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This paper describes stable field configurations of two scalar fields 6(x,y,z,t) and ¢(x,y,z,t). The field
configurations follow from a simple least action principle based on an energy density which is a function of
0, ¢, and their first derivatives. The description is Lorentz-invariant. The structures are of a stringlike type
and are characterized by several integers. It is shown, that the simplest closed strings, described by the
integers N=1, M =1, P+1, are stable. The structures P=1 and P = —1 are related by mirror
symmetry. Three constants enter in the basic action principle: a length I, a constant E with the dimension
of energy time length, and a dimensionless parameter y. All properties of these field configurations have
discrete values, which is a direct consequence of the nonlinearity of the basic expression for the energy
density. An attempt is made to identify these structures with elementary particles, the electron and the
positron in the simplest case P=1 and P = —1. To this aim, the total energy of the field structures is
equated to the rest energy of the particles. The constants E, I, and 7y are related to the fundamental
physical constants h, m, e. The model proposed represents a classical field structure with quantized

properties.

INTRODUCTION

This paper deals with an attempt to find equations de-
scribing stable, singularity-free field configurations in
three-dimensional space. The field configurations will
turn out to be such that high but finite field values and
high energy densities occur in a limited spacial region,
say inside a sphere of radius R, and fall to zero at dis-
tances v > R from this region. The classical field intro-
duced here has a simple geometrical meaning and is
governed by nonlinear equations derived from a least
action principle. In general, the field is not identical
with known physical fields, but an identification will be
attempted in certain limiting cases. The procedure is
first to introduce this field, to investigate stable solu-
tions, and then to identify its asymptotic parts with phy-
sical fields, The ultimate aim is to identify the struc-
ture described in this way with a stable elementary par-
ticle, In such a classical structural field theory, there
is no room for the separate notions field and particle;
the field is considered to be the fundamental entity, the
particle being a localized distribution of the field. The
moti¥a3tion to search for such a theory was given long
ago. ~

The theory is based on the assumption of an energy
density depending on two real scalar field variables @
and ¢, and on their first derivatives with respect to the
four-dimensional coordinates x, y, z, {. The fields ¢

and ¢ have the character of angular variables in an auxi-

liary Euclidean space of three dimensions #;. These
assumptions are a generalization of an earlier attempt?
to obtain discrete particle properties in a theory dealing
with a single field 6. The present paper first recalls the
results of this simple case and then treats the generali-
zation to two scalar fields, and finally deals with the
physical interpretation.

SINGLE SCALAR FIELD

When dealing with a single field 6, the least action
principle is introduced as follows

sW=0,
W= [{Ksin*6 + A[(V0)? - c2(20/at)% ]t dxdy dzdt. (1)
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This expression was found by exploiting a close con-
ceptual and formal analogy between moving domain walls
in magnetic crystals and moving particles. *? The field
f(x, vy, z, t) is visualized as an angle in an auxiliary
plane u4, u, and describes the direction of a unit vector
n in this plane, The term K sin*¢ describes an aniso-
tropy in the plane %y, #; and has been chosen in this form
for simplicity. Higher order terms K; sin**6 could be
added. The constants A and K have the dimensions of
energy per unit length and energy density respectively,
and c is the velocity of light. The Euler equation cor-
responding to (1) reads:

08 = (K/24) sin286. ()

We first specialize to one spacelike coordinate, assum-
ing 8 =46(x, ). This case has been studied independently
and from a different point of view by Perring and
Skyrme, ° and there has been much interest in recent
years in its leading to a special class of soliton solu-
tions,

A solution of (2) is

sinf =+ (coshx /%), @)
with
X=x-0vt, Xg=m(A/K)21-v/ch/?, “)

where v is a constant velocity <c. This solution re-
presents a stable field configuration or an object with an
internal structure moving with velocity v along the x
axis. Inside a spacelike region of the order of magnitude
X, on the x axis the angle 6 changes from 6=0 to 0=,
describing a clockwise or counterclockwise rotation of
the vector n by an angle + 7. An invariant = 7 of topo-
logical nature may therefore be ascribed to the struc-
ture (3). Most of the energy associated with (3) is con-
centrated in the region x;. In the rest system (v=0) the
structure is characterized by the discrete surface en-
ergy density

E,=4(AK)!/? (5)
corresponding to a discrete mass density

ms:Es/Cz, (6)
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and by the length
Ly=m(A/K)/2, (7)

The solution can be visualized as an infinite planar
sheet oriented parallel to the y—2z plane with mass den-
sity (6) and thickness (7). The occurrence of discrete
quantities is a direct consequence of the nonlinearity of
Eq. (2).

The structure discussed thus far may be considered
as a “one-dimensional stable particle.” This model
particle exhibits a number of properties which are com-
mon to real particles: discrete mass, a length 7/, which
can be considered as an elementary length, and an in-
variant + 7. The description is Lorentz-invariant and
free from singularities. It may be asked whether Eq.

(2) has similar solutions describing localized stable
fields in three-dimensional space. However, it has been
shown by Derrick’ that stable, time-independent solu-
tions of (2) do not exist in three dimensions, This holds
moreover for a large class of similar nonlinear equa-
tions. ” On the other hand, Anderson and Derrick? showed
that stable time-dependent (oscillating) solutions do ex-
ist for some related equations, This type of stability
does not have the absolute nature of the topological sta-
bility of solution (3) but is metastable in the sense that
it is destroyed by sufficiently large perturbations, ® In
the next section, we describe an approach that leads to
topologically stable field configurations in three
dimensions.

SOLUTION FOR TWO SCALAR FIELDS 6, ¢

In this section we consider a unit vector n in an auxi-
liary Euclidian space of thvee dimensions #;. The direc-
tion of n is determined by the polar angle 9 and the azi-
muthal angle ¢ (Fig. 1). 0(x,v,z,¢) and ¢ (x,y,z,%) are
considered as two real scalar fields in physical space,
In this way the physical space is mapped onto the sphere
of radius 1 centered in the origin of the auxiliary space.

By analogy to (1) a least action principle is
postulated:

§W=0, W= [ (Ksin’6+AD,+ED})d, (8)
with the abbreviation
Dy =[(v6)* - c63] + sin0[ (V§)* ~ c 93] 9)

being used. The operator V stands for the gradient in
the three spacelike coordinates. The constants K and A
have the same meaning (and dimension) as before. The
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term AD, describes an energy density associated with the
rate of change of the direction of n. A quadratic term,
ED(Z,, has been added, representing an additional energy
density for high rates of change of ¢ and ¢. The intro-
duction of this term is the simplest way to assure sta-
bility, as will become clear in the next section. E is a
constant with the dimension of energy times length. The
constants K, A, E define a characteristic length

1=(E/K)1/4 (10)
and a dimensionless constant
y=EK/A?, 1y

Other lengths can be constructed with the aid of / and y,
e.g., the length I,, (7), which is equal to 7y"*/%. If all
lengths are expressed in units of Z, Eq. (8) can be
written in the dimensionless form

sW=0, W=(E/c)[ (sin®6+y"1/2D+ D*)d'¢, (12)
where
D=1°D,.

The assumptions (8) and (9) characterize the basic
properties of space; it will be shown that they lead to
stable field configurations of the type described in the
introduction.

The Euler equations corresponding to the minimum
principle (12) are two coupled, nonlinear partial differ-
ential equations of second order for the two scalar func-
tions 6 and ¢, The equations read

2(y1/2+2D) 16 + 4(VEVD - 6,D,)

~ {1+ 67172 +2D)[(v0)* - ¢} sin(26) =0 2)

and
[(y"/2+2D)01¢p + 2(VpVD — ¢.D,)] sinf

+2[y1/2 4+ 2D) (VO VI - ¢.8,)] cos8 =0, {14)

where T=tc/1.

No attempt is made to solve these equations in general
form, but we show that simple solutions having cylin-
drical symmetry can be found. For this purpose, we
introduce reduced cylindrical coordinates p, ¢, &, 7
with x =Ip sing, y=Ipcosy, z=1¢ and write

D= (6, +p726, + 67 - 67) + sin’6(¢5 + pd% + 6F - 07).
(15)

We assume ¢ == 3L ¢ where L is an integer, and 6= 6(p),
i.e., that 6 is a function of the coordinate p only, Un-
even values of the “index” L are admissible because the
basic action principle (8) remains unchanged if n is re-
placed by —n, Here, however, we assume L =2 for
simplicity, so that we have ¢ = ¢. Equation (14) is sat-
isfied by these special forms of the fields, and expres-
sion (15) reduces to
2 | -2 a2
D= 6%+ pZsin®o. (16)
From Eq. (13) we then find the following second order
equation:
8,5 = (1 +691/262 + 2910 sin’0) Msin26(z' * + (2 - v/}

+1/2p72 5in%0)p™) - [1 + 291 /2(6 — p sin’6)]p"16,5(17)
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FIG. 2. Solution 6 =0(p) for a stable field configuration with
cylindrical symmetry. (a) M=1, (b} M=2. Dashed curve:
numerical solution for 6(0)=27. Solid curve: solution with
proper boundary condition 6(0)=0, The solutions depend on
the dimensionless parameter y. In both examples y=1.

This equation can be solved numerically. From Eq.
{16) it can be seen that for divergence-free solutions
the boundary condition for p=0 is given by sin6=0 or
=Mz, where M is an integer. We impose the further
boundary condition §=0 for p —«, Assuming y=1, we
find for M =1 the solution shown in Fig. 2(a). The first
derivative in the origin is 6,(0)=— 0. 9205. This solution
constitutes a stable field configuration which is infinitely
extended in the z direction, The stability is of a topo-
logical type and is related to the fact that ¢ changes by
27 on any simple path one time encircling the z axis.
The field 6(p) has the value 7 on the entire z axis and
falls rapidly to zero with increasing p. The dimension-
less energy density sin’6 + D+ I? decreases rapidly as
well (Fig. 3) so that only the inside of a cylinder with
a radius of, say, p=>5 contributes appreciably to the
integral (12)., For static solutions with cylindrical sym-
metry, this integral reduces to

W=21VEK (21~ 2o)(t; - )11 (v) (18)
with
Ly)=f," (sin®6+y™ /2D + DP)pdp, (19)

where z; — 2y and #; — {; are the integration intervals on
the z and ¢ axis respectively. I;(y) is a dimensionless
integral, a measure of the energy per unit length of the
structure on the z axis, It still contains y. In the pre-
sent example, with y=1 we find ;(y) =12, 9, For y <1
the integral approaches the asymptotic value I;(y)=3. 93/
Ve

All these properties lead to the intuitive picture that
the solution of (17) can be considered as a stable cylinder
or string with lateral dimensions of a few units of I. The
orientation of the string axis in space is arbitrary due
to the symmetry properties of D,

Apart from the simple solution M =1 described above,
one can find numerical solutions for M > 1. Definite in-
tegrals I, are associated with these solutions. As 6 is
defined as a polar angle with 0 < # <7, the proper bound-
ary condition is 6(0)=0 for even M and 6(0) =~ for un-
even M. The solutions consist of M segments (or shells)
0 < 8(p) < 7 with alternating positive and negative slope
6,. For segments with 6,> 0 we have ¢ =¢ +7 and for
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segments with 6, <0 we have ¢ =¢. Fig. 2(b) gives the
solution for M =2 with 6,(0)=1. 302.

At this point, an interesting property of the solutions
6(p) of Eq. (17) may be mentioned, This equation can be
written in the form

epp +(1/P)9p =f(p) 9: ea) —€ (P) (20)
and can be interpreted as Poisson’ s equation based on
a density function e(p). This density is uniquely defined
by the solutions 8(p) of Eq. (17). As 6(p) decays expo-
nentially for large p, it follows directly from Dirichlet’s
theorem that

fowe(p)pdp=o. (21)

The numerical solution of (17) fulfills this condition.

The string can also be treated with the aid of a Ritz
approximation. The exact solution of Fig. 2(a) (M=1) is
then replaced by 6 =7 — ap in the interval 0<p <na™! and
by 6=0 for p>ral. Equation (16) then reads

D=p?sin’ap +a?, (22)
Using elementary integrals, we obtain for the integral
I (with y=1)

I g(a@) = 37* + § Cin27 + a® (3% + Cindr) + 1a2r?, (23)
which acquires a minimum value of I z(a,) =15, 07 for
a;=0,744. This value of the integral is not unreasonable
compared with the exact result of 12, 9. It gives an indi-
cation of the accuracy of a similar approximation which
will be made below for a more complicated field
structure.

