. The contour C(w,w'). The 
straight Unes represent segments 
of one-parameter subgroups and 
the curved Une represents the right 
translated of such a subgroup. 

wo=ww', and transforming the last term of (3.21) by 
the translation Ii w' we find 

A(W, w')= J w (lit~ - cl». 
• 

The condition A(w,e)=O also gives the constraint 

which, by (3.16), is equivalent to 

qJ(w) - qJ(e) = cp(w) - cp(e). 

We then have 

A(W, w') = r (Ii!,~ - ~). 
• 

(3.22) 

(3.23) 

In this last formula, the differential form appearing 
under the integral sign being closed, the integral does 
not depend on the integration path joining e to w. Fi­
nally, (3.23) may be directly expressed in terms of the 
2-form F; adding and subtracting to (3.23) the quantity 

J wi ~ _ J wwl ~ = cp(w') - ~(ww') = cp(w') - cp(ww'), 
e • 

we find 

A = ~ (mod(cp - cp(e))} 

with 

~(w, w')= J w lit~ + JwI"4! _ J Wwl~. 
e e e 

(3.24) 

The first term in the right-hand side may be trans­
formed by the translation li w" thereby giving 

~ (w, w') = JC(W, wi) ~ = is(w,w') 1F, (3.25) 

where the contour C is represented in Fig. 1 and where 
S is any two-dimensional integration domain with Cas 
boundary. With the help of some changE' of variables, 
the preceding formulas may be expressed in terms of 
the differential forms cl> and F, we have 

Hw w')-f cl>-J 1.F 
, - C(w,w') - S(w,wI) - 2 

(3.26) 

and 

A(W,W')=jwl (y~cl>-cl». 
e 

(3.27) 

In the last formula the integral does not depend on 
the integration path, while the contour C is described 
in Fig. 2. 

Since cl> and ~ are defined in the canonical neighbor­
hood V by (3.16), all the preceding relations are valid 
in a sufficiently restricted neighborhood of e; in parti­
cular, formulas (3.23) and (3.27) make sense if w and 
w' belong to any neighborhood v such that v2 c V, and the 
same is true for (3.25) and (3.26). What remains to 
prove is that the function ~ just obtained is indeed a 
local exponent of G. In fact, formula (2.8) is easily 
obtained, in the case where WI E v, i= 1, 2, 3, by using 
the expression of ~ in terms of F and by a simple 
application of Stokes' formula. So, formulas (3.24) 
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and (3.25) lor (3.26)] completed by (3.17) define the 
family of local exponents associated with a given 2-
form F. In particular, that result contains the recipro­
cal of Proposition 3.2 concerning trivial exponents: 
If the coefficients F ClB are of the form (3.8), we have 
at first, with the help of (3.9), 

F= - 2d{fyr,Y), 

and then 

~ (w, w') = JS(W, wi) d(fyt
Y
) = JC(W,W' /yr,Y. 

Since r,y is left invariant we easily find ~ = 0 (modjJ.) 
with 

jJ.(w)=- JW fyr,Y. 
e 

To sum up, we have obtained: 

Theorem 3.3: For a Lie group, any Coo local exponent 
A determines a closed left invariant 2-form F by the 
formulas 

F=F flBr,ClI\r,B, 

F fIB = (X~~ - X..x'B)A(W, w') I "",w'=e' 

Reciprocally, to any closed left invariant 2-form F 
corresponds a family of Coo local exponents which is 
given by 

A= ~ (modjJ.) 

with djJ.e=O and 

~(w,w')=J -1F. 
S(w,wI) 

The trivial local exponents correspond to the forms F 
which are differential of a left invariant 1-form. 

Corollary 3.4: The classes of local exponents on G 
correspond biunivocally to the classes of closed left 
invariant 2-forms, two such forms being equivalent 
if they differ by the differential of a left invariant 
1-form. 

4. LOCAL GAUGE FUNCTIONS 

We turn now to the determination of gauge functions 
which is the solution of Eq. (2.7). It will be convenient 
to replace the function A by the function K defined by 

K(w,x)=AW(x W
). (4.1) 

The Eqs. (2.7) and (2.9) then become 

K(wu XW2) + K(w2, x) - K(W 1W2 , x) =A(WU w2 ), (4.2) 

K(e, x) =0. (4.3) 

We first examine the case of a transitive transforma­
tion group for which a direct solution may be given. Our 
procedure here will be fairly similar to that of Ref. 2. 

FIG. 2. The contour C{w ,w'). The 
straight Hnes represent segments 
of one-parameter subgroups and the 
curved line represents the left 
translated of such a subgroup. 
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A. Transitive group 

Suppose G is a connected and transitive Lie trans­
formation group of M. For any fixed element x of o 
M, it may then be given an open neighborhood u Xv of 
o in the Lie algebra of G so that the following conditions 
hold8 : 

(1) v is a neighborhood of 0 in the Lie algebra of the 
little group Gxo ' and u is a neighborhood of 0 in a given 
supplementary subspace of this subalgebra. 

(2) The mapping u x v 3 (X, Y) - expX . exp Y is a diffeo­
mOl'phism of u x v on an open neighborhood of e in G. 

(3) The mapping u :3X - x~xpX is a diffeomorphism of 
u on an open neighborhood of Xo in M. 

In particular, these conditions mean that the set U 
= expu, endowed with the chart expX - X, is a submani­
fold of G, while V = x~x.u is an open submanifold of M 
with the chart x~xpX - X. For any element x of V we 
denote by a(x) the unique element of U such that 
x = x~ (xl; the mapping x - a (x) is evidently Coo. These 
properties imply at first the following theorem whose 
proof is given in Appendix A: 

Theorem 4.1: For a connected Lie group acting 
transitively on M: 

(1) Any continuous local gauge function is locally 
equivalent to a C~ local gauge function. 

(2) If the local gauge function I? is given by (2.11), 
and is COO in a neighborhood of (e,xu), and if 11 and cp are 
continuous in some respective neighborhoods of e and 
xo' they also are Coo in some neighborhoods. 

As for the exponents, that result reduces the study 
of continuous gauge functions to that of C~ ones. Now 
let A be a Coo local exponent on expu . expv and let K be 
a Coo local gauge function on (expu· expv) x V associated 
with ?c. Let us consider the following quantity, which 
is defined for (w,x) sufficiently close to (e,xo), 

K(a (XW
), xo) + K(a(xW)"lwa(x), xo) + K(a(x)"". x). (4.4) 

[All subsequent calculations are valid in a sufficient­
ly restricted neighborhood of (e,xQ). To simplify, we 
shall not explicitly indicate the precise conditions which 
validate each step.] The sum of the last two terms 
transforms by applying (4.2) with the substitutions 
WI - a(xW)"lwa(x), w2 - a (x)" I so that (4.4) reads 

K(a(xW), xo) + K(a(x"')"Iw, x) + ?c(a(xW)"lwa(x), a(xt'). 

A second application of (4.2) with WI - a(xW
), w2 

- a (x"'t'w gives 

K(w, x) + A(a(xW
), a (X"')"lW) +?c (a (xW)"lwa (x), a (x)" I ). 

(4.5) 

By using the relation [take WI =a(x), w2 =a(x)"' in 
(4.2)J 

K(a (x)"', x}:::: - K(a (x), xo) +?c (a (x), a (xt'), 

the comparison of (4.4) and (4.5) leads to 

K(w, x):= K(a(xW), xo) - K(a(x), xo) 
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-?c(a(xW)"lwa(x), a (X)"l) 

and then, by using the functional equation for ?C, 

K(w, x) =?c(a(x), a(xtl ) - K(a(x), xo) 

- A (a (x"'), a (XW)"l) + K(a (XW), xo) 

+ A(a (xw)"', wa (x)) - A(wa(x), a (x)"') 

+ K(a (xWrIwa(x), xo). 

The sum of the first four terms represents a trivial 
gauge function corresponding to a vanishing exponent. 
The last term only depends on the values of K on 
Gxo xXao By putting 

X(n)=::K(n,xo)' nE" Gx (4.6) 
o 

we have then, up to an equivalence leaving ?c unchanged 
[that is with 11 =0 in formula (2.11)], 

K(w, x) =?c(a(xw
)"\ wa(x) - ?c(wa (x), a (X)"I) 

+x(a(xW)"'wa(x). (4.7) 

From (4.2) one derives the following functional 
equation for X on Gxo : 

X (n l ) +X (n2) - X (n,n2 ) =?c(n ll n 2 ). (4.8) 

Reciprocally one checks that the formulas (4.7) and 
(4.8) actually define a local gauge function in the neigh­
borhood of (e, xo). It then remains to determine the 
solutions of (4.8). 

We at first observe that (4.8) may have solutions 
only if ?c is trivial on Gxo • That condition is easily 
expressed with the help of the 2-form F associated 
with ?c; if {XJ, 1 ~ a ~ n, denotes a basis of the Lie 
algebra of G such that {xl>'}' 1 ~ a' ~ m, constitutes a 
basis of the Lie algebra of Gxo ' Theorem 3.3 shows 
that the condition on ?c is equivalent to 

(4.9) 

where the primed indices vary from 1 to m. Formula 
(3.24) then gives the following general expression for 
?c on Gxo : 

?c(n" n2 ) = 11 (n,) + iJ. (n2 ) - 11 (n 1n 2 ) 

with 

ll(n)=j(lfy,tY'+v(n), v(e)=O, dv(e)=O. 
e 

(4.10) 

(4.11) 

Now putting X = 11 + e, formula (4.8) shows that e is 
a C~ local homomorphism of G,o into JR. Such an homo­
morphism is determined by a formula of the type (see 
Appendix B) 

(4.12) 

where the coefficients e Ct' have to satisfy the relations 

(4.13) 

In fact, the division of X into 11 + e is arbitrary as we 
see, for instance, by adding (4.11) and (4.12). The 
combination X I>' == f I>' + e I>' appears, which is, from 
(4.9) and (4.13), the general solution of the equation 
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F", /l' == cr,:, /l' X,.., the coefficients F", /l' being given. We 
then have 

Theorem 4.2: Let A be a Coo local exponent on G. 
Local gauge functions may be associated with A in the 
neighborhood of Xo if and only if A is locally trivial on 
the little group G",o' The Coo representatives of these 
gauge functions are given [ modulo a function of the 
type rp(x) - rp(XW)] by the formula (4.7) in which X is a 
Coo solution of (4.8). 

In terms of the 2-form F associated with A, the con­
dition on A is expressed by (4.9), while X is given by 

x(n)== FIX",!;"" + v(n), v(e)=O, dv(e) ==0, (4.14) 
e 

where v is determined by A and where the coefficients 
X'" represent a solution of 

F",/l' =C';;./l'Xy., 1~01',{3',y'~mo (4.15) 

Let us now determine the equivalence classes of 
local gauge functions. According to (4.7) a gauge func­
tion is associated with a pair (A, X). The basic equation 
(4.2) firstly shows that if Kp i=I,2, is associated with 
Ai' the relation Kl - K2 implies Al -A2 • Reciprocally, 
let Al and A2 be such that 

Al ("-'1> W2)==A2(Wl' w2) + f.l(W 1W2) - f.l(w l ) - f.l(w 2) (4.16) 

and let Xl and X2 be corresponding solutions of (4.8). 
We observe that, from (4.8) and (4.16), the function 
P =X l - X2 + f.l is necessarily a local homomorphism of 
Gx into R. By using (4.7) and (4.16), the equivalence 

o 
condition of the gauge functions respectively associated 
with (Au Xl) and (A 2 ,X2) reads 

(4.17) 

Let us first remark that, for x = Xo and n E G",o' relation 
(4.17) gives 

(4.18) 

The following quantity 

p(a(xW1W2t1 W1W201 (x» - p(OI (x w2t lw201 (x» 

_ p(0I(XWlw2tlW10l(XW2» 

vanishes since p is a local homomorphism of G",o. On the 
other hand, due to (4.17), it is equal to 1/J(W1W2) -1/J(wJ 
-1/J(w2). This shows that 1/J must be a local homomor­
phism of G into R. Comparing it with (4.18) this 
means that the local homomorphism p of G",o may be 
extended in a local homomorphism of G. Reciprocally 
this last condition immediately leads to (4. 17). 

Let us finally give the expression of the preceding 
conditions in terms of the quantities X"'. Let Fl and 
F2 be the 2-forms respectively associated with Al and 
A2 ; formula (4.16) gives, with the help of (3.8) and 
(3.12), 

Fl =F2 + C:'efyo fy=-Xyf.l(e). (4.19) 
"e "e 

The property of p to be a local homomorphism of 
G",o is expressed by (see Appendix B) 

C';;./l'xy.p(e) =0, 

which is indeed verified with the help of (4.15) and 
(4.19). The condition that p may be extended locally 
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on G now implies the existence of quantities R,., 
1 ~y~ n, such that R,. __ =X,..p(e) for 1 ~y' ~ m and 
o,.aR,. = O. By putting fy = ff + R,., taking into account 
the definition of p, we finally have 

Proposition 4.3: The local gauge functions K(~hX 1) 

and K(~Z,X2) defined by (4.7) are equivalent under the 
following necessary and sufficient conditions: 

(a) Al = A2 (modf.l) , 

(b) The function Xl - X2 + f.l may be extended in a local 
homomorphism of G into R, 

In terms of the 2-forms Fl and F2 and of the quantities 
Xi",. =X",x/(e), i= 1, 2, these conditions are equivalent 
to 

(a') Fl - F2 = cr",eJy , 
",e a8 

(b')Xly,-X2r'=J,.., l~y'~m, 

for some values of the coefficients Jy. 

B. General case 

In cases where the transformation group G is not 
transitive, a general study along the line used in the 
preceding subsection would be much more difficult in 
view of a possible complicated structure of the orbits, 
and would require some additional hypotheses. In­
stead of that we shall limit ourselves to reducing the 
problem for Coo gauge functions to the solution of a 
system of partial differential equations, which even­
tually may be handled in practical cases. It will be 
convenient to introduce the notation XW = U", (w) where 
U"" XE M, is a Coo mapping from G into M. The velo­
city field is the set of the vector fields I) x on M, X 
being any element in the Lie algebra of G, which are 
defined by 

(4.20) 

Definition (4.20) is equivalent to the following one, 
f denoting a Coo function on M: 

I) xf(x) = - :tf(xexptx) I t~{)' (4.21) 

From this formula we get 

I) x f(x W
) = - !!:... f(xexptX. W) I = - X . f(x W

) 

dt t=o 

or equivalently (Lie equations) 

I) xfo Ux = - XUo U,,). (4.22) 

This leads to the follOwing property of the brackets: 

ID x ,I) y] =1) IX, YJ' (4.23) 

Now let K be a Coo (local) gauge function on M asso­
ciated with the Coo (local) exponent A on G. By writing 
the formula (4.2) for wl=w, w 2 =exptX, taking the 
derivative with respect to t, at t=O, we find, with the 
help of (3.3) and (4.21), 

-I) xK(w, x) + XK(e, x) - XK(w, x) = <I>(X)(w)' 

By putting 

Kx(x) = :tK(exptx,x)!t=o =XK(e,x) 
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the last equation becomes 

(X +/J x)K(w, x) ==Kx(x) - <l>(X)(W)O (4025) 

By applying the operator Y +/J y to (4025) and anti­
symmetrizing with respect to X and Y we get, with the 
help of (4.23), (4.25), and (305), 

j) XKy -f) yKX - K(x. y( = - F(X, Y), (4.26) 

where F is the differential 2-form introduced in Sec. 3. 
A second equation analogous to (4.25) may be obtained 
by putting WI =exptX, w2=w in (4.2); by differentiation 
at t = 0 we obtain 

(4.27) 

That equation allows to construct the function 
K(w, x) in terms of the functions Kx(x). Let us first 
remark that Kx depends linearly on X. For any fixed 
x in M let us introduce the differential 1-form </!x on 
G which is defined by 

Kx(xW)==(Kxo UX)(W) = </!,,(X)(W)· (4.28) 

From the formula Uxw = Ux 0 [) w we get 

</!x w =[)~</!". (4.29) 

We also have, due to (4.22), 

2d</!x(X, I') =X</!x(I') - I'</!%(X) - </!x([X, I']) 

= (-j) XKy +j) yKX + K(x. YJ) 0 U% 

and then, from (4.26) and the symmetry relation be­
tween F and F, 

d</Jx = ti. (4.30) 

The formula (4.27) becomes 

XK(w, x) = (I/!% - -;t;)(X)(W)· 

Since the differential form on the right-hand side is 
closed according to (4.30) and (3.5), that equation may 
be integrated on a neighborhood of the neutral element 
of G in the following form, which takes into account 
condition (403): 

(4.31) 

Conversely, let Kx be any C~ solution of (4.26), and 
let us define I/!" and K respectively by (4.28) and (4.31). 
The last function is a C~ gauge function associated with 
A: Indeed, we successively have 

K(w u XW2) +K(w2, x) - K(W IW2 , x) 

We have shown 

Proposition 4.4: With any C~ solution Kx(x), linear 
on X, of the equations 

D XKy -j) yKX - K[x. YJ = - F(X, Y), (4032) 

where F denotes the left invariant 2-form associated 
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with the Coo exponent A, corresponds a Coo gauge func­
tion associated with A in the neighborhood of e and de­
fined by the formula 

K(w,x)=jW(l/!x_-;t;), 
e 

(4.33) 

the differential form I/!% being given by 

I/!x(X) =Kx 0 Ux• (4.34) 

This result remains obviously valid if the functions 
Kx are defined only on a neighborhood of an element 
Xo of M; the preceding formulas then define a local 
gauge function in the neighborhood of (e, xo). 