Concluding this section, we remark that the introduc-
tion of two angular variables leads to at least one stable
field configuration of a string like type. This result is
to be compared with the case (1) of a single scalar 6,
which leads to a stable planar structure of infinite ex-
tension, If three angular variables representing Eulerian
angles in a four-dimensional space u; are introduced,
which are governed by an action principle analogous
to (8), a localized field structure with spherical sym-
metry is obtained. In this structure 6 =7 is limited to
a single point. Skyrme9 was the first to describe a solu-
tion equivalent to this pointlike structure, The string-
like structure has some similarities with a disclination
in a nematic liquid crystal, 1

Summarizing, we observe that the introduction of one,
two, or three angular variables leads to stable struc-
tures of planar, stringlike, and pointlike shape respec-

sin20 «D+D? .
FIG. 3. Density sin%¢ + D+ D?

as a function of the reduced
cylindrical coordinate p.
y=1.
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tively. Our further considerations will be based on
stringlike structures.

STABILITY OF CLOSED, TWISTED STRINGS

We first note that by putting

=@ Fkz/lFwic/l (24)

and by still assuming a time-independent function 6
=0(p), a slightly more general solution than (16) can be
found. A period A on the z axis, defined by % =271/x,

and a rotation of the vector n with constant dimensionless
angular frequency w are described in this way. Equation
(14) is still satisfied by the above choice of ¢ and 8,
Equation (15) then reads

D=62+sin%0(p + k% - w?). (25)

A differential equation analogous to (1'7) can be found by
combining Egs, (25) and (13), which has again stringlike
solutions, Solutions with £+ 0 are called twisted strings.
In Fig, 4, a twisted string is sketched schematically.
The axis 6 =7 coincides with the z axis, and the sur-
faces defined by 6=const are cylinders. A helix ¢
=const is also indicated.

If the same Ritz approximation as before (6 =7 - ap)
is applied to the twisted string, we obtain for the inte-
gral (12)

2 .
W=£27T(§1— Lo)(ry = 1) | ! 4 Cin2r /2
[+ 2 2
r L 2_ 2
+ E+Cin277— 3Cindn) (B° - w%)

2 2 372
+a-2(%+%7-1/2(k2"w2)+1_7£3(k2"*’2)2

2
+a? <% + Cin4ﬂ)]

with £¢=2z/1 and T=ct/l,

(26)

For large values of (¢°- wz) the structure of the twist-
ed string is modified as compared with the untwisted
string in the sense that the lateral dimensions are de-
creased and the total minimum energy is increased.

At this point a transition is made to a more qualita-
tive consideration. The string is now imagined as an
object that can be flexed without losing its topological
structure, and, for moderate curvature, without ap-

350 J. Math. Phys., Vol. 18, No. 3, March 1977

surface © = const
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FIG. 5. Sketch of a closed string. A torus defined by 6 = const
is indicated.

preciable change of the energy per unit length. For the
planar solution of Eq. (2) (Bloch walls) the correspond-
ing transition is common practice, 1

Closed strings are now considered, i.e., strings of
which the axis defined by 6 =7 forms a closed line, This
is done with the aid of Fig, 5. The string axis is a cir-
cle of radius R. An angle 8 is introduced to define a
point on this axis. RS corresponds to the coordinate z
of the straight string, A further angle ¢ is introduced to
define an angular coordinate corresponding to the angle
¢ of the straight string.

Two sets of structures can be defined by writing

¢ =NB+ta, 2n

where N=27R/x is an integer indicating the number of
full 27 twists on the circumference of the string. The
condition 8 =const defines surfaces topologically equi-
valent to a torus as indicated in Fig, 5. The two sets of
structures (27) can be called right-handed and left-
handed closed twisted strings. The spatial distribution
of 6 and ¢ for these structures follows in principle from
Egs. (13) and (14). However, the numerical solution of
these equations for this three-dimensional field confi-
guration is a mathematical problem which has not yet
been solved,

In the following we present some considerations of a
qualitative nature concerning the properties of closed
strings.

(a) The two structures (27) are related by mirror
symmetry, which can be described by an integer P
taking the values +1 or - 1.

(b) The closed string with the twist number N=0,
i. e., the untwisted closed string is unstable.

(c) A continuous line defined by =0 (or, more gen-
erally, sinf=0) passes through the closed string N=1,

0:=0
() 0=
O=n
C=0 C=1

FIG. 6. The two structures denoted by C=0 and C=1. The line
defined by =0 is a straight line (C=0) or a closed curve
(C=1).
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FIG. 7. Dimensionless integral I4(ky, v), a measure for the
minimum total energy of the closed string L=2, N=M=1,
C=0 as a function of y. The curve has a minimum of I ,=4.16
for y~ 34 with a corresponding 2y~ 1. The curve ky(y) is also
plotted.

The field ¢ changes by 27 on any closed path encircling
this line once. The presence of this line, which can be
considered as a string 6§=0, follows from the property
of single valuedness of the field ¢ in all points except
where 6 =0, The string =0 is therefore a stable entity
of much the same kind as the closed string 6 =7 dis-
cussed up till now, In the structure denoted by C=0 in
Fig, 6 this string #=0 is represented as a straight line,

(d) The following argument shows that the closed
string N=1 is stable. Due to the property (c) V6 is of
the order of 7/R inside the closed string. For small
values of R the dominating term ED{ contributes as 7%/
R* to the energy density, whereas the volume is pro-
portional to RS, Therefore, for R —0, the total energy
increases in proportion to 1/R, For large values of R,
on the other hand, the energy is proportional to R be-
cause, according to (26) the energy is proportional to
the total length of the string. Hence, there is at least
one radius R, defining a string of minimum energy. This
argument is valid for static as well as for time depen-
dent solutions 6, This makes it clear why it is neces-
sary to introduce the term ED? in the action principle

(8).

(e) In a crude way, the energy of the closed string can
be calculated starting from equation (26) and assuming
the circumference of the closed string to be 27R = Nx
and therefore

&y - L, =27N/k, (28)

The additional terms following from the finite curvature
of the string are neglected. For reason described be-
low we assume

w=y!/4, (29)

The action (26) for the closed string N=1 can therefore
be written in the form
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W= (E/c)4n* (7, - To)k-l{?’-”zc1 +Cy (R~ y17?)

+ a2y 20 /4 + (R = 4122 + a2Cy), (30)
=(E/c)ar* (1~ Ty)l o
with
Cy=13n + 3Cin2r =6, 15,
C, = 37° + Cin2r — 3Cindr ~6, 59, (1)

Cy=737° + Cindr = 8. 05,

where the dimensionless integral /., is a measure of the
energy of the closed string. I can be treated as a func-
tion of £ and a and minimized with respect to these vari-
ables for any value of y. The minima are characterized
by k=k(¥) and a =a,(y). As a; and %, are found to be
near to each other, we assume a==%k, The resulting

I (R, ) is plotted in Fig. 7. The curve I (y) shows a
minimum for y=34; the corresponding value of &, (and
of a;) is 1,43, The minimum value of the integral is

I, min = 4. 16, It should be emphasized, however, that
these results represent a rough approximation, which,
moreover, neglects the effects of the finite curvature

of the string, Therefore, the values of I, given in Fig,

7 are probably much to high. It may be mentioned here
that the assumption L =1 leads to similar structures and
values of I, which are slightly smaller than those given
in Fig. 7.

(f) The action principle (8) is symmetric with respect
to 8 =7 and 6 =0; an asymmetry enters only by virtue
of the boundary condition 6 — 0 for » —«. This leads us
to suspect that solutions may exist in which this sym-
metry dominates. In (c) the existence of a string 6 =0
passing through the closed string 6 =7 (N=1) has been
discussed. The string 6 =0 is either infinite in length
or closed in such a way as to interlock with 6 =4. This
property can be described with a constant C assuming
the values C=0 and C=1 respectively. The two struc-
tures are shown in Fig. 6. The structure with C=1
approaches the above symmetry more closely. It de-
scribes a closed Mdbius strip with a 27 twist having
strip boundaries defined by =0 and 8 =7.

(g) So far, the discussion has been based on static
functions ¢ and a time dependence of ¢ given by (24).
However, a time dependence of 6 is not excluded, and
this would lead to a negative contribution to the value of
D{a) and therefore to the integral. The time dependence
of 6 possibly comes in through a rotation of the whole
structure C=1 (Fig. 6). We are unable to estimate the
difference in energy between the structures C=0 and
C=1, but it is probable that for C=1 the integral I is
considerably lowered due to the negative contribution
associated with 6,.

(h) If it is assumed that the structure C=1 is stable,
it follows that outside of sphere of radius R, containing
the whole structure of both strings 6 =7 and 6=0, and
where ED* <AD, Eq. (13) reduces to

06 =6('/2 - w?). (32)

This occurs because in this outside region ¢ takes the
form ¢ =const +w¢. For

w=y"* (33)
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TABLE I. Elements of three-dimensional field structures.

uy Auxiliary space of three dimensions
K Constant describing anisotropy in u;
AE “Exchange” constants

8, ¢ Scalar field variables, polar and azimuthal angle
inu,. 0=0(x,5,21), ¢p=¢,3,21

o~

Length parameter describing the structures.
Dimensionless parameter

Integer indicating “index”” of the straight string
Integer indicating “number of shells”

Integer indicating “number of twists*

Constant taking the values 0 or 1

ISR B

Constant taking the values — 1 or +1, describing the
symmetry of the solution

(in units ¢/1) the asymptotic static solution is
61/, (34)

The argument (21), therefore, does not apply here, and
for C=1

Je)r? dr#0. (35)

(1) For N> 1 the stability is not obvious, a decay into
simpler structures is not excluded topologically, Table
I summarizes the various parameters of the structures
described. The structures discussed in the last sections
have not, to my knowledge, been described before. In
these structures, a new synthesis between continuous
field properties (6, ¢) and discrete properties (N, M,
ete.) is realized,

INTERPRETATION

Thus far, we have mainly dealt with geometrical and
topological properties of the model, except for the con-
stants A, K, E, ¢ which were introduced as physical con-
stants from the beginning. In this section, a physical
interpretation is attempted. The main result up till now
is that stable structures or field configurations have
been found which follow directly from the basic action
principle. These structures represent entities of finite,
discrete action or energy localized in a limited region
of three-dimensional space. The characteristic prop-
erties of the model are: (a) no singularities occur, all
field values and densities remain finite; (b) integers
characterizing the structures (like N or M) occur in a
natural way together with classical continucus fields;
(c) the stability, at least for N=M =1 is of a topological
type; (d) the description is Lorentz-invariant as be-
comes clear from Eq. (9).

These properties make it tempting to try to identify
these structures with elementary particles. However,
in general this would be a formidable task, and we lim-
it ourselves to the discussion of some arguments that
might contribute to such an identification. The idea is
that a particular structure, specified by the integers
L,N, M, C,P, corresponds to a particular free elemen-
tary particle in such a way that the total energy of the
structure represents the rest energy of the particle.
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The energy is defined as the spacelike part of the basic
integral,

With 7 =ct/] we may write according to Eq. (30);
W= — i (E/D4n* I (v, L, N, M, C). (36)

Here, we consider [ as the exact result of the integral,
based on a time dependent field 8 (C=1), and not as the
approximative value given in Fig. 7 which is probably
much too high. If we adopt the hypothesis that the two
simplest stable structures L=2,* N=M=1, C=1,

P =11 can be identified with the electron and the posi-
tron, we find

(E/ AT (y) =mc?, (37)

where m is the mass of the electron. If it is further
assumed that the structure with C =1 is stable, and
w=y"*[Eq. (33)], the field ¢ falls off as rv,/v for large
distances # as compared with the string radius [Eq.
{34)]. The energy density in this region is then given by

A7/t (38)

because the term containing D? can be neglected. Here,
7, 1s a length which follows in principle from the exact
solution of the minimum principle for C=1. The length
7, is probably much smaller than R, the stable string
radius. The energy density (38) is identified with the
energy density ¢%»"? of the electrical field of the elec-
tron in the limit y —«, and we find

e =mAvi=mlEy 32/ P, (39}

where e is the elementary charge. This means that the
charge is quantized. It may be further assumed that the
circumference 2nR,=2rk;'l of the stable string is equal
to the Compton wavelength, yielding

l=kji/ mec. (40)

Here again k, is considered to be the exact value of the
equilibrium wavenumber corresponding to the proper
minimum of I .. In principle, we can determine E,[,y
{or alternatively A, K, E) from Eqs. {37), (39), and {40).
For E we find

E=Tck,(4n*[ ). (41)

However, as we are unable to calculate 7,, a further
specification of the constants does not seem possible at
this stage. On the other hand, it can be stafed that the
basic action principle is a well-posed mathematical
problem. To find 2 more accurate solution than the one
presented here should therefore be possible if sufficient
computing facilities are available. We expect that &,

and I will turn out to be at least one order of magnitude
smaller than the figures given here.