Finally, the equivalence conditions of gauge functions 
may be formulated as follows: 

Proposition 4.5: The local gauge function K which is 
defined from solutions Kx of (4.32) by (4.33) and (4.34) 
is trivial if and only if the functions Kx are of the form 

Kx(x) =j) x c!> (x) - a(X), (4.35) 

where a denotes a linear form on the Lie algebra of 
G. 

Proof: If K is given by (2.11) and A by (2.12), defini­
tion (4.24) immediately gives, with the help of (4.22), 

Kx(x) =j) x c!> (x) - X/J-(e). 

Conversely, let us assume that Kx is of the form 
(4.35). From (4.32) and (4.23) we at first obtain 

F(X, Y) = - a([X, Y]). 

The exponent A is therefore trivial according to 
PropOSition 3.2 and Theorem 3.3, and we have 

F "'~ = - C~aa(Xy) 

and accordingly A '" 0 (mod/J-) with 

/J-(w)=V(w) + jWa(Xy)'y, v(e)=O, dv(e)=O, 
e 

where the integration path is a straight line in canonical 
coordinates. From (3.4) we next deduce 

-;t;(X)(W) =X/J-(w) - X/J-(e) =XfJ.(w) - a(X). 

Now, (4.34) and (4.35) give, with the help of (4.22), 

</!",(X) =j) xc!> 0 U" - a(X) == - X(c!> 0 Ux) - a(X), 

and then 

or 

I/!" - -;t; == - d(c!> 0 UJ- dfJ.. 

Thus, the formula (4.33) finally gives 

K(w, x) = c!>(x) - cp(XW) - fJ. (w). 

5. LAGRANGIANS 

The equation we have to solve is Eqo (206) or, by 
using the gauge function K defined by (401), 

L(xW,XW)=L(X,i)+K~. (501) 

Geometrically, the pair (x, x) is the set constituted by 
a point x EM and an element x of M", the tangent vector 
space to M at the point x [in other words, (x, x) belongs 
to the tangent fiber space of M]. We denote by J w(x) 
the differential at the point x of the application x - x W

, 
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w being fixed, and by dK(w, x) the differential of x 
- K(w, x). The formulas (2.4) and (2.2) then read 

xW=Jw(x)(x), 

-----.. 
K(w, x)=dK(w, x)(x). 

We note the relation 

Jw(xt 1 = Jw_l(XW). 

(5.2) 

(5.3) 

Let 1E Mxw; the invariance condition (1) takes the 
form 

L(x", l) = L(x,J w(x)"ll) + dK(w, x)(J .,(x)"ll). (5.4) 

We only consider the case of a connected transitive 
group G and take again the notations of Sec. 4 A. 

Proposition 5.1: For a connected transitive trans­
formation group G and a given local gauge function K, 
the Lagrangians fulfilling the invariance condition are 
locally given by the formula 

L(x, l) = I (J a(x)-l(X)l) + dK(a (x), xo)(J a(x)-l(X)l), (5.5) 

in which the function I is a homogeneous function of the 
first degree on Mxo' a solution of the equation 

with nE Gxo' ZoE Mxo and 

j(n)=Jo(xo), nE Gxo• 

(5.6) 

(5.7) 

Proof: By writing (5. 4) for x = Xo and w = a (x) we 
obtain the following necessary condition for invariance, 
valid in some neighborhood of xo' 

L(x, l) = L(xo,J a(x) (XO)"lZ) + dK(a (x), xo)(J a(x)(xo)"lZ). 

(5.8) 

Let I be the homogeneous function of the first degree 
on MXij which is defined by 

J(lo) = L(xo, 10 ). (5.9) 

With the help of (5.3), the formula (5.8) is immedi­
ately rewritten into the form (5.5). That relation de­
fines L in terms of K and I. Conversely, L being given 
by (5.5), we have to express the full invariance condi­
tion (5.4). Introducing (5.5) into (5.4) we have at once 

L(xW, l) - L(x, Jw(X)"ll) - dK(w, x)(Jw(X)"ll) 

(5.10) 

On the other hand, by differentiating the two members 
of (4.2) with respect to x and by applying the result just 
obtained to the vector J wil(xW2 )1, lE MxW2' we obtain 

dK(w 1, xW2)(l) + dK(W2' X)(Jw-l(xW2)l) 
2 

(5.11) 

By making the substitutions x - xo, Wi - W, w2 - a (x), 
l- J w-l(Xw)l, we find that the last two terms of (5.10) 
may be replaced by 

- dK(wa(x), xo)(J(W a(x»-l (x")l). 
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The sum of that result and of the term in dK re­
maining in (5.10) may be transformed by a second 
application of (5.11) with the substitutions x - xo' 
w1 - a(xW), w2- a (xW)"lwa(x), l-Ja(xW)-l(Xw)l, and 
we find for this sum the expression 

- dK(a (xW)"lwa(x), xo)(J(wa(x»-l(Xw)l). 

Now putting lo=J(wa(x»-l(XW)ZE Mxo' the right mem­
ber of (5.10) reads 

I(J a(xW)-lwau)(Xo)lo) - l(lo) - dK(a (xW)"lwa (x), xo)(lo)· 

The invariance condition will be fulfilled as soon as 
this last expression identically vanishes. Since the 
product a (xW)"lwa (x) belongs to the little group Gxo ' by 
putting (5.7), we indeed obtain (5.6). Proposition 
5.1 reduces the problem of solving (5.4) to that of 
solving (5.6). This last equation may be directly treated 
in any particular case. Here we restrict ourselves 
to transforming (5.6) into a system of partial differ­
ential equations. The correspondence n - j(n) defines 
a linear representation of Gxo into M"o. The corre­
sponding generators are given by 

(5.12) 

in which X belongs to the Lie algebra of the little 
group Gxo• The brackets are 

Ux,jy]=j[X,Yl" (5.13) 

The velocity field Dx associated with this represen­
tation is then given by a formula similar to (4.20) and 
is 

(5.14) 

where we have putjlo(n)=j(n)zo and where the last 
member represents the action of the linear operator 
jx on the vector ZO. We also have, as in (4.22), 

(5.15) 

for any C" function I on Mxo. We now have 

Proposition 5.2: The solution of Eq. (5.6) is equiva­
lent to the solution of 

(5.16) 

for any element X of the Lie algebra of Gxo• 

Proof: The equation (5.6) is of the general form 

in which k(n) is a linear form on M"o given here by 

k(n) =dK(n, xo). (5.18) 

We easily see that (5. 17) can have a solution only 
if the following necessary condition holds: ---k(n1~) = k(n2) + j(n2)k(nJ, (5.19) -where j denotes the transpose of j. That condition is 
automatically satisfied in the present case as is shown 
by (5.11) written for x=xo and W"W 2 E Gx , and by 

- 0 
using (5.7). By applying the operator X

01 
at the point 

n1=e to (5.19) we find 

Xk(n) = J(n)Xk(e). (5.20) 

Now, the application of Xe to Eq. (5.17) gives, with 
the help of (5.15), 
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(5.21) 

Equation (5.21) is equivalent to (5.17). Indeed, with 
(5.15) and (5.20), we successively deduce from (5.21), 

X 'f(j(n)Za) = - Dxf(j(n)Za) =Xk(e) • j(n)la 

=.f('Q)Xk(e) 'Za=Xk(n) 'Za' 

which gives, by integration, 

f(j(n)Za) = kin) 'Za + rp(la), 

and then rp(Za) = f(la) by taking n = e. It remains to be 
shown that (5.21) is identical to (5.16); in fact, we have 

Xk(e) =Xe(dK(n, xa)) =d(XK(e, x)) I r.ooXo =dKx(xo)' 

Finally, let us give the form of (5.16) in a 
coordinate system. Denoting a basis of the Lie algebra 
of Gxo by {x a'} we find 

(j a' )';;Z.;' o~mf(lo) == ka'nZ.;' 

° 
with 

ka'n= a~Xa'K(w,x)1 • 
w=e, x=.xo 

6. THE ALGEBRA OF CONSERVED QUANTITIES 

As we know, with any Lagrangian theory possessing 
an invariance group of the type just described, corre­
sponds, by Noether's theorem, a set of conserved 
quantities. 1 We will determine the Poisson brackets of 
these quantities, and show that these brackets define 
an algebra which is an extension of the Lie algebra of 
the group, the one corresponding to the exponent A. 

The manifold M is the product 1R x V where V is the 
configuration space of the system. For a given local 
chart on V we denote the coordinates of x = (t, q) E 1R 
x Vby (xl')==(xn, (x"»). From the homogeneity property 
of L it is easy to see that the Lagrange equation for 
XO is not independent of the others. The same property 
holds for the conjugate momenta 

aL ( .) 
1f1'=()xl' X,X. (6.1) 

Indeed, the function L is connected to the Lagrange 
function usually considered (from which the action inte­
gral is J dt L) by the formula 

L(x, i) = iL(t, q, eJi t). (6.2) 

This implies the equalities 

1f k == Pk(t, q, q/ i), (6.3) 

where P
k 

are the conjugate momenta associated with L, 
and the constraint 

(6.4) 

where H denotes the Hamiltonian. On the other hand, 
the value i = 0 must be excluded since L generally has 
a singularity at this point. With this restriction, the 
correspondence (x, i) - (x, 1fo' 1f) maps the tangent fiber 
space of M (velocity phase space) into the submanifold 
S of the cotangent fiber space of M (momentum phase 
space) which is defined by Eq. (6.4). According to the 
usual hypotheses, 7 this mapping is, for any i *0 fixed, 
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a local diffeomorphism into S. The momentum phase 
space is naturally endowed with the symplectic form 
n = dxP'1\ d1f I' for which the Poisson bracket of two 
functions of (xl') and (1f 1') is' 

{j,g}g = oOfl' ::1' - a;1' :;1' . (6.5) 

The form n induced by n on the section St of the sub­
manifold S by the hyperplane Xo = tis fl.= dx"N1fk and 
the associated Poisson bracket is the usual one, 

{j} af ag af ag 
,g IT = a7' a:rr:- - a:rr:- a Xk , 

k k 
(6 0 6) 

where f and g are functions on S expressed with the help 
of the coordinates (t, x\ 1fk ). Now if J denotes the re­
striction on S of a function f defined on the momentum 
phase space, an easy calculation gives the following 
relation between the two kinds of brackets: 

{J -L if} af (a g - ) ag (aJ {J L \ ,gJg= ,gg+a1f
o 

ilt+{g,H}u -a1f
o 

at+ ,HfR /. 

The action integral is defined by 

A~2[X] = I 52 ds L(X(8), x' (s». 
1 51 

The invariance condition (5.1) then reads 

(6.7) 

(6.8) 

A~2[XW] -ANx] =K(w, X(S2» - K(w, X(S1»' (6.9) 
1 1 

Taking w == ow to be infinitesimal, a classical calcu­
lation gives 

M~2[x]=IK(ow,x(s))I~2 (6.10) 
1 1 

with 

M;~lx1 = 11f 1'0xI' l~~ + [52 ds [~~I' - ::S (:~ ) ] oxl'(s) 

1 (6.11) 

in which 1f I' is defined by (6.1). When xis) is a solution 
of the equations of motion, (6.10) reduces to 

11f 1'0xI' - K(ow, x) I ~2 = O. 
1 

The quantity 

oQ=1f"OXI' - K(ow, x) (6.12) 

is therefore a constant of motion. Alternatively, if we 
put ow = exp (tX) , where X belongs to the Lie algebra of 
the group G, we obtain the finite quantities [see (4.21) 
and (4.24)] 

(6.13) 

As it stands, this last formula defines Qx as a func­
tion on the whole momentum phase space, the corre­
sponding conserved quantity Qx being obtained by re­
stricting Qx on S. Due to the form of the equations of 
motion written with Poisson brackets, the conservation 
property implies that the function (a/at)Qx + {Qx, H} il 
identically vanishes o Thus, the Poisson brackets of the 
Qx's are, by (6.7), directly given by those of the 
Qx's. From (6.13) we have 

{Qx, Qy}g = 1T I'W xx", 1fJgL) yXV 

J.e. Houard 510 



                                                                                                                                    

Definition (6.5) implies the following relation: 

{1T .. ,/(x)}oiJ xxJJ. == - (iJ xx") of;:) == - D x/ex), 

and then 

{Qx, Qy}o==1T..D y(DxxJJ.) -1T,.!)x(DyX") 

- D XKy(x) + D yKx(x). 

According to (4.23) and (4.26), this finally leads to 
the formula 

(6.14) 

If X and Yare chosen among the basis fields XOI., 
setting QOI.=QXOl.' we have 

{QOI.,Q8}=C"OI./lQy+F,,8' (6.15) 

This shows that the Lie algebra generated by the 
conserved quantities is identical to the extension of 
the Lie algebra of the invariance group which is defined 
by the coefficients F 01.8' On the other hand, this Lie 
algebra is that of the group extension defined by the 
exponent A. 5 

Remark: From the action of the group G on M, two 
different canonical transformations may be constructed 
on the momentum phase space, corresponding to differ­
ent transformations of the Lagrangian. 

1. Transformation (x, L) -+ (X W
, Lw) 

The transformation of the conjugate momenta is de­
fined by [see (2.3) and (5.2)] 

w_ a L ( W 'W)-(J ( )-1'" 1T .. - a (iW)" wX,x - w X 1 .. 1T". (6.16) 

For an infinitesimal transformation we have 

(6.17) 

The Hamiltonian is not invariant; its transformed is 
is 

in which the variables i k/ t" must be replaced by the 
momenta through the relations [see (2.3)], 

(6.18) 

_ a L ( .)_ a [L( .) aL JJ. aL 'JJ.] 1Tk - aXk 6w x ,X- aik x,x-ax"ox -ax" ox • 

Taking into account the invariance condition (5.1) 
written in infinitesimal form, 

aL ~.. aL ......:-. () ( ) 
ax"i'"UX + ai"ox =oK, oKx ==Kow,x, 

we get 

a [ ......=.-J 1Tk = aXk L(x, x) - oK 

or 

On the other hand, (6.18) may be written 

H6)x,1T)= 7- [( 1Tk + a? OK) ik - L(X,x)] + :tOK, 

from which we deduce, with the help of (6.19), 
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(6.19) 

a 
H6w(x, 1T) = H(x, 1T + a (oK» + at oK. 

The infinitesimal generating function is 

00=1T .. OX"(X) 

and we have 

{x",o0}o=ox"(x), {1T .. ,o0}o==01T .. (X,1To,1T). 

(6.20) 

(6.21) 

(6.22) 

For the motions of the system, the restriction 
6@==1Tkoxk-Hot generates the "local variations" on the 
shell S (Schwinger principle). From (6.7) we deduce 

(6,23) 

2. Transformation (x,LJ -+ (X W
, (Lwhw ) = (X W

, LJ 

Formula (6.16) is replaced by4 

w _ a L( W 'W) _ (w' w) 1T .. - a(iW)JJ. x,x -1T .. X ,x 

= (Jw(X)-I)~[1T" + a~" K(w, x)]. (6.24) 

Infinitesimally we have 

(6.25) 

The Hamiltonian is now invariant so that the shell S 
is conserved. Finally the formulas (6.22) and (6.23) 
remain valid for the new variations with the following 
expression of the generating function: 

o 0=1T .. OX"(X) - oK(x) =oQ. (6.26) 

7. EXAMPLES 

A. Translation group 

Let us consider M = (. == lR" and the group action XW 
=X +w. The coeffiCients F "8 are only restricted by the 
antisymmetry condition F 01.8 = - F 8". The corresponding 
exponents are directly defined by the formula (3.26), 

~ (wI> w 2 ) = - t J F0I.8 dwOl. 1\ dwll == - tF"'8w{"w~o 
S(Wl' W2) 

(7.1) 

The gauge functions are calculated by (4.7) in which 
we choose Xo = 0 and O! (x) == x, and we find 

(7.2) 

(Since Gxo ={o} we have X =0.) Then, (5.5) and (5.6) 
furnish the general form of the Lagrangian 

(7.3) 

where f is any homogeneous function of the first degree. 
The conserved quantities are 

(7.4) 

and the relations (6.15) are indeed verified. If n=4, 
by putting eE=(Foi ) and eB=(- t€lJkPJk ) for 1 ~i,j,k~3, 
we find [see (6. 2) 1 

L(t,q,q)=j(q)+ie(Bl\q).q +ie(E.q-tE·qJ. (7.5) 
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The coupling terms describe the interaction of a 
charged particle with a constant and uniform electro­
magnetic field. The usual form of the interaction with 
the electric field is recovered by adding to the 
Lagrangian the "divergence term" 

ietE' q= ieE·q + ietE' q. 
The invariance under translation of this interaction is 
evidently well known, 3,4 but the above calculation char­
acterizes it as being the only one having that property. 

B. Forced harmonic oscillator 

Let us consider a system with one degree of freedom 
(M =lR2

), and with G the two-dimensional translation 
group with elements a:::: (aI, a2) acting by 

t- t, 

q- q +a1 coswt + a2 sinwt, 

where w is given. The exponents on G are given by 
(7.1), in which we have set F 12 =j, 

(7.6) 

~(a,a')= - Y(a 1a'2 _ a2all
) = - iftOl/la"'a'8. (7.7) 

From (3.4) and the expression of the vector fields 
x",=x",=a/aa"', we deduce 

;P(X)(a> = - ift OI/la8 

and then 

;P(a)=ifta,sa"'da8• (7.8) 

On the other hand, we have 

f)l=-COSWt:q , f)2=-sinwt:q • 

The Eq. (4.32), obeyed by the functions K",(x) 
= X."K(e , x), where K is a gauge function associated 
with ~, is here 

f) lK2 -D2Kl = -f. 

Its solution is 

Kl sinwt - K2 coswt= - fq + cp(t). 

According to Proposition 4.5 we easily see that, 
up to an equivalence leaving the corresponding exponent 
unchanged, we may choose 

Kl (t, q) = (- jq + cp(t» sinwt, 
(7.9) 

K2(t, q) = - (- fq + cp(t» coswt. 

The differential 1-form if;", introduced in Proposition 
4.4 is then given by 

or 

<px(a) == l/I",(X "')<0) daO< = K",(x") da'" 

<p",(a) == (- fq + cp(t»(sinwtda1- coswtda2
) 

_ f{sin 2wta2da l - cos2wtalda2 

+ sinwtcoswt(a1da1 _ a2da2
)). 

Formula (4.33) gives the associated gauge function 

K(a, x) = (- fq+ cp(t»(al sinwt - a2 coswt) 

(7.10) 

The Lagrangian must satisfy the relation (5.4) which 

512 J. Math. Phys., Vol. 18, No.3, March 1977 

may be written here as 

L(t, q+a1 coswt+a2 sinwt, E, q+ w(- a l sinwt +a2 coswt)i) 

= L(t, q, i, q) + (- fq + i ~~) (a l sinwt - a2 coswt) 

+ (- fq + CP)(a l coswt + a2 sinwt)wi 

- y«a1)2 _ (a2)2)wicos2wt - Ja la2wi sin2wt. 

The solution is easily found by calculating the deriva­
tives with respect to a1 and a2 at a == 0, that furnishes 
the derivatives aL/aq and 2JL/aq, and we obtain 

+ ~ (_ q~~ +w
2 

qcpt). 

Adding the divergence term 

1 -;tp ~ 1 [. dcp d2CP 'J . -W q di - J l(T)dT= w qTt + q df t - tl(t) 

and putting 

F(t) = ~ [d
2:l) + W2cp (t)] 

and 
f=mw 

we find for the usual Lagrange function, up to an 
equivalence, 

i(t, q, q) = tmlf _1mw2 q2 + qF(t). 

(7.11) 

(7.12) 

(7. 13) 

(7.14) 

This is the Lagrangian of a harmonic oscillator sub­
mitted to the driving force F(t). With this choice of 
the Lagrangian the gauge function becomes 

K(a, x) == - mwq(a1 sinwt - a2 coswt) 

+ t dT F( T)la l COSWT + a2 sinwT), (7015) 

the associated exponent being unchanged. The con­
served quantities are then 

Q1 == pcoswt +mwqsmwt- It dT F(T) COSWT, 
(7016) 

Q2 == psinwt - mwqcoswt - If dT F(T) sinwr, 

and, according to the general result (6.15), their 
bracket is 

(7.17) 

By eliminating p or q between the two Eqso (7.16) 
we immediately obtain the general solution of the 
Hamilton equations of motion 

fq(t)==Q1sinwl- Q2coswf+ r drF(T)sinw(t- T), 

(7.18) 

p(t) == Q1 coswt + Q2 sinwt + It dT F(T) cosw(t - T). 

If F(t) acts during a finite time interval, and if the 
lower bound of the integrals in (7.18) is chosen equal to 

J.e. Houard 512 



                                                                                                                                    

'f 00, we see that the corresponding constants of motion 
Ql and Q2 are the coefficients characterizing the asymp­
totic behavior of the canonical variables, so that (7.17) 
simply expresses the fundamental Poisson brackets 
between these variables. More generally, there is a 
connection between the gauge functions and the Green 
functions associated with the equation of motion. 

These results may be generalized by replacing the 
functions cos and sin in (7.6) by hl and h2' two inde­
pendent real solutions of the second order equation 

h" (t) + u(t)h' (t) + v(t)h(t) = 0, u and v real. (7.19) 

The Lagrange function replacing (7.14) is 

i(t, q, q) =exp[j t dTU(T)][~m? - ~mv(t)i + qF(t)] 
o 

and the associated gauge function is 

K(a, x) = m exp[t dTu(T)][alh~ (t) + a2h~(t)] 
o 

x [q + ~(alhl (t) + a2h2 (t)] 

+ f dTexp«( dT' u(r))F(T) 

x [a1hl (T) + a2h2( T)]. 

The constant f is here m W(O) where W is the 
Wronskian of hl and h2' 

(7.20) 

(7.21) 

W(t) = hl (t)~(t) - h2(t)h~ (t) = W(O) exp(- j t d'Tu( T)) (7.22) 
o 

and the conserved quantities Qj(i = 1,2) are given by 

QI=phj(t)-mqU(t)h~(t)-JtdTF(T) U(T)hi(T), (7.23) 

where we have put 

U(t)=expJo
t 
dTU(T). (7.24) 

As for (7.16), the Eqs. (7.23) allow us to obtain the 
general solution of the equation of motion. Finally, 
let us note that a simple manipulation of that equation 
directly furnishes the expression (7.23): By multiplying 
the equation of motion 

m[q" +uq' +vq] -F=O 

by any solution h of (7.19) we obtain 

or 

m[:t (q'h - qh') +u(q'h - qh')J- Fh=O 

merl :t[(q'h-qh')U]-Fh=O. 

Multiplying by U we find (d/ dt) Qh = 0 with 

Qh = m(q'h - qh')U - t dT F(T)U(T)h(T), 

which is identical with (7.23) if we introduce in that 
formula the expression of p derived from (7.20). 

C. Rotation group 

As a last example we take G = SOs acting on M = IR 
xlRs• The rotations will be parametrized by the com­
ponents of their rotation vector w. The form of the 
structure constants, C""B=€a81" immediately implies 
that the exponents on G are trivial, so that it will be 
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sufficient to consider the case of a vanishing exponent. 
The first equation we have to solve is Eq. (4.32) which 
here reads 

/)aKB -/) BK .. - €aBYKy =0, 1:f O! ,(3, y:f 3 

with 

In vector notation this equation takes the form 

grad(x· K) =xdivK. 

(7.25) 

(7.26) 

(7.27) 

The integrability condition gives/) a(divK) = 0, which 
implies that divK is a function of x2 only (except for an 
arbitrary dependence on the time t). Equation (7.27) is 
then integrated in the form 

divK = k(x2
, t), 

'6,2 

x· K= C + ~j. ds k(s, t) =K(x2, t). 
xij 

(7.28) 

Introducing the longitudinal and transverse parts in 
the x space of K, the second equation in (7.28) gives 

while the first becomes 

divK.L = - K(x2
, t)/ x2

• 

(7.29) 

(7.30) 

To solve that equation in the neighborhood of the given 
point Xo *0 let us introduce a direct orthonormal basis 
(el , e 2 , e s) of 1R3 such that e 1 =x/ IXo I. The transverse 
part of K may be written 

K.L (x, t) = (e2 /\ x)f(x, t) + (e 3 /\ x)g(x, t). (7. 31) 

ExpreSSing (7.30) with the help of the coordinates 
r=lxl, y=x·e 2 , z=x·e3 , we easily find 

og of -K(r,t) 
oy - oz = r(?_y2_ z2)l!2 • 

This equation allows us to express g in terms of f and 
K. We find that the only nontrivial term is the one com­
ing from K, thereby giving, up to trivial terms (that is 
terms of the form x/\gradcl», 

K(x2
, t) 

K.L = - -----;;r- rp(x) es /\ x, x 

where rp(x) is the usual polar angle of x in the plane 
(e l , e 2). A Simpler expression may be obtained by adding 
the trivial function 

_ xII grad [K(:; t) zrp(X)] 

K(x2
, t) [ ( ) + Z2X _ rzes] 

=~ rpxe3 /\x 2+ 2 ' X X Y 

which finally gives, by combining it with (7.29), 

K(x t) = K(r t) xe l + ye 2 
, 'x2 +y2 

(7.32) 

The corresponding gauge function is now given by the 
formula (4.33), namely 
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K(w, x, t) = I w KO!(Rw, (x), t)EO!(w') 
o 

(7.33) 

in w~ich Rw is the rotation defined by the vector w, 
and i;O! are the right invariant I-forms on G. These 
forms are given by the formulas 

t O!(w) = ~:(w) dw 6, 

~0!(W)=WO!W6 +sinw (O0!6_ w"'w6\_1-cosw wy • 

6 w2 w w21 w2 E",SY 

(7.34) 

The integral (7.33) calculated along the integration 
path s - Rsw(x), 0.;; s.s 1, becomes 

K(w x t) = K(r2 t) rIds w . x - (w • e3){e 3 • Rsw(X)) , , 'J a x2 - (e3 • Rsw (x))2 • 
(7.35) 

The integral may be explicitly calculated9 by introduc­
ing the expression Rsw(x) in terms of wand x, but the 
final result which is a sum of four functions arctg with 
rather complicated arguments will be not given hereo 
The formula (7035) then defines a family of gauge func­
tions depending on an arbitrary function K(r2, t) and on 
a given direction e 3. As we shall see later, this last 
dependence will disappear at the level of the equations 
of motion. 

Let us now consider the determination of the Lagrange 
function. Although the action of S03 on IR3 is not tran­
sitive, the results of Proposition 5.1 are readily adapted 
and furnishes the expression 

L (x, t, x , t) = f( I x I , t, R~\X) (x), i) 

+ dK(a(x), Ixlel' t)(R-;'\x) (x) , i) 
in which f is a solution of the equation 

(7.36) 

f(ixl, t,Rn(X), i) -f(lxl, t,x, n =dK(O, Ixle 1 , t)(i, f). 
(7.37) 

In these equations the reference point xa of Proposi­
tion 5.1 is replaced by a set of vectors playing the 
same role in each orbit, namely the vectors I x le1> 
the rotation vector a (x) is taken equal to 

e AX a (x) = _1_1 __ 1 arccosx/r, 
e l Ax 

(7.38) 

and n is of the form o=ne 1 • The right member of 
(7. 37) is easily calculated from (70 35) and we find 

dK(Qe1> Ix leu t) = n [:t (~) dt + :r (~) dX1]. 

Equation (7.37) is then reduced to an equation of the 
form 

g(lu zein) - g(lu z) = n[A + Ell]' 

with 1 = xl f and z = 12 + il 3 • The solution is 

g(l) = ga(ll' 1~ + 1n + (A + Ell) arctg ~. 

From that we deduce the solution of (7. 37), 

f( I x I, t, x, i) = i [fa ( I x I, t, 11> 1~ + 1~) 

+(i.(!i) + ~(!i) 1 ) arctg~]. (7.39) at 'y ar r 1 12 
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The contribution to the Lagrange function (7.36) of 
the first term in the right-hand side of (7.39) is the 
most general form-invariant Lagrangian; this is due 
to the relations 

( 
-1 () x. X 

RO(X) 1) 1 = --. , 
rt 

3 -1 2 x2 (x· X)2 6 (R .. (X) (l))j = '2 - -~. 
;=2 t t 

Collecting the other terms we obtain 
.-... . 
K R«(e)·x L= Lin. + -arctg O! Ie) 3 • 
r R .. (X) (e 2 ) • x 

(7.40) 

To cast this expression into an explicit formula we 
have to introduce expression (7.38) for a (x) and ex­
plicitly calculate the differential dKo The calculations 
are tedious and finally give 

L = L _!i. ~ xY - yi 
in. r r X 2 + y2 

K x(zi - xi) - y(yi - zy) 
- -arctg (..) (7.41) 

r r xy - yx 

This Lagrangian is in general a multiform function 
and depends on a particular direction of space. These 
two features are absent from the equations of motion 
deduced from (7.41). If, for example, we choose for 
Lin. the usual nonrelativistic kinetic energy term 
1mx21 i, the equations are in fact the following: 

d . K L d (K) x . x L - (mx) + - - + - - - T2 
dt r r dt r r L" 

a (K)X'L d[d(K)rL] + ar r Y x+ dt dt r r: =0, (7,42) 

where we have put 

L =XAX. (7.43) 

The rotational invariance of these equations is evi­
dent. The fact that they do not depend on the direction 
of space defining the Lagrangian proves that the various 
Lagrangians associated with the various directions are 
all equivalent. The same is then true for the corre­
sponding gauge functions (7.35). The expression of the 
energy is easily derived and reads 

E=1mx2+ i.(!i)A, (7.44) 
at r 

in which A denotes the arctg term contained in (7.41). 
The function is uniform as soon as the function K is 
time independent. The conserved quantities, as given 
by the general theory of Sec. 6, are 

Q=xAp-K. (7.45) 

These quantities are different from the usual genera­
tors of the rotation group in phase space. In terms of 
the velocities, the expression for Q recovers a sym­
metrical aspect, namely 

A 
Kx KXAL 

Q = mL - - - + r - -L- . r r r 2 
(7.46) 
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No more than x A p the components of the angular 
momentum mX A X are conserved. 

A particularly simple case is obtained when K = A r, 
with A a constant. The Lagrangian then becomes uni­
form, and is reduced to that of a charged particle in a 
static magnetic field. This field may be identified in 
the Eqs. (7.42) as being that of a magnetic monopole 
situated at the origin, eB = Axi r. The Hamiltonian 
formalism is, in this particular case, easily defined. 
The conjugate momenta and the Hamiltonian are 
respectively 

P • yz 
,,=mx+A (2 2) r x +y 

(7.47) 

(7048) 

Thus, although the equations of motion in velocity 
phase space are perfectly invariant, we see that any 
Lagrangian or Hamiltonian formulation of the theory 
must necessarily introduce a preferential direction in 
space. At the same time neither the generators XA p 
of the rotations nor the components of the angular mo­
mentum mXAx are conserved. However, the equal time 
brackets of the components of x A p are evidently the 
usual ones. These features look similar to that which 
are postulated for the so called broken symmetries in 
particle physics. This aspect is presently under 
investigation. 