To conclude, some more general remarks may be
made.

(1) A major property of the described field structure
is that all its parameters are quantized, which is a di-
rect consequence of the nonlinearity of the basic equa-
tion. The quantized properties are of two kinds: dimen-
sionless quantum numbers (integers like N, M) and quan-
tized physical properties (like mass and charge), We
therefore believe that a further quantization according
to the rules of quantum electrodynamics is unnecessary
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and even meaningless. The model therefore represents
a classical particle which quantized properties.

(2) The notion of exact localization of a particle has
no meaning in this model; it should be replaced by say-
ing that the major part of the energy is contained in a
finite region of space.

(3) A mirror symmetry exists between the structures
N=M=C=1, P=1, and P=-1 (electron and positron)
so that the charge is described by CP. A closer exami-
nation shows that the ensemble of two structures P=1
and P =-1 is not topologically stable and may annihi-
late. This statement is not true for two structures both
described by P=1or P=-1.

(4) Structures with N> 1 or M >1 have a higher energy
and are possibly related to heavier particles.

(5) The interaction of two particles is not a free addi-
tional property, but is inherent in the model. Roughly
speaking, the interaction is the consequence of the co-
existence in space of the two structures, which extend
through the whole of space,

(6) The dimensionless parameter y describes a prop-
erty of the vacuum and is not associated with a particu-
lar field structure. Nevertheless, the structures and
the integrals I  depend in an essential way onvy, e.g.,
v determines the relative contributions of the terms
D and D? in the basic integral. From Egs. (39) and (41)
we find a relation between y and the fine structure
constant a:

a = e/ fic= "y 22 kL. (42)

(7) The described structure can be considered to be
an extended oscillator of angular frequency ¢/ R,=mc¥/ ¥
determined by (40). This “internal motion” may be re-
lated to the spin of the particle. Considerations on mov-
ing oscillators of this frequency were at the root of the
original work of de Broglie, '® leading to quantum me-
chanics. Therefore, we believe that a reconciliation of
the present model with quantum mechanics may prove
to be possible along de Broglie’s lines of thinking con-
cerning the causal interpretation of quantum mechanics, 13
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In conclusion, we may state that the proposed model
exhibits a number of promising physical properties;
its validity will depend on the exact values of the dimen-
sionless constants and mass ratios,

Note added in proof: In deriving the asymptotic be-
havior (32) of 8, a term of the order of £° has been
neglected. This term is of the same order of magnitude
as A8, so that this neglect is not justified. If in the
basic action principle (12) D? is replaced by D?, the
corresponding term in (32) turns out to be of the order
of €° so that 6 then falls off as »,/» asymptotically. This
modification of (12), however, does not change the
topological properties of the model nor the stability of
the string N=M=1. The physical interpretation re-
mains also unchanged. The asymptotic behavior of 6
for the modified action principle will be treated in more
detail in a future paper. One of the results is that,
given C=1, the “charge” 7, turns out to be independent
of the details of the internal structure of the “particle.”
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Convergence of lattice approximations and infinite volume
limit in the (A ¢*~c42-us), field theory
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By unified method we prove the convergence of the lattice approximation of the (Ad*— o d? —id); field model
with periodic, Dirichlet and Neumann boundary conditions in a finite box. This then allows us to take the
inifinite volume limit of the Dirichlet states by the Nelson’s monotonicity argument. The model under
consideration satisfies all the Wightman axioms except possibly the uniqueness of vacuum for p =0 and the

mass gap.

I. INTRODUCTION

This is a continuation of our previous works™? in
proving the convergence of the lattice approximation in
the (A\*— 0¢* — p¢); quantum field model with various
classical boundary conditions in a finite box, With a
unified method we prove the convergence of the lattice
approximation of the model with periodic, Dirichlet
and Neumann boundary conditions, We then use our
results together with uniform bounds of the Schwinger
functions®* and the Nelson’s monotonicity argument®®
to take the infinite volume limit of the Dirichlet states
of the model under consideration, The resulting theory
satisfies all the Wightman axioms except possibly the
uniqueness of vacuum for p =0 and the mass gap.

During the last few years there has been much
progress in the construction of the (A\¢* - c¢p? - wo)s
quantum field theory. The main results have been the
proofs of existence and semi-boundedness of the volume
cutoff Hamiltonian, " convergence of the lattice and
momentum cutoff Schwinger functions with free and
periodic boundary conditions as the cutoffs are re-
movedl*? and convergence of the infinite volume limit
for the weakly coupled model, *!° Recently, Park® and
Seiler and Simon? have established uniform bounds of
the volume cutoff Schwinger functions of the models
with free and periodic boundary conditions. Frohlich!!
has constructed the infinite volume theory for the
strongly coupled model with weakly coupled boundary
condition.

In the P(¢}), field theory the control of the boundary
conditions provided great flexibility in the study of the
infinite volume limit. *%12=1® The main purpose of this
work is the completion of our program in proving the
convergence of the lattice approximation in the
(Ap*— 00 = ud)s quantum field model with various
classical boundary conditions in which we are interest-
ed. Then one may develop the (A% - op? - Lo)s field
theory parallel to the P(¢), model.

The method we will use in proving the convergence
of the lattice approximation for Dirichlet (D) and
Neumann (N) boundary conditions is essentially same
as that for free (F) and periodic (P) boundary condi-
tions developed in Refs. 1, 2. Since the proof is very
complicated (even if it is not so hard) and since the
over-all structure of the proof is same as that for
P.b.c., we feel that it is convenient to reproduce the
proof for P, b.c. This makes the paper better organized
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and thus more readable. That is, we will prove the con-
vergence of the lattice approximation for D, N, and P
boundary conditions simultaneously.

We now discuss briefly our main ideas of the proof.
Let A be a box in R? and let & be the lattice spacing
parameter. Let C;(m5,n5) be the covariance of the
lattice free fields ¢4(n) with X (=D, N, P) boundary con-
dition, By the standard eigenvector expansion!® one

may write

CX(mb,nd)= 25 fE(mOFX (nd)us k). 1.1
ke TX
See Sec. 2 for the details, Let S¥ 4(fi,...,f,) be the

corresponding lattice cutoff Schwinger functions of the
model under consideration. A direct proof of the con-
vergence of Sf{,ﬁ as 5 — 0 seems to be very difficult (in
fact, we are still not able to produce a direct proof).
Therefore, we will introduce the lattice and momentum
cutoff Schwinger functions SX 4, (f1,...,f,). See Sec. 3
for the definition. It is easy to show that S} , , — 5%,
as k—~1and S§ ;. ~S§',‘ as 6—0. Hence, if we prove
that

SK,G,K(fl’ on e 9fn)

»f») uniformly in &,
1.2)

the convergence of the lattice approximation follows
from the standard 3¢ argument. As in Refs, 1, 2 we
shall use the method of the inductive expansion devel-
oped by Glimm and Jaffe” and modified by Feldman® to
establish (1. 2). To prove (1, 2) for X=D, N by the in-
ductive expansion method, *% %% one must check the
following:

SX,G(fI!" .o

k=1

(a) isolation of localization factors,

(b) bounds of the kernels of Feynman graphs by
majorizing functions,

(c) estimations of small graphs including the mass
renormalization cancellations,

(d) that the partition function is nonvanishing.

Since we do not have translation invariance for D, N
boundary conditions, we need to modify the method used
in Refs. 1, 2, 7, 8 to handle (a) for X=D, N. Roughly
speaking, we will be able to isolate the distance factors
from the following inspection: Let C% ,(m5,n5) be the
lattice and momentum cutoff covariance (defined in Sec.
3) and let |x — y |y denote ordinary Euclidean distance
for X =D, N, F and periodic distance for X=P. Then
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it follows that
|CX (n6,n8)| ~ | (m-n)6|¥ for anyje N*

uniformly in «, 8, where md,nd<c A, This means that
the momentum and lattice cutoff covariance decays
polynomially. This fact is enough to isolate the distance
factors. See Step 3 in the proof of Theorem 4.1, Sec. 4.
In Sec. 3 we establish basic estimates to take care of
(b). We shall give the estimates (c) in the Appendix. To
prove the nonvanishing of the partition function (d), we
shall apply the method of the mass shift transformation
used in the previous work? together with the nonvanish-
ing of the partition function for sufficiently large mass
mi. Since the boundary terms for D, N, P boundary
conditions are independent of the mass, one may apply
the mass shift transformation. See proof of Theorem
2.1 in Sec, 3.

We remark that as a by-product we also establish the
convergence of the momentum cutoff Schwinger func-
tions in the (\¢*~ 0¢® — Ld); model with D, N, P bound-
ary conditions in a finite box (Corollary 4. 3). To be
more precise, if X =D, N, P, the results of this paper
may be summarized by a diagram'

S)z{,b(fiy---’fn) Sx(f1)-~- (fl;---,fn)
A1 6=0 et
Sx’\(,ﬁ,x(fiy CEOR 1fn - SX x(fiy e ,fn)

The organization of the paper is as follows: In Sec. 2
we introduce the notation and definitions on the lattice
fields and the lattice cutoff Schwinger functions with
X (=D, N, P) boundary conditions. We then state our
main theorems, namely, convergence of the lattice
approximation and the infinite volume limit of the
Dirichlet states in the (\¢?~6¢, - ud); field model. We
also give the proof of the existence of the infinite volume
limit of the Dirichlet states, In Sec. 3 we introduce the
Schwinger functions with a joint lattice and momentum
cutoff and establish basic estimates which we will use
later on. Assuming the convergence of the inductive
expansion as x —1 uniformly in 6, we establish the con-
vergence of the lattice approximation, In Sec. 4 we
prove the uniform convergence of the inductive expan-
sion. In the Appendix we establish estimates for small
graph including the mass renormalization cancellations.

Apology: After having established the convergence of
the lattice approximation of the models with free and
periodic boundary conditions more than one year ago, ir?
the author felt that the result was not as fully utilized as
it deserved mainly because the result for Dirichlet
boundary condition was lacking, We hoped that someone
would study the problem for Dirichlet boundary condi-
tion, since all the techniques we need contained in Refs,
1, 2, 7, 8 except the control of the isolation of the
distance factors. We are very reluctant to come back to
this subject. We tried hard to simplify this paper to
improve its readibility. In some parts, we skip detailed
proofs and give only a bare description of the proofs
because of notational complications., We apologize for
that. But we hope that the underlying idea is apparent
to the reader.

Note: Recently Feldman and Osterwalder!® have an-
nounced the infinite volume limit of the Dirichlet states
of the model we consider. Their argument is also
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based on the monotonicity of the Dirichlet Schwinger
functions, but they did not provide any description of
the proof showing the convergence of the Dirichlet
Schwinger functions. Since the preprint has not yet
appeared, we produce this paper.

1. NOTATION, DEFINITION AND MAIN RESULTS

In this section we first introduce the lattice fields and
the lattice cutoff Schwinger functions (Euclidean Green’s
functions) of the (\¢*— 0¢% — 1 d)s quantum field model
with D, P, N boundary conditions in a finite box.
Throughout this paper we assume that Ae R*, o, uc R.
We then state our main results. We specialize for the
case where A is a box, say (—1,/2,1,/2) X (= 1,/2,1,/2)

- l3/2,l3/2). Let 6 be the lattice spacing parameter
for the lattice Ly ={ndin=n",2? n®)c z%. wWe
denote Ay =AN Ly the set of lattice points within A and
dAg denotes the points in Ay which have the nearest
neighbors outside A;. Following Ref. 13, we assume
that Iy, 15, and I3 are odd multiple of 6§ for P and N
boundary conditions and even multiple of & for Dirichlet
boundary condition (if A is a cube with length of side [,
this means that 6=1/(2j+1) for P., N.b.c. and 6=1/j
for D.b.c., j€ N*). We introduce the lattice fields
¢4(n) as the real Gaussian random process indexed by
the2 }attice in A, with mean zero and covariance given
py? 13

CX(ms, nd) kCZ)G FE(md)FE o) k)2, 2.1)
where
pg(R)? = 6'2(6 -2 Z,sicos(bk(“)) +m3,
TX=T*n[-/5,1/5], (2.2)
—Zx@zx——z X=P,
rx_yh I3
—2x52x~z X=D,N,
and
FRe) = (4la5) 1 explik - x),
R0 = 0t 11 gt ),
R S

3 :
FE(x) = (111512 1 B9,

h(i) L) = sm(k(” (')) if 1,k /1 is even,
cos(kPx Dy if 1 k(')/n is odd.

We note that the functions {6%/2* % (mB) }chg( satisfy the
completeness condition!®:

8 25 fEmO)f (o) =6, (2.4)
kS Ty

for mb,nd e A;. It is convenient to introduce the covari-
ance for the free (F) boundary condition given by

CF(mé,nG):(Zﬂ)'sf_:;Ze [ik - (m ~ n)8]u, (R)2 d%k.
(2.5)

Let duf'ﬁ be the underlying Gaussian measures on
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S$'(A) with X, b, c. We introduce the smeared free fields
and Wick product of free fields by

=5 2 5
$lN=8" T, bolmftu), oo

107 x(g)= 5 20 ¢ $g )"y g (n0)
mE Ay

for f,g € L”(A), where : :x is the Wick ordering with
respect to the Gaussian measure dpu} ;.

We now introduce the lattice cutoff interacting action
for the (x¢!-0¢® — 1L¢), field model with X (=D, N, P)
boundary condition. We write (-){¥2 for [-dp% ;. The
interacting action is given by

ij),{g = V;:Y K.s + V;:),(}x,e;

Vill,e = 1008 — 06F — 1dy)ix (Xa),

Ve = DX (o5 xa))) K3 = $ 2K Godx (xa)) 15
+%X25m§:¢§:x()<1\),

5m?t = (4% x6)5° naé\,, [CFmb, nd)T,

2.7

where CF is the covariance for the free boundary con-
dition defined in (2. 5) and y, is the characteristic func-
tion of A. One may easily check that the above definition
of &m? is equivalent to that of Ref. 1 (at most, up to
finite mass renormalization). See the details in the
Appendix.

Remark 2,1: We hold the coefficient 5m? of the mass
counter term fixed, We always use the 6m§ appropriate
to free boundary condition. ! We do this for convenience
in using the conditioning theory and monotonicity argu-
ment for the Dirichlet states, A more appropriate co-
efficient of the mass renormalization counter term for
X.b.c. would be

omE) = (@4*x6) 2 [CX(ms,nd)]’. 2.8)
' < Ag
1t is then easy to check that for X=D,N,P and [A|>1
omi - 6m¥)| < const, uniformly in A and 6.  (2.9)

We will give the proof of (2.9) in the Appendix.

The partition function and the Schwinger functions are
defined by

me =(exp(- V{,a» x(g,
(2.10)

S{,ﬁ(fu v S = (Zf{,a)d(‘bs(fi) t ¢5(fn) exp(- Vf\(,o) 1(\),(‘;

We now give the main results of this paper:

Theovem 2.1: For x>0, o,uc R in (2.7) and X
=D, N, P:
(a) (The convergence of the lattice approximation, )
The limits
limZ} =23,
50

lﬁigls{,é(fiy o 9fn) :Sf(fb L ’fn)

exist for f; € §(A).

(b) There exist constants K;(x,0, u) and K, (1,0, u, A)
and a suitable Schwartz space norm | - | such that
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0<Zf<exp(K|A]),

EACHRNAIRY AR VAR

where |Al is the volume of A.
{c) For 7€ C and fe ((A), the limit
Lim(exp (7 () = Vi,s) £3=25(7%)

exists and is analytic in T,

Remark 2.2: In Refs, 3, 17 we have established the
following:

exp(—a]A|)SZF'pSexp(b|AI),
. (2.11)
DAURNAIES SR INTAR

where @, b, and K are constants independent of A,
Similar results also hold for free boundary condition.
Hence the result of Theorem 2,1 (b) is much weaker
than (2.11) for X=P,

4,17

We postpone the proof of Theorem 2.1 at the later
part of this paper. As consequences of Theorem 2,1
we have the following result:

Corollary 2. 2: Let A, o, and p be as in Theorem 2,1
and let X=D, N, P,

(a) There exists a unique measure dgs for each X
=D, N, P on §’(A) such that

SX(fryevonf)=J o(f) - ¢(f) dax
for f,€ S(A).

(b) (Lee—Yang theorem and correlation inequalities. )
The Lee— Yang theorem®!® and the correlation inequal-
ities™!® whi h hold for the (\¢*- 0¢? — uo), field theory
also hold for the (\¢* - 0¢? — o), field theory.

Proof: (a) This follows from Theorem 2.1 (b),
Minlos’ theorem and the method used in Ref. 8.

(b) This is a consequence of Theorem 2.1 (a) and
(e). n

Now we use the above result and the uniform bounds of
the Schwinger functions with P(F) b. c. %4 to take the
infinite volume limit of the Dirichlet states.

Theorem 2. 3: The infinite volume limit of the
Dirichlet Schwinger functions

SE(fiy oo of) = 1im SR(Fos. o )

exists for f; ej(RS). The Schwinger functions

{82(f1,. .., ) n=0,1,2, .-} satisfy the axioms of
Osterwalder and Schrader!® with the possible exception
of clustering. These are moments of an unique mea-
sure dg” on §’(R%). The theory satisfies all the Wight-
man axioms with the possible exception of the unique-
ness of vacuum for ¢ =0 and the mass gap.

Proof: Since we have fixed the coefficient &m} of the
mass renormalization counterterm independent of
boundary conditions, it follows from Refs, 5, 6 that
for f;>0
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SR,G(fia L yfn) < SII:\’: g(fly .o ’fn)s

SR,G(fi; e ’fn) = SD’,&(fi, L ’fn) ifACH,
From the convergence of the lattice approximation
(Theorem 2.1 (a) and the result in Refs. 1, 2) it follows
that for ;>0

S AR R AR SN TAR

SR(fI, L ’fn) SSR'(]‘D LI yfn)’

Here we have used (2.11) (or the result of Ref. 15). The
first part of the theorem follows from (2. 12) together
with the method used in the (\¢* - 0¢? — o), field the-
ory. > 614,15 By the Osterwalder and Schrader’s recon-
struction theorem, we only need to prove the uniqueness
of vacuum for u+#0, This follows from correlation in-
equalities, Lee—Yang theorem, and the method used in
Ref, 15. This completes the proof of the theorem, .

ACA, (2.12)

The rest of this paper is devoted to the proof of
Theorem 2,1, We shall employ the method used in
Refs. 1, 2 with some modifications, which are neces-
sary to control the localization factors.

111. REDUCTION OF THE PROBLEM

In this section we first introduce the lattice and
momentum cutoff Schwinger functions and then reduce
the proof of Theorem 2.1 to the uniform convergence
(with respect to &) of the lattice and momentum cutoff
Schwinger functions as k —~1 (Propositions 3. 2—3, 3).
At the end of the section we also establish basic
estimates which we will use in the following sections.
Following Glimm and Jaffe, " we introduce a momentum
cutoff function of the form

(k)“ [k(”/ﬁ‘” N/ a )],

a(i)qm’ (3.1)
¢ -1

a®, W e {My=0, M, =M i1 > 1},

where M;>1 and v> 0 are constants given in Ref, 7,
and 7 is a fixed Cy(R) function satisfying

nt)=1 for |x| <3,

nx)=0 for |x|

0<nlx)<1 for < |x| <2
n(-x)
and by convention 1(2/0) =0, We introduce

ki =251 sin(ok 9 /2),

2 and nlx)=

(3.2)
We define the lattice and momentum cutoff free fields by

o) =0° 20 $a0n0) E FE O o)k (ko).

(3.3)
Notice that the momentum cutoff function «(k;) depends
on 5.
Direct computation yields
(b8 (M)D () 13 = C, (m5, 1),

E RO o))k gt Y

A_K(mt} nd)

The lattice and momentum cutoff partition function and
“unnormalized” (un) Schwinger functions are defined by
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Z% 5, ={exp(= Vi ;. ))X‘f‘é,

S}If:g:‘k(fly- '9fn) <¢6(f1 (fn)exp( V 6,x)>;\),(5),
(3.5)

where the triple cutoff interacting measure VA'M is
obtained from Vf s in (2. 7) by replacing ¢4(n) and
CX(m5,n8) by ¢f, and C},,(mb,nd) respectively. We
then have

Lemwma 3.1: Let x>0, o,uc R, and let X=D,N, P,
(a) For 8> 0and f; € §(A)

. X _ X
lll?ZA,s.x _ZA,G S

. ,f")_sX,un(fl’ .. ’fn)‘

hmsA.b,k(fI’ .

(b) Let x have compact support. Then for f; e §(A)

hmZA 8,k _ZA'K,

thA bclfts oo s f) =S 1o 025 fa)

exist.

Proof: Under the assumptions, all the objects we deal
with are well defined by virtue of the momentum cutoffs
k and 6. For example, it is easy to check that V} , ,

e LP(5'(A),duk,,) and
exp(— V; ﬁ',‘) < const(3, ),

where const(s, k) is finite if either 5> 0 or else k has
compact support. The proof of the lemma follows as
in Refs. 5, 13, -

For convenience we write
X X
ZA,K:ZA,G-O,K’
X
'un(fla °’fn)_SA, =0.n(f19°°';fn)-

As in Refs. 1, 2 we reduce the proof of Theorem 2.1 to
the following propositions:

Proposition 3.2: Let X=D,N, P and f; € §(A),
i=1,...,n

(3.6)

(a) There are constants K;(x,0, ) and Ky(A, 0, i) in-
dependent of A, and a Schwartz space norm | - | such
that

ZX (< exp®|A])

n
S fry - ..,fn>$n!(p1 Ifel)exp(Kz[AD-
(b) Let 5= 0. As x—1,

Zy sk~ Zh5 uniformly in &,

SRRy S = SHE(f, .

(c) For 7€ C and f< §(A) we write Z} 5, (7f)
=(exp(T¢6(f) ~ VX,5,« ) 3. Then, as k —1,

Z{,B,x(Tf)

The convergence is uniform in 7 for a compact subset
of C.

.,fn) uniformly in 6,

"Zf,s('rf) uniformly in 8,

Proposition 3. 3: Let m% be sufficiently large (depend-
ing on A), Then

UmX% ,=Z%>0.

k=1
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The proofs of Propositions 3.2 and 3.3 are delayed to
the next section. Using the above results, we now prove
Theorem 2. 1.

Proof of Theorem 2,1: We first note that Lemma 3. 1,
Proposition 3. 2 (b)—(c), and a 3¢ argument yield

2573 25, 2%, = 2500,

u. un 3. 7
Si\(' n(fi’---,fn) SX’ (fly -~:fn)' ( )
If we prove that

ZX¥>0 3.8)

for all m}>0, Theorem 2.1 follows from Proposition
3.2 (a), (3.7), and (3. 8).

We now prove (3. 8) by using Proposition 3, 3, the
method of the mass shift transformation, and the
Jensen’s inequality, Identifying ¢,(n)=q, and following
Guerra, Rosen, and Simon. % One may write

zZ},=const [ Tl dg,exp[~ 2g- AX-q -2V} ()],
(3. 9)

where the constant is the normalization factor for free
measure, }, A'ﬁ(q ) is the polynomial obtained by re-
placing ¢; () with g, in the definition of V’,f'ﬁ, and AY

is the matrix corresponding to the (- A7 +m0) For de-
talls we refer to Ref, 13, Sec. IX. Let Z3, s (m2),

VE s(ml), and ()5} o denote the partition function, the
mteractmg action, and the Gaussian expectation with
respect to the mass m} respectively. With this notation
one may write

Z)/E,s('”) <exp(— V)xi,a(m )>1(\J,(g,m

From Proposition 3 3 it follows that Z¥(m?) > 0 for
sufficiently large m®, Also the expression (3. 9) yields

ZE o(m® = b?) = (exp[— V,o(m? = b')+ 30720212 (x ) D 15, m?
x{(exp[30% b5 m2 (xa) D hroy m2t ™ (3.10)

for m*>b® and X=D,N,P, where : :,2 means the Wick
ordering corresponding to the mass m. The above is
the “mass shift transformation.” It is not hard to check
that

(exp[30%:0%:,2 (xa) D&%, m2 = exp(=d|A]), (3.11)

where d is a constant independent of A, 6. We denote
C’,f,m(z) by the covariance corresponding to the mass
and

X — X
8CK m,mi=C

Ay m} Cff' m3*
Using the formula for the change of the Wick ordering
(see also Ref, 2, Lemma 3.7) one may check that there

is a constant c¥(A, 5) such that
VX 5(m? = %)

= Vi (mP)+6 mé\ﬁ [6CX, 2, m2-p2 (15, n8) |23z,

+c*(A, 8), {3.12)

where |c¥(A, 8)! < const(A) uniformly in 6. The proof of
(3.12) is elementary. We only remark that two diver-
gent scalar terms appear during the change of interact-
ing action from Vi , (m® - b?) to VX ¢(m?®) coming from
the mass and vacuum renormalization counter terms.
These are cancelled out explicitly and leave a regular
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scalar term, We denote the second term in the right-
hand side of (3.12) by :$2: 2(6C%). From Theorem 4.1
in the next section it follows that

|< ¢’5 :m2(6C3)] exp[- A 5 777 ])A,f,, 2| < const(A)
{3.13)

uniformly in 8. The above uniform bound is a conse-
quence of smoothness of 6C% (x5, 25) and Theorem 4. 1.
We do not produce the explicit proof of (3. 13) and leave
it to the reader. We remark that 5C% (15, n5) is a con-
stant bounded uniformly in 5, Let m?> b% and let m*? be
sufficiently large so that Z%(m?) > 0. Then the relation
(3.10)—(3.12) and Jensen’s inequality yield

Z3, s m* = b)) ZE s (m*)]
= exp[- const(A)Kexp[~ VY, 5 (m?) + zb* 22,2 (xa)
+ 192 ,2(6CT) DA,G, 2[Z% ¢ (m 3
= exp|- const(A)] eXp{<(ab2 Bpim2(Xa) + 10F:,2(6C7))
xexp[— V3 5(m?) X’fg'mz[ZA'b mHL (3.14)

Since ZX(m?)> 0 and since Z% s~ Z as 6—0, it follows
that there exist a constant ¢(A) > 0 such that

e(A)>0

for sufficiently small 6. We use the above result and
(3. 13) {and the analogous result for :¢>§:m2 (xa)] to bound
(3. 14) from below by exp[- const(A)]. Hence we have

zX smh =

Z% 5(m? - %) > exp[- const(A)|Z5 ((m?).