APPENDIX A 

Proof of Theorem 4.1: (1) Let K be a continuous local 
gauge function which is defined and bounded on the 
neighborhood v Xw of (e,xo), and associated with the 
continuous local exponent A. Owing to the theorem of 
Bargmann, the neighborhood v may be assumed so 
chosen that A = Al (modjl), where Al is C~ and jl is con­
tinuous and bounded on v. The local gauge function Kl 
defined by Kl (w, x) =K(w, x) + jl (w) is locally equivalent 
to K and associated with Al" Let us first show that Kl 
is locally equivalent to a local gauge function C~ with 
respect to w. Let VI and WI be open neighborhoods of 
e and Xo respectively such that vi c v and W1

v l C w. 
Following Bargmann we introduce a function v(w) with 
the following properties: 

(a) v is C~ on G, 

(b) v vanishes outside an open neighborhood v2 con­
contained in v1' 

(c) J Gvdw = 1, where dw denotes a right invariant 
measure on G. 

The following function: 

cp(x) = I dw' v(w')K1 (w', x) 
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is defined on wand satisfies, for WE' VI and XE' w1' 

cp (x) - cp (x"') = J dw' v(w')[KI (w' ,x) - Kl (w', x"')]. 

That is, by using (4.2), 

cp(x) - cp(x"') =K, (w, x) - J dw'V(W')A1 (w', w) 

+ J dw'v(w')(K1 (w',x) -K1(w'w,x)]. 

This shows that K, is locally equivalent to the 
function 

K 2 (w, x) = J dw'(v(w'w-1) - v(w')]K1 (w', x). 

For any XE WI that function is C~ with respect to 
WE VI' The corresponding functional equation is 

K 2(w" X"'2) =K2(W 1W2, x) - K 2(W 2, x) 

+ j dw'[v(w' W~l) - V(W'»)Al (w', w 2 ), 

where we have used the functional equation for Al" By 
putting x=xo and choosing the neighborhood V3 in G 
such that v; c vIand X~3 C WI' one sees that the mapping 

(Al) 

is c~. If we now assume that G is connected and transi­
tive, the conditions we have recalled at the beginning of 
subsection A of Sec. 4 iajply the existence of a submani­
fold Uc V3 of G which is mapped diffeomorphically onto 
an open neighborhood of Xo by the mapping w - x~. The 
restriction of the mapping (A1) to V3 X U is therefore 
C~ and the same property holds for the mapping 

V3 XX~:3 (w, x) - K 2(w, x). 

(2) Let k be a C~ local gauge function defined on the 
neighborhood vXw of (e,xo) by the formula (2.11) with 
continuous functions cp and jl. From (4.2) the local ex­
ponent A =0 (modjl) associated with k is C~ in the neigh­
borhood of e. Bargmann's theorem then implies that jl 
is C~ in the neighborhood of e. Since k is defined on 
v x w, the function cp must be defined on wV. For any 
fixed x in W the mapping w - cp(x) - cp(x"') is C~ on some 
neighborhood v' c v. As in the preceding paragraph, let 
U" c v' be a sub manifold of G diffeomorphically mapped 
onto an open neighborhood of x by w - x"'; the function 
U,,"3 w - cp (x"') being C~, the same is true for the func­
tion XU" "3 y- cp(y). It follows that cp is C~ on w. 

APPENDIX B: LOCAL HOMOMORPHISMS FROM 
G INTO R 

We will show that C~ local homomorphisms w - B (w) 
from G into R are given by the formulas 

8(w)=j "'8 ""'=j"'8 t'" (B1) o Q:b 0 a , 

where the coefficients B",=X",8(e)=X",8(e) only have to 
satisfy the conditions 

(B2) 

Proof: Let 8 be a C~ local homomorphism. By writ­
ing the relation 8(W l W 2 )=8(w l ) +B(w 2 ) for WI =w, w 2 

=exptX, taking the derivative with respect to t, at 
t=O, we find 

d8 (X)(w) =XB (w) =X8(e). 

The differential dB is then locally left invariant and 
may be written 
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(B3) 

the coefficients e a being some constants. With the help 
of (3.9), the closure condition d(de) =0 immediately 
gives (B2), while (B3) integrates to give the first formu­
la (BI). The second of these formulas is easily derived 
by permuting the roles played above by WI and w 2 • In 
particular, de is simultaneously left and right 
invariant. 

Conversely, the condition (B2) implies that the I-form 
() a~ a is closed and therefore that the first integral in 
(BI) does not depend (locally) on the integration path. 
Let e(w) be the C= function so obtained. We have e(e) 
=0 and, due to the left invariance of the form under 
the integral sign, 
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This last expression locally vanishes as the integral 
of a closed form along a closed path. 
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A simple expression for the normal form of the unitary operator implementing a Bogoliubov transformation 
on a system of relativistic charged particles is obtained. Necessary and sufficient conditions for the 
transformation to be unitarily implementable are rederived. 

1. INTRODUCTION 

It is well known that the interaction of relativistic 
particles with external fields should be considered as a 
many-particle problem. The classical (i. e., single­
particle) theory leads to difficulties which are connected 
with the unphysical negative energy solutions of rela­
tivistic wave equations. In the many-particle framework 
the wave equation is looked upon as an equation for a 
quantized field, which is an operator-valued distribution 
acting on a Fock space. (For a more algebraic view­
point see Refs. 1 and 2.) If the particle has a distinct 
antiparticle (which will be assumed in this paper) this 
space is the symmetric or antisymmetric Fock space 
over the direct sum of a one-particle and a one-anti­
particle space, depending on whether the particle is a 
boson or a fermion. When the classical theory can be 
formulated in a Hilbert space it is convenient to smear 
field operators with vectors from this space instead of 
with test functions from a Schwartz space, since one can 
then easily use various operators from the classical 
theory, for instance the time-evolution operator. If 
these operators are pseudo-unitary, resp. unitary (in 
the boson, resp. the fermion case) they generate trans­
formations of the field operators which amount to 
Bogoliubov transformations of the annihilation and crea­
tion operators, i. e., linear transformations which leave 
the canonical commutation relations (CCR), resp. 
canonical anticommutation relations (CAR) invariant. 
When these transformations are unitarily implementable 
the resulting unitary Fock space operator is assumed to 
be the physical operator corresponding to the unphysical 
operator from the classical theory. 

More information on the connection between this type 
of Bogoliubov transformation and the external field prob­
lem can be found in Refs. 3-5. General Bogoliubov 
transformations are treated in the books by Friedrichs6 

and Berezin1 and, for bosons, in Ref. 8. 

The main result of this paper is a simple expression 
for the normal form of the unitary operator U which 
implements the field operator transformation generated 
by a (pseudo-) unitary operator U acting on the classi­
cal Hilbert space. We prove that on the dense subspace 
of "physical vectors," to be defined below, U equals a 
strongly convergent infinite series, the terms of which 
contain creation and annihilation operators in the nor­
mal order. The coefficients of the terms are deter­
mined by an operator A which is closely related to U. 
In forthcoming papers on the interaction of relativis­
tic charged spin-O and spin-~ particles with external 
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fieldsS we will use this result to establish the connection 
between the formal Feynman-Dyson series for the Fock 
space S operator and the unitary operator implementing 
the transformation generated by the classical S opera­
tor. Our results might also be useful for higher spin 
theories. 

Section 2 contains definitions and a summary of 
various equivalent requirements for the transformation 
to be unitarily implementable. In Sec. 3 we introduce 
operators which are used in Sec. 4 to obtain the normal 
form of U. In the fermion case there is a restriction on 
U that is dropped in Sec. 5, in which an expression for 
the normal form of U is obtained for the general fermion 
case. Section 6 contains a new proof that a certain well­
known condition is necessary for our kind of Bogoliubov 
transformation to be unitarily implementable, and re­
marks about unbounded pseudo-unitary operators. 

2. PRELIMINARI ES 

The classical Hilbert space will be denoted by H. It 
is the direct sum of two subspaces H. and H_, with cor­
responding projections p. and P_. H. will be the one­
particle space, H_ the one-antipat'ticle space. This 
decomposition is closely connected with the occurrence 
of unphysical negative energies in the classical theory. 
For more details we refer the reader to Refs. 10, 1, 4, 
and 9. It is convenient to assume 

(2.1) 

This assumption has definite notational advantages and 
corresponds to physical applications. 9 We will indicate 
at various points how one could proceed in a coordinate­
free way. It will also become clear that our results 
hold true as well if H + or H _ are finite dimensional. 

We shall now summarize some results on second 
quantization, most of which are well-known. The ele­
ments of the (anti) symmetric Fock space]. over H 
(I' = a, s) can be written as 

{I/I',r(Pt, at, .•. ,Pn, an; qt, f3t, ... ,q", i3r)}, 

where n, rE N and ai, f3J = 1, ... , Mi I/!n,r is (anti) 
symmetric in particle and antiparticle variables sepa­
rately. The inner product in], is given by 

x I/!"r (Pt, at> ... ,Pn, an; qt, i3t •••• , q.,. 13,,) 

X I/!~,r (Pt, at, ••. ,Pn, an; qt, f3 t , ... ,q", i3,,). (2.2) 
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An element 1jJE J. will be called a finite vector if there 
are N, R < 00 such that 1JI',1' = 0 if n> N, r> R. The dense 
subspace of finite vectors will be denoted by Df • In J. 
one has particle and antiparticle creation and annihila­
tion operators a(*>(j), resp. b(*>(g), where/EH+, 
gE H _, On a finite vector 1jJ they are defined by 

(a{f)1jJ)n,T(p1' at, ... ,Pn, O'n;q1,/31,"· ,qT,/3T) 
M 

=(n+1)1/2 ~l J dpja(P) 

(b (g)1jJ) n,T(Pl' al, ••. ,Pm an; ql' /31, •.. ,qT' /31') 
M 

= (r+1)1/2('F)n :0 J dqg (q) 
&1 8 

61jJn,T+1(Pl' a 1, ••• ,Pn' an; q, /3, q1' /31' • , • ,q T' /31')' 

l' 

=r-1/ 2 :0 ('F)n+J+1 g8 (qJ) 
J=1 J 

01jJn,T-1(P1' at, ... ,Pn, an; ql' /31' •.. ,q J' ~J' ••• ,q1" /31')' 

(2.3) 

We will suppress the indices from now on. In (2.3) the 
upper sign refers to fermions, the lower to bosons. This 
convention will be used in the whole paper, One can 
easily show that these operators are bounded in the 
fermion case and unbounded, but closable, in the boson 
case. It is straightforward to verify that on Df the well­
known CAR (CCR) hold, 

[a(j1)' a(j2) 1 = [b(gl), b(g2)1 = [a(*>(j), beg) 1 = 0, 

(a(jt), a*(hH. = (j1,f2) , (b(gt), b*(g2)]± = (gl,g2)' 

(2.4) 

We will denote the spectral projection of the number 
operator N=n(1) (for this notation and additional infor­
mation see Ref. 11) on the interval [0, M] by PM' One 
easily sees that the domain of the closure of a(*>(j) 
(which will be denoted by the same symbol) can be 
characterized as the set of vectors 1jJ for which 
s-limM_~ a(*>(j)PM 1jJ exists, and that D(a(j» =D(a*(j»j 
this is also true for b(*>(g). Hence, 

a(*>(j)1jJ=s-lima(*>(j)PM1jJ y 1jJED(a(j»=D(a*(j), M_oo 

b(*>(g)1/J=s-limb(*>(g)PM1jJ Y 1jJED(b(g»=D(b*(g». 
M.oo 

(2.5) 

This implies that (2. 3) holds true for any 1jJ in the 
domain of the respective operators. One also concludes, 
using relations like 

(2.6) 

that the domain of N l /2 belongs to the intersection of 

518 J. Math. Phys., Vol. 18, No.3, March 1977 

the domains of all creation and annihilation operators. 
The latter subspace will be denoted by 15. (For fermions 
D=J. of course.) 

We will also have occasion to use the dense subspace 
Doo on which all powers of the number operator are 
defined, 

D == n D(Nk
) (2.7) 

00 k=1 • 

From well-known (and easily proved) relations like 
(2.6) and 

a(j)~ P M= (N + 1)k a(j)PM, 

one concludes that, for 1jJE D~, 

(2.8) 

exists and belongs to D~, i. e., the closure of any finite 
product of creation and/or annihilation operators (w. r. t. 
the subspace of finite vectors) is defined on Doo and 
leaves Doo invariant. One also verifies that on Doo the 
closure of the product equals the product of the closures. 
The relations (2.4) clearly hold true on Doo. 

We need one more subspace. Let n be the vacuum; 
then we will call "physical vectors" the finite linear 
combinations of vectors of the form ITI=1 a* (ji) ITi=1 

b* (gj) n, where n, r ~ O. (From a physical point of view 
these vectors are the relevant ones in describing initial 
states in a scattering theory. ) The physical vectors 
form a dense subspace, denoted by D. 

We define field operators on 15 by 

(2.9) 

where the bar denotes complex conjugation on H _; in a 
coordinate free approach one could take any conjugation 
K which maps H_ onto itself. [The connection between 
<I>(v) and the usual field operators from the Klein­
Gordon and Dirac theories can be found in Ref. 9.] In 
the fermion case we consider transformations <I>(v) 
- ~(v), generated by unitary operators on H as follows: 

ii>(v) = <I> (U*v) Y vEH. 

In the boson case we also have (2.10) but now U is 
pseudo-unitary, io eo, 

UqU* = U*qU =q, 

where 

(2. 10) 

(2.11) 

(2. 12) 

(We will assume that U is bounded. At the end of the 
paper we shall comment on the caSe that U is unbound­
ed. ) Defining 

U ... =p.UP." E,E'=+,-, (2.13) 

we observe that 

(2.14) 

and that the (pseudo-) unitarity of U is equivalent to the 
relations 
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U* •• V •• = 1 •• 'f U* •• V •• , V •• V* ++ = 1+. 'f V •• V* •• , 

V* •• V •• = 1 .. 'f V* •• V •• , V •• V* •• = 1 .• 'f V •• V* .. , 

V* .. V •• ='f V* .. V •• , V.+U* •• ='f V •• U* •• , 

V* •• V •• ='f U* •• V •• , V •• V* •• = 'f V •• U*.+. 

(2. 15) 

Decomposing 4>(v) in new annihilation and creation 
operators as in (2.9), i. e., setting 

.£(v) '= a (P.v) + b*(P. v), (2.16) 

one easily sees that (2.10) is equivalent to the trans­
formation 

where 

a{f)=a(V* .. f)+b*(V* •• f) 'tI fEN. 

b(g) =b(U* •• g) +a*(V* •• g) 'tI gEN •• 
(2.17) 

Using (2.15) it is straightforward to verify that these 
operators also fulfil the CAR (CCR). The reader will 
have no difficulty in writing our transformation in 
terms of "one-body" annihilation and creation operators 
c(*)(v)'=a(*)(P.v)+b(*)(P.v), and establishing the special 
character of the resulting Bogoliubov transformation. 

The transformation (2.10) by definition is unitarily 
implemenlable if_there exists a unitary operator U, 
mapping D onto D, such that 

.£(v) =U*if!(v)lj 'tI VE N 

or, equivalently, such that 

a (f) =U*a{f)lj 'tI fE N. 

beg) =U*b(g)U 'tI gE N •. 