By taking the limit as 6 — 0 and using the fact that
Z¥ ,(m% >0, we have completed the proof of (3.8) and
so Theorem 2. 1. n

As explained briefly in the Introduction, the proof of
Proposition 3.2-—3. 3 is based on the inductive expan-
sion developed by Glimm and Jaffe, " and modified by
Feldman. ® To control the expansion, one needs basic
estimates, The rest of this section is devoted to estab-
lish a technical lemma, which summarizes these basic
estimates. We begin by introducing more notation.

For fe L”(A) we write

Folk)=(@m)3/26% 25 fud)exp(-ik-nd), ke TE.
< Ag
(3.15)

The above is a discrete version of the Fourier trans-
formation, During the inductive expansion we will
divide the box A into the union of cubes. ” To prevent
double counts of the lattice points on the boundary of
cubes, we consider half open cubes of the form

a={xlxer, xPe(a®, b)), |aP-bP| =4, i=1,2,3}

In the rest of this paper we use the following convention:
The centey of a cube A refers to the neavest laltice side
nb € A from the geometvic centev of A. If there are
several nearest lattice points, we pick up one of them
as the center of A, This definition is identical to the
usual definition when 6=0. As in Refs, 1, 2 we also
write

p@? =k +md, k)
g (e D) =522 - cos(5k')]+m3, i=1,2,3,
5 _ (5.1-3/283 .
Xa,6(R)=(2m)/%5 nGZE;A exp(— ik - nd),

2_ (k(i))2 + ,,n(z)’

{3.16)
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3
Faul)=TT[JA["3ps () +1],
t=1

where | A| is the volume of A, Finally we introduce a
discrete version of derivatives with respect to k € T¢
variables:

@ @
ym*),

(DX)™= n @5y =, m

(DR E) =/ 2m)[ FED +7/1, P D)
_f(k(t) -7 Zl,k(2),k(3))]’
DYV )R) = Ay/mfRD +a/211, D, kD)
_f(k(i) - 77/2l1, k(2)’ k(3))].

3.17)

D%? and DF® are defined in a similar manner. The
following is the result corresponding to Ref. 1, Lemmas
2.1-2.3.

Lemma 3.4: Assume ke Ty, X=D,N, P,
(a) For each B € R®, pug(k) — u(k) as 6§ ~0.
(b) ps(e)? < (n/2)n (k).

(¢) For fe S(A), |f(R)| < const(f)p (k)™
@) 1D psR)? | <O (R)?'m!,

(e) We assume that | Al <1 and the center of A is
at the origin:

| DD"Ra,6(R)| < O@)] a| 1" m3F, 4(k).

(f) Let k¥ be the momentum cutoff function defined in
3. 1)—(3.3):

[ (D™ (ks)| < O(1) min{(aP)"'"'|i =1, 2, 3}x,,

where ¥, is the characteristic function of the support of

(k).

Pyroof: (a) Obvious.
ing inequality®:

(b) This follows from the follow-

=2y (3.18)

(c) From the definitions in (2. 2) and (3. 15) it follows
that

29?22 1~-cosy> 2r%y? if ye[~n, 7.

2 fn's)|.

In’=nl=i

lus®fs )| <O()s 25 |6f(no) -
mE Ag

We use the method employed in proving Lemma 2, 2 in

Ref, 1 to bound the above by const(f), where const(f)

depends on the volume of the support of f. The lemma

follows from the part (b).

(d)— (e) The proof follows by replacing D™ in the proof
of Lemma 2.3, Ref, 1, by (D)™ in (3.17) and adapting
a method similar to that of Ref, 1,

(f) This follows from a straightforward computation
and (3.18). We leave the detailed proof to the reader. »

IV. CONVERGENCE OF THE INDUCTIVE
EXPANSION

In this section we prove Proposition 3. 2 and Proposi-
tion 3. 3 and thus complete the proof of Theorem 2.1,
The proof is based on the method of inductive expansion
developed by Glimm and Jaffe’ and modified by Feld-
man, 8 We organize the proof close to that of Refs, 7 , 8.
We already have used the method successfully to estab-
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lish the convergence of the lattice approximation of the
Ao} field model with F and P boundary conditions, 2
The difficulty for X =D, N is that we do not have the
translation invariance of the free Gaussian measure
du®¥, Hence it is much more complicated to isolate
the localization factors for X=D, N than for X=F, P.
We must introduce a modification to the method of
Glimm and Jaffe’ so that we can overcome this
difficulty.

As in Refs, 7, 8 the notation G may refer, depending
on context, to the topological graph G, the function
G(g) on §'(A), or the kernel G(k;). Following Ref, 8, we
introduce a norm of the graph G: For y>2a>0

1611, e =supsup| PACM7|G®| | 4.s..
PEC

Here ¢, C, M7 and | - | are “operators” that modify
the graph G and its kernel. See Ref. 8 for detailed
discussion. In our case the notation may differ slightly
from that of Ref. 8. Let C} ; be the operator defined by
its kernel in (2.1) and let Cj, ; be the corresponding
operator for F boundary condition. We then have tha
for 5= 0

tl3

0<Ci,s<cClLs 4.1)

where the constant ¢ is independent of A, 5 for [A] =1
The above result has been proved in Ref, 13 for two-
dimensional space—time and §=0. The same method
yields (4.1). It then follows that

” ¢(X)(f) ” 1,70 :K” (Cf\{)l ﬂqf ” 2

<K' (€D F =11,
”d’;X)(f) ” Lne =K” (Ci ) EF “ 12
<K' (€5, | 2= | £l e

Notice that | f1, and | f51, are finite for fe C*(A),
the method used in Ref, 7 it also follows that

(
Hg¢“M)

From

<nl T
1.-/.oz<}z f=1’f{l” @.2)

H 1 60 (7,)
i=1

1 &

For the detailed derivation we refer to Ref. 7.

Proposition 3. 2 and Proposition 3. 3 will follow as
corollaries of the following results:

Theovem 4,1: Assume G is a graph having N external
legs. Then there is a constant K;(3, 0, u, y, @) indepen-
dent of A, 8, and x such that

KG exp(= VA5, 55| < NGy, aexplicy| A ])
for X=D, N, P.

Theovem 4.2: Let ||Glly,,, o <= for some 0 <y <4y,.
Then, as k —~1,
(x) x)

11m(Gexp(— Ao aa=[GlR

exists for all §= 0, The convergence is uniform with
respect to 6.

We postpone the proofs of Theorem 4.1 and Theorem
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4,2, We now prove Proposition 3, 2 and Proposition
3.3.

Proof of Proposition 3.2: (a) and (b). This follows
from Theorem 4.1, Theorem 4,2, and (4. 2) by setting
G=1I1{.1 ¢5(fy) (and G=1).

(c) This follows from the method which we will use to
prove Theorems 4.1—4. 2 and the method used in Ref.
8. Feldman® has shown a result similar to that of
Proposition 3. 2 (¢) with 5=0 and X =F by modifying
the method used in proving Theorems 2—3 of Ref. 8.
analogous procedure gives us the proof.

Proof of Proposition 3,3: This follows from Theorem
4.1—4, 2 together with the method used in proving
Theorem 3.5 of Ref. 2, Intuitively, one expects that
Z¥—~1as m}—«, since CX(x,y)—~ 0 as m} —~ <,

This proves the proposition.

Corollary 4. 3: Let S (fi,...,f,) be the momentum
cutoff Schwinger function, Then the limit

lir?sf\(,x(fl; o )fn):SK(fii v ,fn)
exists for f;e §(A), X=D,N, P,

Proof: We set 5=0 and G=I1}.; ¢(f) (and G=1). Then
the corollary follows from (4. 2), Theorem 4, 2, and the
fact that Z¥> 0 [Theorem 2.1 (b)]. .

Before proving Theorems 4.1—4. 2, we describe
briefly the structure of the proof which is parallel to
that in Refs. 7, 8. Roughly speaking, the authors of
the cited papers have proved the result corresponding to
Theorem 4. 1 and Theorem 4. 2 for (Gexp(- V§, )" by
expanding it by a so-called “inductive construction, ”’
Each inductive step consists of three main steps: (@) a
high momentum (P—C) expansion, (b) a low momentum
(Wick) expansion, (c) combinatoric estimates. Then the
problem was reduced to estimates of the elementary in-
tegrals labeled by Feynman graphs, The combinatoric
estimates have been used to bound the number of the
terms in a sum of Feynman graphs, After isolating
localization factors the kernels of graphs in each term
have been bounded by majorizing functions. For the
details we refer to Refs, 7, 8, As in Refs 1, 2 we will
replace (G exp(- VL, )" by (G exp(- V3 ¢, X’,‘é and will
perform exactly the same inductive expansion as in
Refs. 7, 8. We will also assign combinatoric factors
similar to those of Ref, 7 for combinatoric estimates.
We will have to introduce a modification to Ref. 7 (and
Refs. 1, 2) to isolate localization factors because of
lack of translation invariance for X =D, N. The rest of
the proof will be similar to that in Refs, 1, 2, 7, 8.

We need more notations and some observations. We
define

CX . co(m,n8) = (Bg,  (118) s, (r(20)) X2

= 20 fEmofE (nﬁ)uao«,x';k), 4.3)
kergf

ug ke, k'3 R) = pg (R) 2k (Rg)ic’ (Rg).
It is easy to check that
ci,n,k’(WLG, né)

L E uﬁlc k'; k) exp[~ ik - [m - n)8],
=
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C3, v, wr(md,nb)

4. 4)

-1 20 uglk, k' k) léll{ex [k B m ~ n'9)5)
AIA|kC7\xu6KK =2 p
texexp[— kP m P +n Vs +1)1},

X=D,N, ex=1, ep=-1.

We write, for fe L™(A),
FX(kyy . k)= |AI™%06% T fmd) T fE@S). (4.5
ey k) =[A50 0 f0) 11, £ 00). (4.9)

For X =P it follows from (3. 15) and (4. 5) that
TR sy o) = @m 2 Fylleg oo H ).

We next consider the momentum cutoff function & (k)
more closely. Following Feldman, ¢ we define X, «, and
U—the maximum lower cutoff, the minimum upper cut-
off, and the maximum upper cutoff of a group of legs—
by

r=max{2, o}, u=min{B"}, U= max{B,‘“}
iyl i1
where ng o (k1) =1k /i) = n(k{})/o;?) is the
momentum cutoff function in the ith space—time direc-
tion for the leg I. Because of the lattice cutoff we may
assume that

89 < 27/5 for all 4 and [.

(4. 6)

4.7
Let
Suppng, o (ki N [~ 1/8,1/8] == B}, - a1V [0}, B2

We denote g, #5, and U; as the 6-dependent maximum
lower cutoff, minimum upper cutoff, and maximum
upper cutoff of a group of legs obtained by replacing
a8 by oy}, B!}, respectively, in (4.6). From

(3. 18) and the definition of %, in (3. 2) it follows that

sl <0Q), |u/us|t <0Q), |U/Us|* <0).
4. 8)
Finally, from (4. 3) it also follows that

[ (CX, o) (15, 18) | < O()U. 4.9)

We are ready to prove Theorem 4.1 and Theorem 4. 2,
As we stated before, we will only give a sketch of the
proof and leave the details to the reader.