(2.18) 

(2.19) 

It is well known that this is equivalent to the existence 
of a nonzero vector n E 15 such that 

(2.20) 

if such a vector exists it is a scalar multiple of u*n. 
Because we want to obtain an expression for Un it is 

convenient to consider as well the transformation gen· 
erated by the inverse of V, L e., the transformation 
if! (v) -if!'(v) where 

if!'(v) '= if! (Vv) 'tI VE N (2.21) 

in the fermion case, and 

if!'(v) '= if!(qV qv) 1I VE N (2.22) 

in the boson case. Existence of a unitary operator U 
satisfying (2.18) is obviously equivalent to existence of 
a unitary operator U satisfying 

if!'(v)=Uif!(v)lj* 'tI vEN, 

or, equivalently, satisfying 

a'{f) =Ua{fJU* 'tI fE N., 

b'(i)=Ub(gJU* 'tIgEN., 

where 
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a'{f) '= a (V •• f) ± b*(V •• f), 

b'(g) '= b(V •• g) ± a*(U •• g) . 
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(2.23) 

(2.24) 

(2.25) 

From (2.15) one again concludes that these operators 
fulfil the CAR (CCR), so implementability is also 
equivalent to existence of a nonzero vector n' E 1J 
satisfying 

a'{f)n'=b'(g)n'=O 'tI fEN. 'tIgEN.; (2.26) 

if such a vector exists it is a scalar multiple of un. 
From the work of several authors12 - 14 it follows that 

the transformation (2.10) or, equivalently, (2.21)­
(2.22) is unitarily implementable if and only if 

v .. , V.+ E HS, (2.27) 

where HS is the set of all Hilbert-Schmidt (H. S.) 
operators on N. In Secs. 3, 4, and 5 it will be assumed 
that (2.27) holds true. We will denote the correspond· 
ing unitary operator on Fock space by U. From the fact 
that the Fock-Cook representation of the Clifford 
algebra, resp. the Weyl algebra over H, is irreducible 
it follows that U is up to a phase factor uniquely 
determined. 

We remark that the sufficiency of (2.27) will be a 
consequence of our results, while we will give a new 
proof of the necessity in Sec. 6, so in this respect the 
paper is self-contained. 

3. THE OPERATORS A AND EXP (A+ _a*b*) 

In the boson case one easily concludes from (2.15) that 
V •• and V_. have bounded inverses (as operators on N. 
resp., N.J. In the fermion case this also follows from 
(2.15) and (2.27) if we make the additional assumption 

KerV •• = KerV._ = O. (3.1) 

We will assume (3.1) in this section and the next one, 
and deal with the general case in Sec. 5. 

We now introduce a bounded operator A on H which 
will enable us to obtain a simple expression for the 
normal form of U. A is defined by 

A •• =± (1 •• - V. __ 1), 

A •• =± V. __ 1V .. , 

A._ = V +-V _ .1, 
(3.2) 

A •• = V ++ - 1 •• - V •• V __ .1 V _ •. 

From (2.15) it follows that this is equivalent to 

A_. = ± (1._ - V~. + U* _.U!'. -1 V* ._), 

A •• = - U* •• V!:l, 

A._ = 'f V!:l V*._, 

A •• = - 1 •• + V!. -1 • 

One easily verifies that (3.2) is also equivalent to 

(fermions) (V - 1) - A - (V - 1) P.A 

(3.3) 

= (U - 1) - A - AP.(V -1) = 0, (3.4) 

(bosons) (V-1)-qA+(V-1)P.A 

=(V-1)-qA-qAP.(V-1)=0. (3.5) 

We will need the following relations, which follow from 
(3.2) and (3.3): 
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A.+ 'F U •• + A •• U .+== 0, (3.6) 

U ... + A* •• +A~+U ... ==Oo (3.7) 

From (2.27) and (3.2) we infer that A •• and A •• are 
H. S.; moreover, one obtains from (2.15), in the boson 
case, 

(U* U w w) == sup -+ +. , < 1 
WEH (U* •• U+-w,w) +(w,w) 0 

(308) 

Consequently, 
MO 

(bosons)A ... ==6 XIFI(G,,') Mo':;'oo, O<XI .:;,O<l, (3.9) 
1=1 

where {FI}, {GI} are orthonormal sets inH+, H. and 
where XI .:;, xJ if i > j (see Ref. 15); furthermore, 

(3.10) 

We set 

A ... a*b* : f dp dp' A ... (p , pl)a* (P)b* (P'), (3.11) 

where A+.(P,p') is the kernel of A .... The operator 
A .... a*b* and its powers are clearly defined on Dt • The 
next lemma shows that the operator exp(A+_a*b*) is de­
fined on D. 

Lemma 3.1: Let ¢ ED and let 

(A a*b*)n 
¢n== +- 1 ¢. 

n. 
(3.12) 

Then s-limN_ 00 &:aO ¢n exists and belongs to Doo. 

Proof (A. bosons): We assume first that ¢ == fL Exis· 
tence of the limit is then obviously equivalent to exis­
tence of limN_ .. &:=0 an, where 

an == II (A+_~b*)n n 112. 
n. 

One easily obtains (n;" 1) 

an== :, f dPl" ·dpn dQl·· ·dQn 

where Sn is the symmetric group. We now define 

where 
N 

AN: 6 Xj F I (GI ,')' 
/=1 

The analog of (3.14) for an•N implies 

lim an.N == On. 
N_OO 

On the other hand, 
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(3.13) 

(3014) 

(3.15) 

(3.16) 

(3.17) 

n N 

6 ITXik; 
k1 ••••• kN=0 /=1 
k1 .. ··+k

N
=n 

We now introduce a function 

N 

FN(a) == IT (1- aXn-1, 
/=1 

which is clearly analytic in the disc 0, defined by 

(3.18) 

(3.19) 

0=={aEcllal<0-2}. (3.20) 

USing (3.18) one easily verifies 
00 

FN(a) == 6 an.Nan
• 

n=O 
(3.21) 

We shall prove that limN_ooFN(a) exists on 0 and that 
the limit function is analytic in O. Let r be such that 

0< r< 0-2• 

If la I':;'r, 
N N 

IFn (a) I.:;, IT 11- aX~ 1-1.:;, IT (1- rX~tl 
/=1 /=1 

== exp [- £In(l- rxV] 
/=1 

where N' is such that 

From (3.23), (Ia l.:;,r,M>N), 

IFN(a)-FM(a)l.:;,c T I1- n (1-aXn-1\ 
I=N+l 

(3.22) 

(3.24) 

==CT \l- exp[- t In(l- axn]\ 0 (3.25) 
i=N+l 

We now observe, (N) N' ), 

I i~+l In(l - aXD \ 

.:;, IE+l1 1n 11- aX~ I I + 1~+11 arg(l- aXil 1 

.:;, - t In(l - rXD + i t 1 sin[arg(l - aXnJ 1 
I=N +1 I=N+l 

.:;, (2r + 1T2r) t xi. 
I=N+l 

It evidently follows from (3025) and (3.26) that 

limFN(a) ==F(a) a EO, 
N_oo 

where F(a) is analytic in 00 

Using (3.17) and (3.21) we infer 
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... 
F(a) = ~a"a". (3.28) 

"=0 
Thus, since (J-2> 1, 

... 
~a" =F(l) < "", (3.29) 
n=O 

which proves that s-limN .... '2:=ocf>n exists if cf>=n. We 
notice that 

F(l) ;: lim F N(l) = ~ (1 - ;\n-1• (3.30) 
N.'" 1=1 

Hence (see Ref. 16), 

(bosons) II exp(A ... a*b*)n 112 

= det(l __ - A._ * A+J-1 • (3.31) 

We now introduce the functions 
... 

Gk(a) = ~ (2n)kana n kE N. (3.32) 
n=O 

These functions are analytic in 0 because the power 
series on the rhs of (3.32) has the same convergence 
radius as the rhs of (3.28). Therefore, 

... 
~ (2n)kan :=: Gk(l) < "". 
n=O 

From (3.13) and (3.33) it then follows that 

exp(A ... a*b*)nE D .... 

One obviously has 

N (A a*b*)n n T 

~ "'f IT a*(jl) ITb*(g)n 
"=0 n. ;=1 J=1 

n T 

= IT a*(jl) IT b*(gJ)P2N exp(A ... a*b*)n. 
I=t J=l 

(3.33) 

(3.34) 

(3.35) 

From (3.34) and (3.35) we finally conclude that the limit 
of the lhs of (3.35) exists and belongs to D ... , which 
proves the lemma for bosons. 

(B. !ermions): Proceeding in the same way as for 
bosons, one obtains instead of (3.14), 

an=~f dPt···dPndqt···dqn n. 

n 
X ~ sgnO' IT A ... (ql,PI)A+Jq;,Pa(l). 

aE5 n I=t 

Defining 

T= A .. *A._, 

we have 

an = (lin! )Tn, 

where 

Tn;: J dP1· •• dPn T (P1' ••• ,Pn) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

and T(Pt, ••• ,Pn) is the determinant the elements of 
which are T(PI,PJ) (i,j = 1, ••• , n). Introducing the en­
tire function 

d(;\) :=: det(l •• + ;\T), (3.40) 
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one has (see Ref. 16) 

~ ... 1 
d(;\) = ~ ,Pn;\n, (3.41) 

n=O n. 

where 

o 
P= n 

(3.42) 

n-l 

and 

(3.43) 

Expanding the determinant, we obtain the recurrence 
relation 

(3.44) 

Expanding T(Pt, ••• ,Pn) in (3.39), one easily sees that 
Tn obeys the same recurrence relation. Thus, since 
Tt =Pt , 

Tn=Pn 'fI nE W. (3.45) 

Therefore, 

d(;\) = tan;\n (3.46) 
n=O 

so the limit exists if cf> = nand 

(fermions) II exp(A+.a*b*)n 112 = det(l __ + A+_ * A.J. 
(3.47) 

Arguing in the same way as for bosons, one concludes 

(3.48) 

The lemma now follows from (3.48) and (3.35). • 

We point out that the proof of the lemma could be 
shortened in the boson case by using more results on 
infinite determinants. 1<-19 

If one does not assume (2.1), one should define 

(bosons) A ... a*b* = ~;\ia*(FI)b*(KGI)' (3.49) 
I=t 

where K is the conjugation chosen in (2.9). One could 
then map H onto L2 spaces as in (2.1) in such a way 
that K becomes complex conjugation on H _, use the 
lemma, and transform back. Using the analog of (3.49) 
for fermions one could prove the lemma in a similar 
way for fermions. 

4. THE NORMAL FORM OF U 
The result of the next lemma was obtained in different 

forms by several authors. 1,8,3 It essentially dates back 
to the work of Friedrichs. 6 

Lemma 4.1: The following relation holds true: 
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Un = exp(i6)det(1 •• ± A._ * A.JTl /2 

x exp(A .. a*b*)n o ~ () < 27f. (4.1) 

Proof: By (3.31) and (3.47) the norm of the rhs 
equals 1, so by (2.26) and (2.25) it suffices to prove 

[a(U+J)±b*(U.+f)Jexp(A •• a*b*)n=O 'til fEH., 

[b(U •• g)±a*(U •• g)]exp(A .. a*b*)n=O 'til gEH •. (4.2) 

Notice that the lhs of these equations are well defined 
in virtue of (3.34). [In the fermion case this of course 
already follows from the relation exp(A •• a*b*)nE Ja.] 

Using (2.5) and the CAR (CCR), we conclude that (4.2) 
is equivalent to 

[b*(A._*U.J) ±b*(U.J)]exp(A •• a*b*)n=O 'til fEH. 

['1' a*(A._U _g)± a*(U.,g)] exp(A •• a*b*)n = 0 'til gE H •. 

(4.3) 

However, (4.3) follows immediately from (3.2) and 
(3.3). • 

We normalize U by setting 6 = 0 in (4.1): 

un = det(l •• ± A._ * A.yl /2 exp(A._ a*b*) n. (4.4) 

We now introduce the operators which are needed for 
the normal form of U. Let K, L, M be bounded opera­
tors on H. We set 

K~+L~_ M:. a*Jb*kbkblalc! 
j k 

'" j dkl o. 0 dkjdPI .. , dp~dql' • 'dq; n (K.J(kp , k~) n (L.J 
p=l a=1 

I 
(P",p~) .01 (M.J(q., q~) a*(k1)'" a*(kj ) b*(Pl) 0 00 b* (Pk) 

x b (PO 0 .0 b (PO b (ql) ••• b (q I )(q;) ••• a(q;) a(kj) ••• a (l?f), 

(4.5) 

where, e. g., (K.J (k, k') is the tempered distribution 
which corresponds to K++ by the nuclear theorem. The 
formal expression at the rhs of (4.5) is defined on D 
by writing 

a*(f)=jdpa*(p}f(p), b*(g)=Jdpb*(p)g(p) (4.6) 

and then using the formal CAR (CCR) 

[a(p), a(p')L = [b(p), b(p'»). = [a<*> (p), b(p')J. = 0, 

[a(p), a*(p')J. =[b(p), b*(p')J. = B(p - p') 

and the relation 

(4.7) 

(4.8) 

to get rid of all annihilation operators in (4.5). One 
should then set, e. g. , 

J dk dk' (K.J(k, k') a* (k)f(k') '" a* (KHf) , 

J dq dq' (M • .) (q, q')g(q) f(q') '" eg, M.J). 
(4.9) 

One easily convinces oneself that this gives rise to a 
well-defined linear operator mapping D into D. It is 
clear that one could define this operator on D without 
using (2.1) but this would obviously give rise to very 
unwieldy formulas. Denoting the operator by OJ,.,/, it 
is straightforward to verify relations like 
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0J,.,I a*(j) = a*(j) 0J, •• I + ja*(K+J) 01-1 ••• 1 

+ ZOJ ••• I.l b(M.J) 

which hold on D. 

(4.10) 

Defining the transpose NT of a bounded operator N 
onH by 

(4.11) 

we can now proceed to the first theorem. We define an 
operator r(U) by 

r(U) = det(l_.± A •• * A.Jol /2 t U L, (4.12) 
L=Q 

where 

(4.13) 

Notice that UL is well defined on D. We can abbreviate 
(4.12) and (4.13) as follows: 

r(U) = det(l._± A •. * A.Y'l /2 

x: exp(A .. a*b* + A .. a* a + A •• bb* + A •• ba): . 

(4.14) 

Defining the domain of r(U) by 
_ N 

D(r(U»={CPEDI s-lim ~ ULCP eXists} (4.15) 
N. ~ L=Q 

we have the following theorem. 

Theorem 4.1: The domain of r(U) equals D, 

D(r(U» =D, (4.16) 

and 

r(U)D CD",. (4.17) 

The operator U is equal to r(U) on D, 

U cP = det(1 •• ± A •• * A._)fl /2 

x: exp(A .. a*b* + A .. a*a+A •• bb* + A •• ba): cP 'til CPE D. 

(4.18) 

Proof: FEom LeJUma 3.1 and (4.4) it evidently follows 
that nED(r(u», r(U)n=Un, andUnED~. To prove 
the existence of the limit in (4.15) for a vector cP of the 
form 

(4.19) 

we observe that the individual term in (4. 13) only con­
tributes if 

l+j~n, l+k~r. (4.20) 

Since there is only a finite number of (j, k, 1) which 
fulfill (4.20) we conclude from Lemma 3.1 that the 
limit in (4.15) exists and belongs to D~. It remains to 
prove (4.18). 

In view of (2.24) and the relation r(U) n =un, it 
suffices to show that on D 
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r(U)a*(j)=a'*(j)r(U) v fEff .. 

r(U)b*(g)=b'*(g)r(U) v gEff_. 

(4.21) 

(4.22) 

Using relations like (4.10) and the relations (3.6) and 
(2.25) we now have on D [observe that, e. g. , 
limN~ ~ a* (j) "i1:0 0 •• = a* V) limN~ ~ "i~~o •.. on D accord­
ing to Lemma 3.1, (2.5), and the argument after (4.20)] 

r(U) a* V) = [a*(j) + a*(A.J)] feU) + feu) b(A_.f) 

= [a*(U.J) - a*(A._ u_Jll r(U) + f(U) b(A_J) 

= [a* (U.J) ± b(U_J») r(U) + r(U) b (A .... f) 

+ det· •• :B:B 0 00 A!.. a*lb*i('f b(U_J» 

= a'*V) f(U) + r(U) b«A_. 'f U_. + A_U_.)J) 

=a'*(j) r(U), 

which proves (4.21). Similarly, using (3.7), we obtain 

r(U) b* (g) = [b* (gh b* (A~_ g)] r(U) + r(U) a('f A._ * g) 

= [b* (U __ g) ± b* (A* _+U+-I5)J r(U) + feU) a('f A+_ *g) 

= [b*(U __ g) ± a(U._g)] r(U) + r(U) a('f A+_ *g) 

+ det· 0 • b*i('f a(U ... g»' o. at 

=b'*(g) r(U) 'f r(U) a{(A+_ * + U._ + A~. U.J g) 

=b'*(g) r(U), 

which proves (4.22). 

It should be noticed that as a consequence of this 
theorem one can write the "matrix element" (cp, Uz/!) 
for "physical vectors" cp, z/! as a finite sum of terms 
each of which is a finite product of the "matrix ele­
ments" of the operator A on ff and the scalar 
det(o. 0) >112. 

• 

We further observe that a pseudo-unitary U is unitary 
if and only if 

U._=U_.=O. (4.23) 

Assuming (4.23) fo:. bosons and fermions one can define 
a unitary operator U by 

U._=U_.=o, U •• =U.+> v __ =V __ , (4.24) 

where 

(V __ v)(p) '" (U __ v)(p) V VE ff. (4.25) 

Then 

r(U) C r(u) (4.26) 

which motivates our notation [for a definition of r(U) 
see, e. g., Ref. 15 J. 

Using Stone's theorem, one can conclude from the 
Weyl algebra formulation of the CCR that U maps jj 
onto D. This also follows from our theorem. To show 
this, letZ/!EDf • ThenPNz/!=z/! ifNis big enough. Now 
let z/!nE D be such that P N if!n = z/!n and if!n - if!. Then, e. g., 

(4.27) 

The lhs is well defined since by the theorem 

UDCD ... (4.28) 
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Now the limit n _00 in (4.27) exists since a'V) is bound­
ed on PNJ •• Hence 

Uz/!ED(a(j» a(j)ljz/!=Ua'(j)z/!. (4.29) 

Thus, 

UDfCD. (4.30) 

If CPE D, then by (4.29), 

a(j)ljPMCP =Ua'V)PMCP. (4.31) 

The limit M - 00 in (4.31) exists in view of (2.5). 
Therefore, 

UCPE D(a(j», a(j)Ucp =Ua'V) cP, (4.32) 

so 

UDCD. (4.33) 

Repeating the argument for U* we infer 

UD=D (4.34) 

as asserted. 

In a coordinate-free approach one should define the 
operator in (4.5) directly on D, replacing complex con­
jugation by the conjugation K. One could then proceed 
as indicated at the end of Sec. 3. 

5. THE GENERAL FERMION CASE 

We shall noW treat the general fermion case, i. e. , 
we drop the assumption (3.1). Let {gj}!t and {f:}f=t be 
orthonormal bases for KerU ++, resp. KerU _. In view 
of our standing assumption (2,27), one has M,L < 00, 

Defining 

(5.1) 

one easily verifies that {f;}f.l and {gj}~l are orthonor­
mal bases for KerU!., resp. Ker U~_. From (2.15) and 
(2.27) we now infer that U __ , as an operator from 
(KerU_J ~ to (KerU~_) \ has a bounded inverse mapping 
(Ker~J~ onto (KerU_) 1. We extend this inverse toH_ 
by setting it equal to zero on KerU~ and denote the re­
sulting operator onH_ by U __ -1

• In an analogous fashion 
we define the bounded operator U:+-1 0 

Defining a bounded operator A by (3.2) it is straight­
forward to verify, USing the unitarity relations (2.15), 
that (3.3), (3.6), and (3.7) again hold true. However, it 
should be noticed that (3.4) only holds if L = M = 0, 
since it implies that U __ , as an operator from ff_ to H_, 
has the inverse 1 __ - A __ . 

The next lemma is the generalization of Lemma 4. 1. 
An analogous result has been obtained in Ref. 5. 

Lemma 5.1: The following relation holds true: 

M _ 

x TI b*(gj) exp(A+_a*b*) n. 0",O<21To 
i=t 

Proof: From 

(5.2) 

A+_*fl=A ... g,=O, i=l, ..• ,L, j=l, .•• ,M, (5.3) 

it follows that aVj), beg,) commute with exp(A ... a*b*). 
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Consequently the norm of the rhs of (5.2) equals 1. It 
remains to prove 

(5.4) 

M _ 

x F!l b*(gl)exp(A •• a*b*)n=O, VgE.N.. (5.5) 

It follows from (5.1) that these relations hold if 
IE. KerU •• , resp. gE. KerU ••• If IE. (KerU.Y· then 
a(U.J) in (5.4) (anti)-commutes with TI 0 •• TI'" . 
Since 

A+.*U • .t+U •• I=O Y/E.(KerU+.)~ (5.6) 

we conclude as in Lemma 4.1 that (5.4) holds. Simi­
larly, (5.5) follows from 

(5.7) 

We normalize lj by setting 

M _ 

x TI b*(gJ) exp(A •• a*b*) n, 
J.l 

-

(5.8) 

where the products are in the natural order of the 
indices. This convention will also be used in the sequel. 

Defining the operator r(U) : D - D~ by (4.14), one 
concludes in the same way as in the proof of Theorem 
4.1 that on D, 

r(U)a*(f) =a'*(f) r(U) V IE.N., (5.9) 

r(U) b*(g) = b'* (g) r(U) V gE. N.. (5.10) 

From this proof one also infers that on D 

r(U) a*(f) =r(U) b*(g) = 0 V IE. KerU.. V gE. KerU ••. 

(5.11) 

Hence, by (5.9) and (5.10), 

b(f') r(U) = a(g') r(U) = 0 V I' E. KerCJ~. V g' E. KerU: •. 

(5. 12) 

We note that r(- U) also satisfies (5.9)-(5.12), apart 
from a minus sign at the rhs of (5.9) and (5.10). 

Now let P be the set of all partitions of the index set 
{1, ... ,L} U {l, ... , M} into two subsets. P clearly con­
tains 2L • M elements. An element (p, T) E. P is specified 
by two subsets {PI'" • ,PI} U {Tl' ••• , T,.} and {P1.t, .•• ,PL} 
U {T m.t, ... , T M} in which we take by convention the in­
dices in the natural order. We now define a function on 
P by 

sgn(p, T) = sgn(PI+t, ..• ,PL, T m+l + L, ••• , T M 

+L,Pt, ••• ,PI' Tl +L, ••• , Tm+L), (5. 13) 

i. e., sgn(p, T) is the sign of the permutation of the in­
dices {1, .•. , L + M} which occur in the rhs of (5.13). 
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Defining the operator lj': D - D~ by 

lj'= 6 
(P. TIE.P 

L __ M 

X TI b(fn TI a(g~) 
1.1 +1 'l'm.1 i 

(5.14) 

we are in a position to state the following theorem. 

Theorem 5.1: The operator lj is equal to lj' on D, 

lj¢= 6 sgn(p, T) fI a*(fp) IT b*(gT )f«(_)L+MU) 
(P. T)E. P 1.1' i 1.1 i 

L _ M 

• TI b(f;J TI a(g~.)¢ V¢E.D. 
i=l +1 'i.m.1 J 

(5. 15) 

Proal: It follows from (5.8) that lj'n = ljn, so it suf­
fices to prove 

lj'a*(f) = a'*(f)U' V IE. N., 

lj'b*(g) = b'*(if) lj' V gE. N_, 

which should hold on D. To show this, first take 

(5.16) 

(5.17) 

IE. (KerU • .)~. Then a*(f) anticommutes with the a and 
b in (5.14) so we can use (5.9). Both a*(U.J) and 
b(U.J) now antic om mute with all a* and b* in (5.14) 
since U • .tE. (KerU!,>~ and U_.tE. (KerU~_)~. If L +M is 
odd the resulting minus sign is compensated by the extra 
minus sign from (5.9), We conclude that (5.16) and, 
similarly, (5.17) hold true if IE. (KerU • .) \ resp. 
gE. (KerU.J". It therefore suffices to show 

lj'a*(gjo)=b(gio)U' VjoE.{1, ••• ,M}, (5.18) 

lj'b*(JQ=a(fio)U' VioE.{1, ... ,L}. (5.19) 

To prove (5. 18) we observe that from (5.11) it follows 
that lj'a*(gJo) equals the sum of all ~erms in (5.14) in 
which the index jo is at the right of r, with the factor 
a~~ suppressed, while from (5.12) it follows that 
b gl lj' is equal to the sum of all terms in which it is o -
at the left, with the factor b*(giO) suppressed; the terms 
get an extra minus sign if the number of transpositions 
required to pull the suppressed factor to the right, resp. 
the left, is odd. It is easily seen that the same terms 
occur in the Ihs and the rhs of (5.18). To show that they 
have the same sign, let (p, T) be a partition such that jo 
is at the right of r and let (p, T') be the corresponding 
partition, i. e., it equals (p, T) except that jo is at the 
left. We should then prove that 

sgn(p, T')(_i+Ji-1=sgn(p, T)(_)M_il, 

where jf,it are such that 

J. -T -T' 
0- II - ii' 

(5.20) 

(5.21) 

However, this follows immediately from (5.13), so 
(5.18) is proved. The proof of (5.19) is similar. -

6. THE NECESSITY OF (2.27) 

We observe that the sufficiency of (2.27) for imple­
mentability, i. e., for the existence of a nonzero vector 
n' E. jj satisfying (2.26), follows from Lemmas 3.1, 4. 1, 
and 5.1. We now give a proof of the necessity of these 
conditions. For notational convenience (in the boson 
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case) we again assume (2.1). One easily sees that the 
result does not depend on this choice. 

Theorem 6.1: Let U be a (pseudo-) unitary operator 
on H. If there exists a nonzero vector 0' E 15 such that 

a'(j)O'=b'(g)O'=O YfEH+ YgEH., 

where 

a'(j) = a(U+.J) ± b*(U • .J), 

b'Ci) = b(U._ g) ± a*(U+.g), 

then V+. and V.+ are H.S. 

Proof (A. bosons): We define projections pn.T 
(n, rE Z) by [see (2.2)] 

(6.1) 

(6.2) 

(6.3) 

where the notation should be clear. One easily verifies 
relations like 

pn.r a(j) = a(j)pn+l.T, (6.4) 

which of course holds on D(a(j». Since P n. T a' (j) 0' = 0 
we have (n, r ~ 0) 

a(V +.J) pn+l.T 0' = b*(V • .J) pn.T.l0'. (6.5) 

It evidently follows from (2.15) that RanV++ equals H+, 
so from (6.5) we conclude that if P n.r.IO' = 0, then also 
pn+l.TO' = O. This implies 

pn+k.ko'=O Yn>O Yk~O. 

From pn.rb'(g) 0' = 0 we infer analogously 

pl.T+/O'=O yr>O Yl~O. 

Since 110'11 "* 0 it follows from (6.6), (6.7), and the 
argument given above that we must have 

po.oO'=a"*O. 

Defining 

(6.6) 

(6.7) 

(6.8) 

1/!(p, q) = (1/0')(pl.l0,)1.1(p, q), 

one has, using P O.l a'(j) 0' = 0, resp. 
and (2.3), 

(6.9) 

pl. 0b'(g) 0' == 0, 

J dp (U+.J)(p) 1/!(p, q) = (V.+f)(q) 

J dq (V_.g)(q) 1/!(p, q) = (U ... g)(p) 

Y fEH+, (6.10) 

YgEH_. (6.11) 

Introducing a H. S. operator HB : H. -H+ by 

(HBg)(p)== J dq1/!(p,q)g(q), 

we can write (6.10), resp. (6.11), as 

H~V++ = V .. 

We conclude that V.+ and V_ are H.S. 

(6.12) 

(6.13) 

(6.14) 

(B. fermions): Let {ti}tl and {gJ}~1 be orthonormal 
(0. n.) bases for Kercr.t'+, resp. Ker~ •. Let {ti}i=L+l 
and {g,J!j=AI+l be o. n. bases for RanV.., resp. RanV._. 
Then ifi}i=1 and {gJ}j=1 obviously are o. n. bases for H + 

resp. H •. We now introduce an o. n. basis for J a by 
setting 

(6.15) 
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where 
'" '" 

Pi' TJ=O, 1, I; Pi + I; TJ< "". 
i.l J=1 

Then 

0' = 2:; a rl .... ;Tl .... ¢Pl .... ;T1"" • 
PpTJ 

(6.16) 

(6.17) 

From (6.1) and (6.2) [cf. Sec. 5, esp. (5.1)], 

a*(jiJn'=b*(gJ)O'=O, i=l, ••• ,L, j=l, ••• ,M. 

(6.18) 

Using (6.17) one now concludes that L, M < 00 (this was 
anticipated above for notational convenience) and that 

Thus, 

pn,rO'=O Yn<L Yr<M, 

L N-
pL.MO'=[3 IT a*(f) IT b*(g)O, 

i=1 i J=1 J .. 
pL+l.M+l0' == 2:; 

k=L+l 

'" 2:; Ykla*(jk)b*(gl)pL.MO'. 
1=M+l 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

From P L+n. M+T a'(j) 0' = 0 (n, r ~ 0) it follows that 

a(V++f) pL+n+l.M+TO' = _ b*(V.+f) pL+n.M+T.l0'. (6.23) 

Using (6.19) one easily concludes that (6.23) implies: 
If pL+n.M+T.l0' == 0 then pL+n+l. M+TO' == O. Hence, from 
(6.20), 

pL+n+k.M+kO'=O Yn>O Yk~O. (6.24) 

Analog ously , 

pL+I.M+r+/o' = 0 Y r> 0 Y 1 ~ O. (6.25) 

We therefore must have [3"* 0 in (6.21). 

Defining a H.S. operator H F : RanU __ -RanV++ by 

'" '" 
HFg== I; 2:; fk Ykl(g"g), (6.26) 

k=L+l I=M+l 

one infers from (6.21) and (6.22), using pL.M+Ia'(j) 0' 
=0, resp. pL+l.Mb'(g)O'=O, 

H";.V+.J=- V • .! Y fE (KerV+.) \ 

HFV._g=V •• g Y gE (KerU_J l
, 

(6.27) 

(6.28) 

Thus, V.+ and U •• are direct sums of a H. S. operator 
and a finite-rank operator. Therefore, V.+ and V •• 
are H.S. • 

We finally make some remarks about unbounded 
pseudo-unitary operators. It seems reasonable to 
require that (2. 11) hold on a dense subspace M belong­
ing to the domains of U and U* and invariant under 
p~, V and U*. If U+. and U_+ are H. S. one concludes 
from (2.15), which holds on M, and from the relation 

(VEE' ~ M)*::J U* E'E ~ M, (6.29) 

which follows from our assumptions, that V must be 
bounded. 

On the other hand, if the conditions of Theorem 6.1 
are met (for any f,gE M), one is again led to (6.13) and 

S.N.M. Ruijsenaars 525 



                                                                                                                                    

(6.14) which now hold on M [use (2.15) and (6.29) to es­
tablish that Ran(U •• ~ M) and Ran(U __ ~ M) are dense in 
If., resp. 1f.J. Now from (6.29) and (2.15) it follows 
that A '" U __ ~ M has a bounded inverse A-I and that 

A-l* A-1 = 1 __ - H~ HB (6.30) 

on U __ M, where (6.14) has been used. In virtue of the 
relation A-I =P it follows from (6.30) that 

(6.31) 

on If_. Since HB is compact, 

(6.32) 

Thus, U _ ~ M is bounded. Similarly, U +. r M is bounded, 
so U must be bounded. We conclude that unbounded 
pseudo-unitary operators (as defined above) cannot give 
rise to implementable Bogoliubov transformations. 
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We show that the analysis of the motion of a system coupled to an infinite reservoir in the singular 
coupling limit and the weak coupling limit can be performed in the same mathematical framework. This 
enables us to clarify the way in which the motion of the system in the singular coupling limit depends on 
the temperature of the reservoir. 

1. INTRODUCTION 

Open quantum mechanical systems have recently 
been studied to provide some understanding of irrevers­
ible behavior in quantum statistical mechanics and in 
certain limiting situations it has been possible to prove 
rigorously that the time evolution of an open system 
obeys a semigroup law. 1-4 It seems that two distinct 
limiting procedures are possible, the weak coupling 
limit, 1,4 and the singular coupling limit. 2,3 

In this paper we show that the two limits are mathe­
matically very similar and that the distinction depends 
on which of two possible time scales is regarded as 
natural or "physical". We describe a simple singular 
coupling model and show how by suitable rescaling it 
may be considered as a weak coupling model. By apply­
ing the general theory of Ref. 1 to this case, we con­
sider how the evolution of a system coupled to a heat 
bath depends on the temperature in the singular coupling 
limit. 