Sketch of Proof of Theorem 4.1: We only consider the
proof of the theorem for the r¢4 field model (i.e., the
case of 0 =u =0). Since the term od? + ¢ does not
introduce any divergent counter terms, we only need to
change certain combinatoric factors slightly in the
following proof to account for this additional term. This
can be done easily, See also the argument given in
Ref, 11. We follow the same steps as in the proof of
Theorem 3,1, Ref, 1,

Step 1: The inductive expansion: As a consequence of
(4. 8) and (4. 9) one may employ the expansion of Glimm
and Jaffe” and Feldman® to obtain .

(6" exp(= Vi) ] <15 @), @.10)

where I*(G) is the elementary integrals labeled by the
Feynman graph G. We remark that in dealing with Wick

vertices we have used a polynomial in the fields similar
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to that in Sec, 3.2 of Ref. 7. This can be justified as a
consequence of (4.9). We note that I*(G)’s can be ob-
tained “essentially” from those of Refs. 7, 8 by
replacing

/dsk <(|2TTT)IS>A§T§’ ’ (IWTZI) kezr;g'N

p eyt by | Pe®

(gxa) (kg + v +R,) Dy v v o)

om? ome, .

ks (®) Kk s(ks) (4.11)

The estimate leading to Theorem 4.1 is completed by
first using the method of combinatoric factors to bound
the number of terms in the sum of graph G and then
bounding the size of each term,

Step 2: The combinatoric factovs: The combinatoric
bounds given in Ref. 8, Lemma 4,1, apply equally well
to our case. This follows as a consequence of (4, 8).
See also the argument given in Step 2 of the Proof of
Theorem 3.1 of Ref. 2. Using the combinatoric esti-
mates, we have that

| 2 76| = supe(6)|[F )], (4.12)
G

where ¢(G) is the combinatoric coefficient given

above, 8

Step 3: Localization factors: This step is one of the
most complicated parts of the proof, As explained be-
fore we need a modification to the method used in Refs,
1, 2, 7, 8 to deal with D, N boundary conditions. Since
we do not have translation invariance of du¥ ;,
X=D,N, we cannot translate each cube in I"(G) by a
simple method. See Ref. 7, Sec. 5.2. To demon-
strate our method for isolation of the distance factors
from I*(G), we first consider the simplest graph given
by

75w @ =17 T AGHEFE 0, 3 8)
6
=88 2 C¥, nd,n's), (4.13)
moC ar

where A and A’ are the cubes centered at p5 and
p'6,p,b’ € Z3, respectively. Let A, and A} be the cubes
obtained by translating A and A’ to the origin. We write

3
Xalk)= X ®™),
i=1

4.14)
’i’i\i)(k(i)

)=3 (Zi)) exp(- ikn'Ps),
mE A
We then have the following result:

Lemma 4. 4: Let I}, .. be given by (4,13). For
X=D,N,P and y=0,2,4,---,

[1(p8=p"8)| %% ()]

1 3 r/2
< 1 y‘ ( X, 4 ) ’.
O(l)mjx {(Z)XIAI C—ITg( p (D) us(x, k' k)
X;(’Ao(i k)i%&’ﬂ\}:
361 J. Math. Phys., Vol. 18, No. 3, March 1977

where X, (&) =15, ¥ (- 1)k D) for n= (ny, ny,ng)
€Z% In;l <1, and (1/2)p=1 and (1/2), y=1/2.

Remark 4.1: One may easily check that the expres-
sion in the lemma is bounded by O(1) as a consequence
of Lemma 3.4. Hence, the above result implies the
uniform polynomial decay of the lattice and momentum
cutoff covariance,

Pyoof: We first consider the lemma for X=P and
v=2, Translating A and A’ to the origin, we get

I _em? 20w, k' E)X s (B)F ar (— B)
N v TF 6V K3 R)X A R )X ag
xexp[— ik« (p-p*)0]. (4.15)

For lx*p<1,/2 and |x®1p,y <I; we define

[x )% = 3n%(,/2m)M2 - 2 cos[(2n/1)x DT},

|x 013, 0= 51 0 /mH2 - 2cos[ /L, VY, (4-16)

3

From (3. 18) it follows that

x93 < |x]%,, X=D,N,P, @.17)

if [x®1p<1;/2 and x|y, y <7, We also note that

exp(ik'n'6) = zn* (DY ) exp(ik V'),

i=1,2,3. (4.18)

We now use (4.15), (4.17), and (4. 18) and the discrete
version of the integration by parts to obtain the lemma
for X=P and y=2. Here we also used the periodicity
of ug(x,x’; k) (period 27/6). The lemma for general y
follows from a method similar to that for y=2. This
proves the lemma for X =P,

|78 %s

We next establish the lemma for X =D and y=2. We
substitute (4.4) into (4. 13). We then translate A and
A’ to the origin to obtain

E ug(ie, k' ) 66{ 27 fsl

n6C Ag f=1

n'6 S A
Xé{exp[— ik(”(n(” _ n,(i))5 +zk‘”(p(” - prH5)
ik‘”(n(") +n’“’)6 +ik(1)(p(i)5 +p’(”5 +l‘)]}'
(4.19)

Let A be the set of all subsets of {1, 2,3}. By expanding
the above we have

Ru=2 (il){ )3(12/1()| z, u5(K K': k)
ac A k—

D
I A=

fAl e

- exp[—

x[ (i)(k(i))~(i)(+k({) (z TR (pW _ prting

ica

+ 2 k(x)(p(1)6+pl(l)5+l ))]}

ica

EEIEA,

ac4A

(4. 20)

where 4 is the complement of ac A and (+) and (~) signs
depend on a. An elementary calculation yields
Ix(n_yml < lx(”+ym+l{] for ‘x(nl’ lym! gli/z_

(4.21)
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We consider each term in (4. 20) separately. From
(4.17) and (4. 21) it follows that

|[p6-p76|2mR.| < (? (6D -p 53,4
iCa

+ 2 |[(p+p )8 %,5)12:‘2'
iSa

(4.22)

We now use (4. 18) and the argument below (4.18) to
bound the above by

3
(Z (DX u

i=1

0(1) (31— iy

N

G(K’ Kl;k)

3
x RO EOR, (ik‘”>>‘ . 4. 23)

Since the above bound holds for each a< A and since
there are 23 terms in (4. 20), we proved the lemma for
X=Dand y=2, The lemma for the other cases follows
from a straightforward modification of the method used
above. This completes the proof of the lemma. n

We now generalize the method used above to isolate
the distance factors from more general graphs in (4, 12).
We begin by introducing more notation, We define

Z':F {(7’l1, LICIE )
Z¥=2zm xzm x2m

nm)ln,:O, 1, 1<j<m},
4. 24)

)y @
’

For given ac Z¥ [a= (a a®)] we define an opera-

tor P, by

,a

(PXa) Ry 4 th,)= n (P )X ) g+ + Ry,

(P X&) (ef" + -+
=XP(-1)

=y, ... 0, €25,

+R)

M 4t (= 1) mE D) (4. 25)

a(i)

We extend the above definition to the function F, ,(k)
defined in (3. 16):

3
(PoFp, o)yt e o) = T1 (Pah R (RID + - +p0),

(4. 26)

Here we have written F, ,=1IT}; Fi'}. Eventually, we
will assign the operator P, to the kernel of each vertex
in a given Feynman graph G. Let w(k;) be the kernel
of the graph G consisting of the kernels {w;(k,, ;)
li=1,...,q} of the vertices in G, One may write

q
w(k,)zil—ﬂw,(k,'i).

Let M be the total number of legs in G. We assign an
operator P,, ac Z3{, to the kernel w(k,) in the following
manner;

Pk, )—‘ (P, w{)(kl )

where (P, w,)(k, ;) is obtained from w,(k,,;) by replacing
Lalkyt+e- -+k ) in w,(k, 1) by (P, XA)(kl ;). Hence, for
given P, ac Z<1, a;’s are defmed implicitly and vise
versa. We are now ready to control localization factors,
Following Glimm and Jaffe, " we first divide cubes in
G”,P,C, W-vertices such that the conditions in Ref. 7,
Sec. 5.2, are satisfied. We then obtain
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*(G)=21%(G,), 4. 27)
a

where G, is the graph corresponding to that of Refs. 7,

8. Hence, one may write

M
=/[A])" L wie), (4. 28)
1S T;(
where M is the total number of 2’s in the summation,
Let df be the scaled distance analogous to that defined
in Ref. 7. We prove the main result in this step.

Proposition 4.5: For X=D, N, P we have
(G o)< mla,(@)n]\ max{Z (G},
a's

lines 1
connect to

P, C, W (or G" ) vertices
Lo 1 \"
P:(G) ((Z)X lA l)

(%)p: 1;
where, with exception of the kernels of the mass renor-
malization cancellation diagrams, the kernel P_,z-v(k) is
obtained from the corresponding majorizing kernel
w(k) of Ref. 1, (3.15), by replacing each function
Fg alky+e++k,)in z?(k) of Ref. 1 by (P,.F,,s)(ky
4+ +k,), where a’ € Z¥ is implicitly defined by a
given ac z%%, The kernels for the mass renormaliza-~
tion graphs are given by (4. 34) in the following proof.

2 Pw(k

eC TX

1
(E)D, N = 5,

Remark 4,2: For X =P there is only one term on the
right-hand side of the proposition, namely, the term
corresponding to P, =1 (see Ref, 2). One may expect
that the term I} (G) for P,=1 is dominating the others
corresponding to the case of P,#1, We will exploit
this observation in the Appendix,

Proof: The complete proof of the proposition is very
complicated mainly because of notational complication.
In principle, the proposition will follow from the method
used in proving Lemma 4, 4 together with Lemma 3. 4,
For X =P the result follows as in the proof of Lemma
4.4 (see also the step 3 of Ref, 2, Theorem 3.1), We
give the proof for X=D, A similar method gives us the
proof for X=N.

Let us assume that the graph G, does not contain W
vertices and mass renormalization diagrams. We write
*(G,) in the lattice space expression (i.e., in the con-
figuration space). For instance, see (4.13). We then
have

PG)=08 2 n
NG Af lines 1
i=1, 000 M’

(CR,K,K')(ﬁIG’ ;ifé)’

connecting
betwaeen vertices

(4. 29)

n#il, w6, A€ {ndli=1,..., M,
whereq each ;6 4; for some 4,

each #,0c A; for some A,

In the above expression each C3,,, .(;5,7%;5) represents
a line / connecting two lattice points localized in two
cubes, say, 4A; and 4&; (A;#4,), and M’ is the number
of vertices in the graph G,. We now follow the proce-
dure used in the proof of Lemma 4.4, We first substi-
tute (4. 4) into (4. 29) and then translate each cube

Ay, i=1,...,M’, to the origin, One then has
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PGy)=0" 2 NI (E ug Kk, k'R 1)

n;ﬁCA 0 lines I kIETg
’ 1'

3 ~
X7 [ slexpl= kPG - ap )0

+ (p§ - p1M0]} - expl- kPG

+ )5+ (o8 +pi 8 +li)]})) ; (4.30)
where 4;,, is the cube of volume | A;| centered at the
origin, and p,6 and p}6 are the centers of the cubes
connected by the line /. We expand (4. 30); we then have
23¥; terms, where M, is the total number of the lines in
G,. Each term has a multiplication factor (1/2)*¥:. By
changing the order of summations in (4. 30) we may
write

1"(00,)_C [e1)|a|-¥o-em 35 n

LTI Té) vertices

(4.31)

where

(1of B 100)

3
:( T wg(x, K'§kz)) I [{ In (7 ~(‘))(}31(,i1)""'“"kr(n'.)l)}
lines i=1 vertices

x Tl explik(pit - p;#))6] if n?=0 ]
1ines 1 | €Xpik[Y (pi5+p; V6 +1;)] 1fn(l)_1 .

Here {ky, 1y ..., Ry 1t Cik 11=1, M,} and n; is a com-
ponent of ae Z“’t Notice that each component of line !
has a factor either exp[ik{®’(pi*’ - p}%")8] or else
explik{P(p#6 + p36 +1,)] depending on a € Z¥1, We now
employ the method in the proof of Lemma 4, 4 to pull

out the distance factor from the above exponential func-
tions. See the step used in (4. 20)— (4. 23). The proposi-
tion follows from Lemma 3. 2 and the method used in
Ref. 1.