2. THE SINGULAR COUPLING MODEl 

We describe a model of a system coupled to a heat 
bath of fermions, which is essentially that used by 
Hepp and Lieb, 2 and Gorini and Kossakowski. 3 

The system is described by a Hilbert space H 5 with 
free Hamiltonian H s' The heat bath is described by a 
quasifree representation of the CAR with an infinite 
number of degrees of freedom. To be specific we take 
the single particle space VW to be either L2(R, dW) or 
L2«0, 00), dw), where dw is Lebesgue measure. The 
single particle free evolution is given by 

(2,1) 

For each f~ VW we have a bounded operator rpw(fJ on a 
space H B satisfying the CAR 

(2,2) 

There is a cyclic vector n in H B and a Hamiltonian H'B 
on H B such that 

(2.3) 

(2.4) 

The representation is determined by its two point 
correlation functions. For a bath at inverse temperature 
f3 and chemical potential IJ. we knowS,6 

(n, rpw(j)rpw(g)n) 

== <t, g) - 2i Im(f, {l + exp[{3(Q - fl)]}-l g), (2,5) 
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where 

Qj(w) == wf(w). 

The Hilbert space of the composite system is 

H==H s0HB 

and the full Hamiltonian is 

H~==H501 +10H'B+Hn 

where 

(2.6) 

(2,7) 

(2,8) 

(2,9) 

Here Q is an arbitrary bounded self-adjoint operator on 
H 5, fe: VW, and 

(2.10) 

With the correct choice of f, (3, fl the time correlation 
function 

(2,11) 

can be shown to become a Ii function in the limit X - O. 
This is the "singular coupling limit, " and in this limit 
we may expect the states of the system to obey a 
Markovian time evolution. 2,3 

3. THE EQUIVALENT WEAK COUPLING PROBLEM 

We call T the "slow" time and define a rescaled 
"fast" time t by 

We also rescale the underlying variable w by 

w==X2 w (3.2) 

and let VW be L2(lR, dw) or L2«0, 00), dw) according to the 
choice of vw made in Sec. 2. 

The unitary dilation 

gives a unitary map 

U~:Vw- vw. 

(3.3) 

(3.4) 

Using U~ and rpw we can construct a representation of 
the CAR ove r vw on the same space H B' and then con­
struct a free bath Hamiltonian H~ from the single 
particle evolution 

ft(w) = exp(iwt)f(w). (3,5) 

The correspondence between the singular coupling 
problem and the weak coupling problem is contained in 
the following rather easy theorem. 
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Theorem 3.1: With the above notation let H~be the 
singular coupling Hamiltonian 

H~=Hs 2) 1 + 12)H'B + Q2) cpw{f» 

and H': be the weak coupling Hamiltonian 

n,:: =>..2HS2) 1 + 12)H; + >..Q2) CPW(f). 

Then 

exp(iH~'T) = exp (iH,:t). 

Proof: Since exp(iw'T) = exp(iwt) it follows that 

exp(iH'B'T) = exp(iH';t). 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

CPW, cpw satisfy their respective forms of the CAR so 
that 

>"CPW{fx) = cpw(j) 

and Eq. (3.8) follows from the fact that 'T='lt2t. 

If pW is the temperature of the bath in the initial 
problem, when we rescale we must ensure that 

(3.10) 

(3.11) 

where (3w is the temperature of the rescaled problem 
and JJ. w, JJ. ware the initial and rescaled chemical poten­
tials, respectively. 

Since 

H'; = 'lt2H'B (3.12) 

then we must have 

(3.13) 

Thus we must in general allow a temperature rescaling, 
except when {3w = 0 (infinite temperature limit) or 1/ {3w 

=0 (zero temperature). 

In order to compare these two limits we extend the 
results of Ref. L First, for p E T(H s), the space of 
trace class operators on H s, let 

Px (t) = trH B {exp(- iH':t)(p2) I n)(n I) exp(iH':t)} (3.14) 

and let 

hA(t)=(n, cpw{ft)CPW(f)n)s,,,, (3.15) 

where we allow (3, JJ. and hence hx to depend on >... 

Theorem 3.2: Suppose that Hs is bounded. 
also that for some g(t), t'" 0, E> 0, 

Suppose 

I hx (t) I '" g(t) t '" 0 (3.16) 

and 

fC g(t)(l+t)Edt<oo. (3.17) 
o 

If hx (I) - h(t) pointwise for t'" 0 then for all 'To '" 0 

lim sup {IIPx(t)- U;(p)lltr}=o, (3.18) 
A~O o .. t"X~2TO 

where 

Ut =exp[(Z + K)>..2t]. (3.19) 

Here 

Z(p) = - i[H s, p] (3.20) 

and 

where 

c= r h(t) dt. 
o 

(3.22) 

Proof: This theorem may be proved by the method of 
Ref. 1, Theorems (3.1)-(3.5) with the following 
modifications 7 : 

(i) We require Hs bounded so that 

lim II exp(i'lt 2Hst) -111= O. 
~~o 

(3.23) 

(ii) The interaction is linear rather than quadratic in 
the field operators. This only makes the proof easier. 

(iii) The system evolution is 'It dependent. We note 
that in Ref. 1 all terms arising are eventually written 
as a sum of tensor products and simple norm estimates 
made on the system variables. This A dependence dis­
appears at this stage. 

(iv) The error estimates eventually involve multiple 
integrals of hx• We may compute these estimates uni­
formly in 'It using g(t) 

(v) Cx = J C hA(t) dt- c (3.24) 
o 

by dominated convergence theorem. 

Remarks: (i) This theorem holds for a general H;, 
not just the specific one we have discussed. 

(ii) This result holds for systems linearly coupled to 
Boson heat baths. The proof may be on the lines above, 
though the usual difficulties with unbounded field opera­
tors arise. See also Ref. 4. 

(iii) In the limit 'It - 0, the spectrum of 'lt2HS is {O} and 
K does not depend on Hs. We contrast this with the 
result of Ref. 1 for the weak coupling problem with 

(3.25) 

For this H': the properties of K depend strongly on Hs. 

4. THE SINGULAR COUPLING LIMIT 

We use the general theory of Sec. 3 to study the 
dynamics of the system of Sec. 2 in the singular coupling 
limit. 

In the case of the vacuum h,(t) is independent of 'It, 

hA(t) = r: exp(- iwt) I/(w) 12 dw. (4.1) 

If 

(4.2) 

then 

2Re c= f '" r exp(- iwt) I/(w) 12 dw 
t:::o w= ... co 

+ f '" J '" exp(iwt) V(wW dw 
t=o w=-co 

= Jt:~'" r: exp(- iwt) I/(w) 12 dw 

=217 1/(0) 12
, (4.3) 

so that if f(O) = 0, c is imaginary 

c=id, dE R, (4.4) 

K(p) = - cQQp + cQpQ + cQpQ - cpQQ (3.21) and 
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K(p) = - idQQp - idQpQ + idQpQ + idpQQ 

= _ id[Q2, pl. (4.5) 

The condition (3.20) is satisfied if Ij(w) 12 has a con­
tinuous (1 + E)th derivative which is integrable. Cer­
tainly it is enough that f is twice continuously differen­
tiable and /', f" r:: L2. However in the semibounded case 
we also require that at least 

f(O) = /' (0) = o. (4.6) 

Thus we obtain dissipative behavior only in the un­
physical case where the bath spectrum is unbounded 
below. In the semibounded case K only gives a shift of 
energy levels. 

In the infinite temperature limit (3'" = 0 and 

hA(t) = i J _: exp(- iwt)g(w) dw, 

where 

g(w) = If(w) 12 + If(- w) 12
• 

(4.7) 

(4.8) 

Clearly the nonsemibounded and semibounded cases are 
essentially the same since if suppfC (0,00) we may use 
(1/ ..f'l)f( I wi) instead of f. 

so 

Imc = 0, since g is even and 

c = 1T If(O) 12 

K(p) = - cQQp + 2cQpQ - cpQQ. 

(4.9) 

(4.10) 

This generates a Gaussian semigroup and the limiting 
evolution is dissipative. 

When (3'" = (3, iJ. W = iJ. with (3, iJ. constants and (3 > 0 then 
we must rescale the temperatures (3w, and chemical 
potential iJ. W by 

(3W = (3/lt2
, iJ.w = il.2 iJ.. 

Now 

529 

f ~ exp(iwt)lf(w) 12 
hA(t) = _~ {exp[iI.- 2p(w _ il.2 iJ.)] + 1} 

exp(- iwt) Ij(w) 12 
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(4.11) 

(4.12) 

Since fE L2 the dominated convergence theorem shows 
that 

hA (t) - h(t) = f.: exp(iwt) If(w) 12 dw 

(4.13) 

The condition (3.16) is satisfied if the integrands of 
Eq. (4.12) have (1 +€)th derivatives with uniform L1 
bound. By inspection we require at least that 

f(O) =/,(0) =0. (4.14) 

As was the case with the vacuum, K therefore only 
gives a shift of energy levels. Note also that K does not 
depend on f3. 

Davies8 has shown that where it is not true that 
f(O)=f'(O) =0 we may expect non-Markovian behavior. 
This provides some illumination on the analYSis of 
Frigerio and Gorini9 who discovered non-Markovian 
behavior for the particular test functionj(w)=exp(- w2) 
at finite nonzero temperatures. 
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Soliton solutions and the higher order Korteweg-de Vries 
equations 

H. C. Morris 

School of Mathematics. Trinity College. Dublin. Ireland 
(Received 15 March 1976) 

A prolongation structure is determined for a single equation from which the Korteweg-cte Vries and all of 
its higher order forms can be derived. As result, inverse scattering problems for all of the equations are 
determined simultaneously. 

1. INTRODUCTION 

It is well known that the Korteweg-deVries equation 

(1.1) 

owes many of its remarkable properties to the fact that 
it admits a Lax representation1 in the form 

i = [B 2 , L], (10 2) 

where the differential operators Land B2 are given by 

tP d
3 

(d d) 
L = dr + U and B2 = 4 dx3 + 3 V~ dx + dx u. (1. 3) 

One of the most interesting features of the Korteweg­
de Vries equation (1.1) is that is posses an infinite 
number of conservation laws2 of the form 

In(u) = f_: Pn(u, ••• , u(n» dx, (1. 4) 

where Pn(u1 , ••• , u(n» is a polynomial in the first n + 1 
space derivatives of u, u1 , u2 , ••• ,u(n) 

Lax and Gardner1
•

2 have shown that each of the known 
polynomial integrals In(u) determines an equation 

o d ( 6In ) 
u= dx 6u(x) 

admitting a Lax representation 

i=[Bn,L], 

(1. 5) 

(1.6) 

where the Bn are skew symmetric differential operators 
of order (2n + 1). The first three of the conserved quan­
tities are given by 

13 = r: H(uxx )2 + 5u2uxx + 5u4
] dx, 

and by Eq. (1. 5) they give rise to the equations 

ut =4ux , 

ut = uxxx + 6uux, 

(1.7) 

(1. 8) 

(1. 9) 

(1. 10) 

(1. 11) 

(1.12) 

Equation (1. 12) and the equations which result from 
In, n~ 3 are known as the higher order Korteweg-de 
Vries equations. In the following section we will show 
how all of these equations can be determined from the 
single equation 

(1. 13) 
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which we will refer to as the generating equation. 
Equation (1.13) has previously been discussed by 
Gardner, Green, and Miura. 3 

In Sec. 3 we will determine a prolongation struc­
ture4 for Eq. (1.13) and by so doing obtain simultan­
eously prolongation structures for all of the Korteweg­
de Vries equations o In Sec. 4 we construct one and two 
dimensional representations of the prolongation struc­
ture and examine the resulting inverse scattering 
problems that they lead to. 

2. THE GENERATING EQUATION 

The equation 

~Cxxx + 2Cx(u - x) + CUx =ut (201) 

yields the Koretweg- de Vries equations in the follow­
ing way. If we suppose that u(x, t) is independent of X 
and that C(u, x) can be expressed as a polynomial of de­
gree n in X given by 

C(u, x) = t Ci(U)xn
-
i , (2.2) 

i:::O 

then Eq, (2. 1) yields the following relationships: 

(2.3) 

(2.4) 

Thus if we define the sequence of functions {Cn};:o by 
the recurrence relation 

it is clear that we are considering the evolution 
equations 

ut =(2Cn)x n=1,2, ••. ,co. 

If we choose 

(2.5) 

(2.6) 

Co =4, (2.7) 

then the early members of the sequence {Cn(u)}:=o are 
given by 

(2.8) 

which by (2.6) gives rise to the Eqs. (1. 10)-(1. 12). 

Clearly we must have 

C ( ) = !. 6In 
n u 2 6u 

(2.9) 
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and so the recurrence relation (2.5) is capable of gen­
erating the polynomial conserved quantities {IJ';:l. 

3. A PROLONGATION STRUCTURE FOR THE 
GENERATING EQUATION 

If we define U = u - A then a set of forms equivalent 
to the equation 

is given by 

Cl'l = dC II dt - Z dx II dt, 

Cl'3 =dU II dx + tdPII dt + U dCII dt + C dU IIdt 

+ZUdxlldt. 

It may be easily checked that 

dCl'3=CI'3 11 (Zdt)-CI'2 11 (Udx). 

We seek a prolongation structure in the form 

n=d!.: +F(C, Z, P, U,!.:) dx + G(C, Z, P, U,!.:) dt 

and by the standard procedure4 we arrive at the 
equations 

[F G]=z(aG_uaF)+paG _ZU aF 
, ac au az au' 

aF aF aF 
ac = az = ap =0, 

where [F, G) is the Lie bracket defined by 

We can determine a solution to (3.9) with F and G 
having the forms 

(3.1) 

(3,2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

The substitution of (3.11) and (3.12) into (3.9) yields 
the Lie bracket relations 

[Xu X 2] = 2X3, [Xu X 4 ] = 0, [Xl> X 3] = X 4 , 

[X2, X 3] = - X 2, [x2, X 4 ] = - 2X3, [x5 , XJ = 0, (3.13) 

[X 5 ,X2 ]=0. 

The Jacobi identity supplies the bracket relations 

(3.14) 

which completes the algebraic relations (3.13) into the 
Lie algebra 
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(3.15) 

Examining this Lie algebra we see that we can consis­
tently make the identification, 

(3.16) 

which simplifies the algebra to 

[Xl> X 2] = 2X3, [Xl> X 3] = Xl> [X2, X 3] = - X2 , (3.17) 

(3. 18) 

There are two simple representations of the algebra 
(3.17) and (3.18) which prove useful and we construct 
these in the following section. 

4. REPRESENTATIONS OF THE PROLONGATION 
STRUCTURE 

(a) A one-dimensional representation of the Lie alge­
bra (3.17)-(3.18) is given by 

(4.1) 

X5=0. 

The resulting one-dimensional prolongation structure 
is given by 

n= dlj> + (U + 1j>2) dx + [(tp+ Cu) + CIj>2 - ZIj» dt. (4.2) 

Sectioning onto a solution manifold of Eq. (3.1) gives 
the inverse scattering problem 

(4.3) 

(4.4) 

(b) A two-dimensional representation is given by 

Xl = - !.:2bl> X 2 = !.:2b2, 
(4.5) 

X3 = t(!.:lbl - !.:2b2), X5 = Jl(!.:lb1 + !.:2b2) , 

where b; = a/a!.:; and Jl is completely arbitrary and may 
be a function of A. This representation gives rise to the 
prolongation structure 

(4.6) 

The related inverse scattering problem is given by 

!.:x= [ 0 1J!.:, 
- U 0 

[

-(tZ+Jl)' C J 
!':t = 1;. 

- tp- CU, (tz - Jl) 

(4.7) 

In terms of u = U + A and !.:l Eqs. (4.7) become 
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(4.8) 
t~-Ct!+1Ztl=f.Ltl. 