For a graph G, containing W vertices, we follow a
similar procedure. We need to be careful to handle W
vertices. The kernel of an individual W vertex has the
form [(6. 2, 2)— (6. 2. 4) of Ref. 7]

wlky, ..., k)= (15" '“1.6)-1vﬁ(k1)'-°’k1)5
m ~D
velky,..., k) =c b I LL(%)
scy i=t Xa(0)

(1yeauyml=dy

sRin(ky) (4.32)

where 7n is the product of momentum cutoff functions.
See Ref, 7 for the detailed discussion, We follow a
procedure similar to that used before, In the procedure
we consider (4. 32) as the kernel of one W vertex. That
is, in the final step in Which (4.31) was derived, the

X i’g(kmﬂ,-. .

sign of each k¥, j=1,...,l, i=1,2,3, is the same in
each term in (4. 32):
_ T XA('— l)niki n
(Pvg) ey, ... k) =c 24 FI Xa(= 1)k,
ncr =t Xa(0)

Tt (- l)nlkl),

Long), ny=m,n®,

(4.33)

where a=(ny, .. 7{3). This allows
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(Pua} )(kl)])

us to exhibit the low momentum cancellation explicitly
as in Ref. 7. The rest follows as in Ref. 7.

Finally, we consider the mass renormalization can-
cellation diagrams. The majorizing function for a given
diagram is very complicated because of our lack of the
translation invariance of covariances for X =D, N, We
will derive it carefully. The diagram under considera-
tion corresponds to the following expression in the
lattice space:

ms 4 m’s mé 4 4

{ )\ 67}’15““1 2 OA,A'_ 2)\242 6

néz A
med

A,kj,K'j(nay TL' 5))}

X Cﬁ,x‘l,na(mby nG)CR,ns, n'5(n,6’ mlé)’

<% (e

MeE A’
4. 34)

where k =TT3_x; and k' =11 k}. We use (4. 4) for

Ch k. k> j=4,5, in the above expression. We do not
decoinﬁ)'ose Cﬁ,,‘ o for j=1,2,3. We follow the proce-
dure used before, After isolating localization factors,
the majorizing function of the kernel of the mass re-
normalization cancellation diagram has the form

D'K,k4D'1'\': kg [(”4. o g 0K 5 (R, 6)K s (B5, 5))

NELOmE o Bn, a0 — 4206

3
x( T\, (2 + )5, (2 +p')6)) }

3 3
X ( I exp(:t iki”n‘”é))( I eXp(i ik;”n'(”) )] "
i i=1

(4.35)

where X =D, p6 and p’5 are the centers of A and A’
respectively and the (x) signs in the exponential func-
tions are determined by a given a € Z%: in the proposi-
tion, The detailed derivation of (4, 34) is left to the
reader, This completes the proof of the proposition,

Step 4: Estimates of I¥(G)’s: We assert that, for each
ac Z%1 and X=P, D, N, IX(G) is bounded above by a
product of factors given by those of Ref, 1, Step 4 in the
proof of Theorem 3, 2 of Ref, 2 (equivalently those of
Lemma 5,1, Ref. 8). The theorem now follows from
Proposition 4. 5, the above assertion, and the method
in the proof of Theorem 3, Ref. 8.

We prove our assertion, We use the method of de-
composmg big graphs into small graphs to estimate

(G) for each a cZ 41 and X =D, N, P, We adapt the
decomposmon process of Refs. 1, 7,8. As in Refs. 1,
7, 8, it is sufficient to establish the bounds correspond-
ing to Ref. 1, Propositions A.1, 1—5 for small graphs
[for each ac Z 41 and X(=D, N, P)]. The estimates of
the small graphs corresponding to those of Ref, 1 are
given in the Appendix. See Propositions A, 1—2 in the
Appendix. This proves our assertion and completes the
proof of the theorem,

Proof of Theorem 4. 2: We employ the method used in
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the proof of Theorem 3 of Ref. 8 (also Theorem 3.4

of Ref. 1) together with Theorem 4.1 and the method of
its proof, The proof then follows as in Refs., 8. We
leave again the detailed proof to the reader,

APPENDIX: ESTIMATES OF SMALL GRAPHS AND
THE MASS RENORMALIZATION CANCELLATIONS

In this appendix we establish the basic estimate for
small graphs including the mass renormalization can-
cellations and obtain the same upper bounds as those of
Propositions A.1—A.5 of Ref. 1 (equivalently Proposi-
tions 5. 3.3—5.3.6 of Ref. 7 and Theorem 6 of Ref. 8).
We will only sketch the proof. For the detailed struc-
ture of the proofs we refer the reader to Refs, 1, 7, 8.
We begin by proving the following:

Proposition A.1:

For each ac Z%1 and X (=D, N, P), the bounds of the
small graphs corresponding to Proposition A, 1.1 and
Propositions A.1.3—A.1.5 of Ref. 1 hold in our cases.

Proof: We will reduce the problem to that of Ref. 1.
From Proposition 4.5 it follows that if one replaces

J’xlﬁ e ( )3 (27?) Z

1/6 by BECTAT rETY (A1)

FG,A(k1+.°'+km) (PaFA,G)(k1+°'° +km)

in the expressions for small graphs in Ref. 1, one ob-
tains the corresponding expressions in our cases. To
give the general structure of the proof, we prove the
proposition corresponding to Proposition A.1,1 (a) of
Ref. 1. The majorizing kernel of the graph

(X) __ 4
A =

is given by
'Uf(k“ ceey k4)
4
=|a| (yugtey) " uS (P F g )y + oo e +]‘34)}—1l Xeg,g*

See Proposition 4.5 and Sec. 6.2 of Ref. 7 for the de-
tails. Hence,

A llg, = 1AL ATNILE < AP ATIY,

on(fE), ]

3
5500, | = (3 (B2

(A2)

|vx(k2’ kS; k47 k ) l

) k,crx

i=273y
X lvf(kb k37 ktl: ks) I .

Since u(k) and «g(k) [and also u4(k) and k4 (k)] are even
functions of 2, we can set P,=1 in the estimate of (A2)
forallac ZG” !, We also note that since

(R |+ 1)/ (16 21/1,| + DI < 0q), (a3)
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we can replace

(2,” > 2 /‘ r/6 3
b da’k
&% ([Al ke T y /6

to get the upper bound of (A2). Hence, [IAS7]l,,, in (A2)
is bounded by that of Ref. 1 for free boundary condition
[(A.3.5)—(A.3.7) of Ref. 1]. Asin Ref. 1, [A*|l;, is
bounded by

1)]a]¢ (logv(@N!/? for ¢’ >0.

(A4)

This proves the proposition for the graph under
consideration.

To prove the proposition for the remaining cases, we
only need to combine the method used above together
with that used in Ref. 1, In the most cases, the estima-
tions are reduced to estimates of operator norms of the
majorizing kernel of a single vertex {or Hilbert—
Schmidt norm of the kernel). During a certain stage of
the estimation we can set P, =1 and use the replacement
in (5. 4) by the same reasoning as before. One may
check explicitly that for a given graph the upper bound
for P #1 is bounded by that for P,=1. Then the prob-
lems are reduced to those for free boundary condition
in Ref. 1., The proof follows as in Ref. 1. m

We tinally consider the cancellation of the mass re-
normalization. We state the result.

Proposition A.2: (The mass renormalization cancel-
lation): Let w} (%, k) be the kernel of the mass renor-
malization cancellation diagrams given in (4, 34). Then
the result corresponding to that of Proposition A. 1,2
of Ref. 1 holds for all ac 2% and X:

w3l <o) (Jal |aryarea™

for some ¢ > 0. Here d is the scaled distance from A to
A7,

Proof: We will reduce the problem to that of free
boundary condition treated in Ref. 1. Then the result
will follow as in Ref. 1. We introduce

omSE) 0 (mD)=4266° 25 H[CA,K’Ki(mé nd)]. (A5)

HGCA i=1

The above is the coefficient of the mass renormalization
counterterm appropriate to X boundary condition. We
will prove the proposition for X =D. The proposition for
X =P, N follows from a straightforward modification of
the method for X =D. We first show the result in the

proposition for the diagram
1425 2
5 A6 m @’D
4 4

That is, we prove
2 [[amﬁ,k,# = 5miD), 4, e ((m +p)0)]
c

() .2
\ Al k4,k56T?mﬁfA

5
XD7F e D’K',as(ﬂ ua(kz)'z'(s(ki,e)>

3
r exp[d:z(k ”ﬂ:k(”)mb]] <o), (A6)

where 4, is a cube of volume 14| <1 centered at the
origin. We substitute (4.4) into (A5) to obtain
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1
Gmf\],),",,a(mé)z (m) E U(ki’kZ:kB)
& CT
1=1,2,3
X IO G, B0, KOme), (A7)
where
3
v(ky, kg, B3) :(H “6(ki)'zf<s.i(kf'ﬁ)’(g"(k"s))’
N (A8)

I(i)_63 E
nli)e
nﬁCA6

[ 1 {exp(_ lk“) (l)6) exp(zk(i) (1)6 +ll;)}
i=1

x explik{Pn't ’6)]

3
=42.6- (%)95,?{4)%2(:)“;;),0[( ‘lil‘ [1 - exp(ik{ ’l,)])

+<i‘/ exp(ikiPly) ) {expli(e(?’ +£§)1;] + cyclic}
i

+{expl- i(EH + 2 )m D5 + iR (m D5 +1;)] + cyclic}
+{explm iSO m D6 + ik 6+ 1) + i m 6 + 1,)]

+ cyclic}
:é 1}£)(k1(i),k2(£),k§i); 1’}’1“)5).

We substitute (A8) into (A7). We then obtain 15 terms

from (AT7). We write
5
oD ege mO) = L emind e (md),  (A9)
§ 11215, 5=t S
i=0iy2 i 3
where dm ™" j=(j,75,74) is the term corresponding

to VIPIY, §,,73,55=1,...,5. The contribution of

sm ™I §#(1,1,1) (the term containing at least one I},
j=2,...,5), to (A6) is very small. In fact, it is bound-
ed by O(1)I;11A1%5x"%d"¢, The main reason is that each
term I, j=2,...,5, contains at least one factor
exp(zk‘”l,), i=1,2,3. We multiply a factor (I;)17;1% 4
20(1) to 5m'®*’ and use the technique employed in pro-
ving Proposition 4.5. In this way one may pull out a
convergence factor from each exp(ik}"’1;). The proof is
easy, and we leave it to the reader. Hence, it is suffi-
cient to consider the contribution coming from &m ‘P,
j=(1,1,1), i.e., the term obtained solely from the
Y i=1,2,3, in (A8). We note that

1\3 23
om By = 42-e(m) nerp ke Oy
((r/li)kj =odd
1,7=1,2,3
2 2 -9 r/o d3k d3 d3k
67)15,,(5.,‘0324 ‘6'(277') ‘/;!/6 1 kz 3

Xv(ky, By, k3)0(ky + Ry + k).

The only difference between §m ' and §m? is that
of the discrete integration (summation) and the contin-
uous integration. It is easy to check that

2 (D), (1,1, 1) -
Gmﬁms.x's - 6WLA S,n ’,x l <O(1 A
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We replace dm‘® by 6m®» 11D in (A6) and use the
above result. Then the bound (A6) follows from Lemma
3.2. This proves (A6).

As a consequence of (A6) and (4. 34), the following
result is sufficient to establish the proposition: The
Hilbert—Schmidt norm of the kernel of the diagram

Wy, a0 (Ry, B5) = @ - ___@_

4 4 4

5 2
. A
= D'x.kAD'x,ksKH i) Ks.i) 2 546
i=4 nbc &y

6 A'(')
{6130, AO ' (

—jﬂ Cix,e w b2 +p)8, (n’+1)')6)}

(1’1 exp(ﬂk‘”né)) (H expl(+ik{n’s )ﬂ‘ (A10)
i=1

is bounded by
<0(1)
H. 8.

2 H CA,,(PK,(mé (74 +p’)6))

CAJ!

(la] |a’|yeea. (A11)

HwA,A'

The proof of the bound in (A11) follows from the meth-
od used in Appendix A.4 of Ref. 1, a method similar to
that in the Step 3 of the proof of Proposition 4.5, and
Lemma 3,4. We do not produce the detailed proof of
(A11); we only give a description of the proof. We first
substitute (4.4) into (A10) and expand it. We then have
29 terms. After the summation over the lattice space
Ag, each term has a form similar to that of (A4.1) of
Ref. 1, In principle one may obtain the expression of
each term in (A10) from that of (A4.1) of Ref. 1 by
replacing

frlb d3k

-r/&

/1)) 2
k€T6

(XagJ3(Ry + Ry + oy + k)
(XA6 Yol= Ry = by = Ry~ ky)

by ) (PoXa )Ry +ky + kg +y)
(Pos Xag)(= ey = kp = kg = ks).