It is clear that the inverse scattering problems for the 
various higher order Korteweg-de Vries equations are 
given by 

t~ - c<n)(u)t! + 1c~n)(u)tl = f.Lt1
, 

where 

c<n)(u) = t CiAn - i • 
1=0 

(4.9) 

(4,10) 

For example if n=2, we have shown that the equation 

has the inverse scattering formulation 

?;;x + utl = At1 
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(4.11) 

(4.12) 

If we note that as well as u - 0 we have C (n) - 42 n when 
x - ± 00 we can solve the relevant Gelfand-Levitan equa­
tions for the general inverse scattering problem (4.9) 
and easily obtain the general result 

(4.13) 

for the single soliton solution of the nth order 
Korteweg-de Vries equation. The multi soliton solutions 
may also be constructed in general for any order 
equation. 

ip.D. Lax, Commun. Pure Appl. Math. 21, 467-490 
(1968). 

2C. Gardner. H. Kruskal, and R. Muira, J. Math. Phys. 9, 
1202-09 (1968). 

3C. Gardner, J. Green, M. Kruskal, and R. Miura, 
Commun. Pure Appl. Math. 27, 97 (1974). The author 
wishes to thank the referee for bringing this important re­
ference to his attention. 
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A prolongation structure for the AKNS system and its 
generalization 

H. C. Morris 

School of Mathematics. Trinity College. Dublin 2. Ireland 
(Received 17 May 1976) 

A prolongation structure is determined for the AKNS system of equations. Using an interpretation in 
terms of Cartan-Ehresmann connections. a generalization is then constructed which leads to an inverse 
scattering problem for the multicomponent nonlinear Schrodinger equation iqa. = (l/Z)qaxx + qa(~P ~ Ml) 
(a= I •...• n). 

1. INTRODUCTION 

Ablowitz, Kaup, Segur, and Newell1 have shown that 
the equations 

Ax=qC - rB, 

Dx=rB - qC, 

qt = Ex + (A - D)q ;- ZABi, 

r t = Cx + (D -A)r- ZACi, 

(1. 1) 

(1. Z) 

(1.3) 

(1.4) 

can yield most of the special equations such as the 
Korteweg-de Vries equation, the nonlinear SchrOdinger 
equation, and the sine Gordon equation which have been 
solved by the inverse scattering method. We will refer 
to this system as the AKNS system. In this paper we 
will determine the prologation structure of these equa­
tions and also the prolongation structure of a multi­
component form of these equations. We do not make the 
conventional identification of D with - A until it is con­
venient to do so as the identification fails to hold in the 
generalized form of the equations that we will later de­
termine. The plan of the work is as follows: In the fol­
lowing section we will establish a closed set of forms 
equivalent to (1. 1)-(1. 4) and determine a prolongation 
structure for that ideal of forms. We then look at a re­
cent interpretation2

•
3 of such a structure in terms of 

Cartan-Ehresmann connections and in Sec. 3 determine 
from such a connection a generalized form of the AKNS 
system. The most important physical equation associat­
ed with this new system is the two-component nonlinear 
Schrodinger equation previously considered by Manakov. 4 

Finally in Sec. 4 we generalize to the n-dimensional 
case and determine an inverse scattering problem for 
the multicomponent nonlinear SchrOdinger equation. 

2. THE AKNS SYSTEM 

The forms 

0'1 = dA II dt + (rB - qC) dx II dt, (Z.1) 

Ci2 = dB II dt + dq II dx + [Z iB + (A - D)q] dx II dt, (Z. Z) 

Ci3=dCII dt +drll dx- [ZiC +(A -D)r]dxlI dt, (Z.3) 

0'4 = dD II dt + (qC - rB) dx II dt, (Z.4) 

form a closed ideal which is equivalent to the AKNS 
system (1. 1)-(1. 4). If, following the normal proce­
dure, s we seek a prolongation structure in the form 
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Q.=dl; + F(A, B, C, D, r, q, 1;) dx 

;-G(A, B, C, D, r, q, 1;) dt 

we find that we can choose F and G in the forms 

F=Xl + x 2q;- X3r 

G = Xs + BX2 + CX3 ;- AX4 ;- Dx6. 

These objects must satisfy the equation 

[F G]= _ (rB _ qC) aG _ [ZAiB + (A _ D)q)] aG 
, aA oB 

(Z.5) 

(Z.6) 

(Z.7) 

. aG aG 
;- [ZACz'" (A - D)r]-- (qC - rB)- (Z.8) ac aD 

and their substitution into (Z. 8) gives rise to the bracket 
relations 

[x3, x 2] = X6 - x4, [x3, x4] = X3 , 

[Xl> x2] = - ZAx2i, [x3, x6] = - X3, 

[x2, x 4] = - X2, [Xl' X4] = 0, 

[X2 , x6J = X 2, 

[Xl' X3] = ZAix3, 

[Xl' X6]= 0, 

[xi,XS]=O for i=1,Z,3. 

(Z.9) 

The Jacobi identity yields all the additional relations to 
complete the algebraic structure (Z. 9) into the Lie 
algebra 

[Xl' X2] = - ZiAx2, [Xl' X3] = ZiAx3 , [Xl' x4J = 0, 

[Xl> X6] = 0, [X2, X3] = (X4 - X6), [X2' X4] = - X2, 

[X2' X6] = xz, [x3, X4] = X3, [x3, X6] = - X3, (Z.10) 

[X4,X6]=0, [xs,xi]=Ot;fi 

If we define 

Y O=Hx4-X6), Y Z=i(x4 +x6), 

Y3 = Xl - iA(X6 - x4), 

Y4 =xs, 

the Lie algebra (Z. 10) takes the form 

[Yo, Y1] = Y1, [Yo, Y-l ] = - Y-l , [Yl> Y-l ] = 2Yo, 

[Y""yi]=o (0'=2,3,4) (i=±1,0). 

(2.11) 

(2.12) 

(2.13) 

The semisimple component (2.12) is the Lie algebra 
s1(2, R). A one-dimensional representation of sl(2, R) 
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is given by 

This representation together with the trivial one­
dimensional representation of (2.13), 

Y 2 = Y 3 = Ys = 0, 

(2. 14) 

(2.15) 

gives the representation of the Lie algebra (2.10) de­
fined by 

x1=-2iAyajoy, x 2=y2 ajoy, x3=-ojay, 
(2. 16) 

X4=-X6 =yajoy, xs=O. 

The resulting prolongation structure is given by 

~= dy - [r + 2iAy - qy2]dx - [C - My - By2]dt, (2.17) 

where we have now made the usual identification of D 
with -A. 

The variable y is known as a pseudopential. s Hermann2 

has recently suggested an interesting geometric inter­
pretation of the analagous result for the Korteweg-
de Vries equation in terms of a Cartan-Ehresmann con­
nection3 with structure group S L(2, R). As the Korteweg­
de Vries equation is only one of the equations obtainable 
from the AKNS equations it is of interest to see how his 
interpretation is easily extended to that system. 

A connection w is said to be associated with a differ­
ential equation if its connection forms 8 generate the 
ideal J which define the differential equation. For the 
AKNS system (2.1)-(2.3) with D= -A the quadratic 
connection 

where 

wo= rdx + C dt, 

w1 = 2(iAdx -A dt), 

W2=- (qdx+Bdt), 

gives rise to the curvature forms 

81 = dW1 + 2WoA w2 = - 0'1, 

82 = dW 2 - w1 A w2 = - 0'2, 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

and so are clearly associated with the ideal (2.1)-(2.3) 
with D= -A. 

The two-dimensional representation of the algebra 
given by 

(2.25) 

gives rise to the following representation of the algebra 
(2.10): 

Xl =iA(~lbl- ~2b2)' x 2= - ~2bl' X3= - ~lb2' 

x4 = - ~lbl1 Xs = 1l(~lbl + ~2b2)' where 11 is arbitrary, 

X6= - ~2b2' 

This representation gives rise to the normal inverse 
scattering problem of AKNS1 and Zakharov and Shabat. 6 
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We note that for any given equation such as the 
Korteweg-de Vries equation a much larger prolongation 
structure may exist. This is well demonstrated by the 
results of Wahlquist and Estabrook, S and will also be 
apparent from the following section. 

3. GENERALIZING THE AKNS SYSTEM BY AN 
SL (3, R) CONNECTION 

The two I-forms 

w1 = w~ + w~li -t- W~zY2 + W~11(Vl)2 -t- 2w~u~yly2, 

w2 = w~ + wi lyl -t- wf zY2 -t- w~ 22(y2)2 -t- 2w~ 12yly2, 

where 

wt= (rdx +C dt), w~= (s dx + Fdt), 

wL =2iAdx- (A-D)dt, w~2=Cdt, 

Wfl=Hrlt, wr2=2iArlx-(A-J)dt, 

w~l1 = + 2W~12= - (qdx + Bdt), 

-t- 2W~12= W~22= - (p dx + Edt), 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

define a Cartan-Ehresmann connection3 with structure 
group SL(3, R} which clearly generalizes that defined 
in equations (2.18)-(2. 21). 

The curvature 2-forms of this connection generate an 
ideal spanned by the nine 2-forms 

0'1 = riA A rlT + [(rB - qc) + (PF - Es)] dx A dt, (3.8) 

1.Y.2= dB A dq A dx + [2AiB + (A - D}q - pH] dx A dt, (3.9) 

0'3=dC A dt +rlrA dx -t- [- 2AiC -t- (D -A}r + sC]dXA dl, 

(3.10) 

0'4=dDA dt+(qC-rB}dxA dt, (3.11) 

I.Y.s =dEA df +dPA dx -t- [2AiE -t- (A -J)p - qC]dXA df, 

(3.12) 

1.Y.6 = dF A dt + tis A dx -t- [- 2AiF -r (I -A)s -t- rH] dx A elt, 

(3.13) 

0'7 = dC A df + (pC - rE) dx A dt, 

O'a = dH A rlt + (qF - s13) dx;\ dt, 

0'9 = rlJ A rlf + (Fp - s E) rlx A rlt. 

(3.14) 

(3.15) 

(3.16) 

The most interesting new equation of this extended sys­
tem is the two-component nonlinear Schrodinger equation 

iqt = ~qxx + q(iq 12+ Ip 12}, 
iPt=±iJxx+p(lqI2+ Ip12). (3.17) 

This is obtained from expanding the A, B, C, D, E, F, C, 
H, J as quadratic series in A. The exact expressions 
which give rise to (3.17) are 

A=;i[lqI2+ IjJI2J-t-2iA2, 

1 
B= 2i qx - Aq, 

1 
C =-q* + )~* 2i x "'1, 

F=~P* + Ap* 2i x , 

(3.18) 

H.C. Morris 534 



                                                                                                                                    

_ 1 1 12 D-- 2i q , 

_ 1 1 IZ 1- - 2i P . 

1 
H= - 2i (p*q), 

The prolongation structure for the system (3.8)-(3.16) 
has the form 

0= dt; + L(p, q, Y, S, t;) dx + M(A, B, C, D, t;) dt, (3.19) 

with L and M having the forms 

L = Xl + xzq + XsY -t- x 7P + xas 

M=x5 + BXa -t-Cx3 -r AX4 -r Dxs + EX7 + FXa +Gx9 

+ HxlO + Ixll • 

(3.20) 

(3.21) 

The XI satisfy the Lie algebra SL(3, R) and the repres­
entation is given by 

Xl = - 2iA(ylb l + yZba), X z = ((yl)Zbl + yiyZbz) 

X3 = - bl , x4 = (y1bl + y 2ba), X5 = 0, 

Xs = - yibl , x7 = (yly Zbl + (yZ)Zb z), xa = - ba, 

X9 = - y2 bl , xI0 = - yl bz, x11 = - y2bz, 

where b;=a/3y i and t;=(yl,yZ). 

(3.22) 

Changing to projective coordinates t;Z/r;l = yl, t;3 /!;1 
= yZ yields the linear three-dimensional representation 

Xl = iA(l;l bl - t;Zbz - t;3bs), x2 = - t;2bz, 

Xs = - b1bz, x4 = - bl bl , X5 = 0, Xs = - bZb 2, 
(3.23) 

x7 = - t;Sbl , xa = - r;l b3, X9 = - r;3bz, 

xlO = - t;Zb3, x11 = - !;3bs· 

The prolongation structure which results for the two­
component nonlinear Schrodinger equation is given by 

0 1 ==dt;l_ (_ iAbl + qt;2 -r p!;3) dx 

_ [(I ql2 -rIp 12/2i -r 2iA2)r;I-r (qx/2i _ Aq)t;2 

+ (qJ2i - Ap)t;3]dt, 

0 2 == dt;2 _ (iAbZ + yt;l) dx _ [(qU2i -r Aq*)!;l 

-;i IqlZ t;Z + (- ;i(q*P») t;3]dt, 

OS == dt;S _ (iAbS + SI;I) dx _ [ (P: /2i -r Ap*)bl 

-;i (p*q)t;2 + (- ;i Ip 12 )1;3J dt. 

The equations 

51 == 52 = o's = ° 

(3.24) 

(3.25) 

(3.26) 

yield the inverse scattering problem previously deter­
mined by Manakov. 4 The linear operator involved is 

p 

- a/ax 

o 
(3.27) 

and the scattering theory of this operator has been an­
alysed by both Manakov4 and Date. 7 
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4. THE GENERAL CASE OF SUn, R) AND THE 
MUL TlCOMPONENT NONLINEAR 
SCHRODINGER EQUATION 

The extension to n dimensions is easily established. 
The quadratic connection forms 

where 

w~= (Y" dx + Cct dt), 

wf B = (2iA6~ dx + (AIl~ -~) dt), 

w~ BY= - t[(qBIl~ +qrll~) dx + (BB{j~ + Byll~) dt], 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

define a Cartan-Ehresmann connection with structure 
group SL(n, R) which generalizes those previously 
considered. 

The curvature forms determine an ideal spanned by 
the nZ 2-forms 

a l =dA /\ dt + (Y" B", - qctC") dx !,dt, 

a 2"=dB,, /\ dt +dq" /\ dx + [2iAB" + (AD! -D!)qB] 

Xdx /\ dt, 

~ = dC" /\ dt + dY" /\ dx - [ + 2i AC" 

+(A{j~ -DinrB]dx/\ dt, 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

and the corresponding prolongation structure is defined 
by 

O"=dy" - wa . 

The choice 

A = 2iA2 - ;i (q", Y"), 

B=Uiq"X- Aq,,), 

C" == - Gi Y: + AY"), 

D
a 

B = (Y" qa) ;i ' 
gives rise to the equations 

(4.9) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

If Y"= - q1;. these equations reduce to the single equation 

iq"'t=tq"xx+q",(t IqYI2) (4.16) 
Y=I 

which we refer to as the multicomponent nonlinear 
Schrodinger equation. The inverse scattering problem 
which results from the prolongation structure (4.9) by 
changing to projective coordinates is given by 

b =[:-_i_A __ l_~:_J 1; (4.17) 
x _ q~ : i/A 
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~
2'A2 + 1 2:)( *)1 1 ] 

I;t= _1~ ____ 2!_".._~~~~~_~~;~:~_~a_ 1;. 

-q* -rA~* 1 _-q*q 
2 · ax "'1", 2' '" e 111 

(4.18) 

Equation (4.16) has the internal symmetry group U(n). 

Other multiple component analogs of the standard 
equations of the AKNS system may also be obtained. For 
example, one can easily determine from a cubic ex­
pansion in A an inverse scattering problem for the 
equation 

q"'t+(q",xx±2 (fq~)q",)x=o (a=1, ... ,n), (4.19) 

which is a multicomponent form of the modified 
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Korteweg-de Vries equation. A more detailed analysis 
of these equations will be presented elsewhere. 
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Erratum: Wave operators for multichannel scattering by 
long-range potentials [J. Math. Phys. 17, 1056 (1976)] 

w. W. Zachary 

Naval Research Laboratory, Washington, D.C. 20375 
(Received 2 December 1976) 

In (3.5) the quantity Gi~1)2(m) in the exponent should be 
replaced by G;D)(m) as defined in (2.20), A similar 
replacement is necessary in (3.7), With these modifica­
tions the proofs in the paper are not valid in the stated 
generality, but can be proved if one imposes m = 1, 
0!1 " ~ in addition to the stated conditions. In this case, 
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the methods of Alsholm (Ret 12 of the paper) can be 
used to obtain the required estimates. 

For this simplified case, a shorter proof will be 
published in a joint paper with A, W. Saenz, whom I 
thank for pointing out the error. 
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