(A12)

when (P s) =Xalt (&y + g+ k)2 ky) and PyuXa:

=Xarlt (o + ks +Rg)x k). Otherwise there is no diver-
gence. We use Lemma 3. 2 and follow a method simi-
lar to that used in Appendix A. 4 of Ref, 1 to bound

each term in (A10). The rest of the proof follows from
a straightforward modification of the method in Ref. 1.
This proves the lemma for X =D, The proof of the
proposition for X =N, P follows in a similar manner.
This completes the proof. .
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Equilibrium properties of fluids in the semiclassical limit
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The problem of calculating the equilibrium properties of dense fluids in the semiclassical limit when the
quantum effects are small is studied. Expressions are given for the pressure, free energy, and the radial
distribution function in terms of the properties and correlation functions of the classical system and s-body
“modified” Mayer functions f3, .. It is shown that the correct radial distribution function of a fluid in the
semiclassical limit is generated from the classical radial distribution function if we replace in turn each f°
bond (f9, = e F*0D_1) by an effective f°7 bond, where fT= fO4(1+ff" +A+fO0+ML

and where [ is subset of the line-irreducible graphs each of which contain one f™ bond. The effective pair
bond correct to the second order in thermal wavelength A (= {27h?8/m} '*?) for a fluid of hard spheres is
calculated for A/d =0.1, and 0.2 at reduced densities p*=0.3 and 0.6. The most striking effect of the
quantum mechanics on the structure of a hard-sphere fluid is found at and near the point of contact of the

hard spheres.

1. INTRODUCTION

In recent years considerable progress has been
made in understanding the structural properties of
classical fluids, made of spherical or nearly spherical
molecules, thanks to the molecular dynamics and
Monte Carlo methods,! and to very ingenious theories
like the scaled particle, * the Percus—Yevick theory,?
the hypernetted chain, * and various perturbation
schemes, *"!! However, when dealing with the fluids in
which deviation takes place at a microscopic level
from classical law, our theoretical understanding is
far from satisfactory, !?

In the semiclassical limit, when quantum effects
are small and can be treated as a correction to the
classical system, the usual way of studying the proper-
ties of fluids is to expand them in powers of Planck’s
constant .!3% The first term of this series is a classi-
cal value and other terms arise due to quantum effects.
In the Wigner —Kirkwood (WK) method, 13:*5 expansion is
done in powers of the kinetic energy operator 7#vZ,
which leads to a series in powers of 72, Since V2
operates on the potential energy term, the WK method
fails in cases where the intermolecular potential is a
nonanalytic function of distance. Such systems are
dealt with by the Hemmer—Jancovici (HJ) method!®:20
in which expansion is done in terms of the Ursell func-
tion and which leads to a series in powers of 7. Re-
cently, in a series of papers, Singh and Ram?®"'2? and
others?* 24 have investigated the effect of quantum
mechanics on the structural and thermodynamic prop-
erties of fluids. Expressions for the first quantum
corrections were derived using the WK method for the
analytic potential case and the HJ method for the non-
analytic potential case. The fluid of hard spheres has
been treated for the thermodynamic properties to the
second quantum correction term by Gibson,. 2" It is
found that the contributions of the higher-order terms
(corrections) increase with the density. At liquid den-
sities, one has to consider several terms of the series
even at sufficiently high temperatures. This suggests
developing a theory or method which should enable us
to sum the series.
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This paper is concerned with the evaluation of the
thermodynamic properties and low-order correlation
functions of dense fluids in the semiclassical limit.

The major emphasis is on the development of a general
method applicable to all types of fluids and with suitable
approximations to all order of the quantum corrections.
We use the grand canonical ensemble and functional
differentiation technique to derive the required results.
These results are given in terms of the properties and
correlation functions of the classical system. Then it
is shown how the different quantum correction terms
for different fluids can be derived from these
expressions.

In Sec. III, we define an effective pair potential
(functions of temperature and density) that will be
found if the properties of a fluid, in which quantum
corrections are present, are interpreted on the assump-
tion that such corrections are abgent. Usually, the
examination of different properties leads to different
effective pair potentials. Here we shall confine our-
selves to that effective pair potential which generates
the correct radial distribution function in the semi-
classical limit,

Expansion of the grand partition function and the s-
body correlation function are developed in Sec. II in
terms of diagrams? (or graphs). A diagram is a collec-
tion of circles (or vertices) and bonds connecting the
vertices. There are two types of circles, white and
black. Each white circle has a label and position
associated with it, but black vertices are unlabeled.
Each bond has associated with it a function of positions.
The value of a diagram is defined in terms of these
functions and an integration over the positions which
can be assigned to each black circle. According to
convention, ®® a factor which is determined by the topo-
logical structure of the diagram is associated with the
value of the diagram, For a detailed discussion of this
aspect of the problem, readers are referred to the
articles by Stell, 2(® and Morita and Hiroike, 26®

The exchange effects, which are introduced by the
Bose—Einstein or Fermi~Dirac statistics, have been

Copyright © 1977 American Institute of Physics 367



neglected in this paper. In the case of dilute gas, it
has been found that the exchange terms decrease
rapidly with increasing temperature and are negligible
in the temperature region we are concerned with, 27
However, for dense fluids the situation is not so clear
and it is possible that the exchange effects do form a
significant part of the total correction at intermediate
temperatures. We propose to examine this effect in a
future publication.

. GENERAL FORMULATION

The grand paritition function and the grand canonical
s-particle density distribution function are defined by

w3 b f - fouli

N
xWy(1,2,...,N) [T @ (1)

i=1

and
1,2,... ==
m,2,. /2 =20 T s),/ fexp [_/7(1)]
N

XWyl1,2,...,N) 1T di, @)

i=s+1
where y(i)=1,2(i) = - 31,x + Bu — Bo(i), the fugacity
z=2"%exp(+ pu) (p is the chemical potential) and

w,(1,2,...,N)= Nlerf|1,2,..., M. 3)

Here ﬁN is the Hamiltonian operator of a system of N
identical particles, each of mass m put in a container of
volume V. Under the assumptions that the total potential
energy of interaction is pairwise additive and that the
molecules are spherically symmetric, one can write

for the Hamiltonian

A%N,2,.

H=2 2 s D o0+ T o6.)), @)
i=1 i=1

1<i<j=<N

where ¢(f) is the potential energy of a particle ¢ situated
at ;',. due to external forces, and ¢(i,5) is the pair poten-
tial energy between particles ¢ and j.

In the semiclassical limit one has
Wy = Wy Wy, )
where W5 is the classical value of Wy and is defined as

W5 = expl- B Lo ¢ (i, j)]. 6)

i<j
In the WK expansion, W} is expressed as

N
240,@) + -, 7
i=1

wi=1+

§|§s

where
2 2
6,(i) = - B—[V% 21 (i, 5) - § (V,- L ¢>(i,j)> ] @)
12 i<i i<i
and in the Hemmer—Jancovici expansion
WR=1+20 UrG,j) + L Upli,j k) ++ -, ©)
i< i<k
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where

Up(l)=wp(l) =1,
UrQ, 2)= wr(1,2)=1,

(10)
Up(1,2,3)=

wy(1,2,3) - w1, 2)

- wp(1,3) ~ W2, 3) +2,

and so on. Here U7(1,2,...,1) is a “modified” Ursell
cluster function of / distinguishable particles. From
(10) it is clear that (i) the product property of Wi's
implies the cluster property of the U}"’s and vice versa,
and (ii) UT" can be found from a solution of the quantum-
mechanical [-body problem. Equation (9) represents the
expansion of W7 in a more general way and reduces to
(7) if the potential function is differentiable.

We find it more convenient to work in the grand
canonical ensemble with what we call the “modified
s-particle Mayer function,” f3, .., being defined so that
it reduces to zero if any one of the particles 1,2,...,s
becomes remote from the others and

N N
W(1,2,---,N)=H (1 +finI) I1 (1 +finIkI ftt. (11)
i<j i< j<k
Comparing (11) with (9) we find that
o) =1,
UZI(I’ 2) f12!
(12)
Ursn(lyz’:;):fll +f1 “ +f113 ZISI
+f lIZI 1.‘3I f 23 112131’
UML,2,..., D= ‘7 ﬂ (Fif i) (13)

where the sum of products is carried out over all con-
nected graphs C of [ labeled points.

The s-particle cluster function which arises in a
natural fashion in the study of a statistical mechanical
system is defined by a functional derivative of In=25(®:

Xs(l,Z,...,S): H exp Ly ()] Tl—m (14)

1=is<s
The other definition of the cluster functions is obtained
from their relationship with the s-particle distribution
function,

ng(1,2,... T Xoliyinyeon,i 2o (15)

(Lapy=s}

,S)z

where the sum of the products is carried out over all
possible divisions of the s-particles with the condition
that ¥ ap,=S. By successive variational differentiation
of X,(1) we find

5X,(1)
8y (D)

8X¢(1,2,...,s)
S éy’l) 2 —Xsd(l,Z,.

=X,(1, 1) +X,(1)6(1 = 1),

v, 53D s)

+Xx(1,2 Eéz—l)
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(19)

Substitution of (11) in (1) and (2), respectively, leads n,=nd+nj,
to where
— = 1 , xoo.
(v, B, Z)Z‘-Z_:/O N‘,‘/ "'f eXp[EY(Z) —,Bi%;d)(l’])] EO(V’ﬁ’Z)zgo %[ .f exp [‘y(i)
INI 11 rNI 111) ﬁ di 1 N
11 + “ee s )
X[m(l ) <<k (+ i ] i=1 ' -8 ¢(i,])] 1 g, (20)
i<q is1
A,2,...,8/2)=E1 % 1
N\iyts000, — Nos (N—S)! El(v,ﬁ,z)=50(v,ﬁ,z)
x & o 1 0 i
x/.../exp[z_,y(z)—ﬁ L¢(1,J)] y 2—'[/n2(1,2)f12 a2+, @1
i=1 i<J .

N N N and

(M e B a0 a 1

i< B(1,2,...,5/0) =5} T = f f exp[i ¥(@)
(18) Nes ( - S)- i=1

— A . N
For future use we break = and », into two parts: 85 ¢(z‘,j)] n g (22)

i<J i=s+l

i

==, +E,
and i n. will be defined later on [see Eq. (28) below].

A. Cluster expansion of =, g and x; at constant fugacity z

The expansion of ¥ at constant z is obtained from (17) in terms of the composite graphs, with f1*, f!! ... bonds
(represented in graphs by lines, shaded triangles,...) and X} polyhedron containing /- 1 lines (represented by a
vertex, dotted line, triangle,...) where XS is a cluster function of ! labeled points of reference system. That is

! 6'1n%
x0,2,...,0=exp[y@)] ——"—0 (23)
! i=1 I s exply (3)]

so that
() =x%1), ng(1,2)=x3(1,2)+X3(1)Xx°(2),

n3(1,2,3)=X5(1, 2, 3) + X3(1, 2)X](3) + X3(1, 3)X}(2) + X3(2, 3)X7(3) + X3 (1) X°(2) X7 (3), (24)

................................

For graphical representation the notation is

k
flizi e, Sl é ,
Z J
and A
2 1 ,,k
th)(l)E'L s Xg(l,])El PR, j’ Xg(l,],k)E 1", \‘-.\v ’ Xg(l,]’k’ )= g :
;¢ A.s}, ; b Jj

Thus,

Z(2)="2(z) {1 +sum of all distinct (topologically) composite graphs with no labeled
vertices, at most one f!’-bond connecting any two vertices and/or one f'’-bond

connecting any three vertices, with X¢ polyhedron (7> 1)]. (25)

Using Lemma 3 of Morita and Hiroike?*™® we get the following prescription from (25) for the graphical expansion of
In=;

In=(z) =1n= (z) + £(2)

where
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£(z) =sum of all distinct connected composite graphs with no labeled vertices, at most
one f''-bond connecting any two vertices and/or one f''! bond connecting any three
vertices, with X9 polyhedron (I=1). 26)
From (14}, {16), and (26), we derive the graphical expansion of X,:

X,,2,...,1/2)=x5(1,2,...,1/2) +|sum of all the distinct connected composite graphs,

composed of [ white vertices labeled 1,2,...,1, respectively, some or no

unlabeled vertices, at most one f™-bond connecting any two vertices and/or

one f''.bond connecting any three vertices, with X% polyhedron (/= 1)]. 27

Using relation (15), we obtain the graphical expansion of n.(1,2,...,s/z2),
n(1,2,...,8/2)=n3Q1,2,...,s/2) +ni(1,2,...,5/2)

where

ni(1,2,...,s/2)=|sum of all distinct graphs composed of s white vertices labeled as

1,2,...,s, respectively, some or no unlabeled vertices, at most one f!!-bond connecting any two points

and/or one f''_bond connecting any three vertices with X9 polyhedron (I= 1)] (Bach composite graph

contains at least one labeled vertex.) (28)

Equations (26)—(28) provide the starting point for further topological reduction in the following section.
B. Expansion of InZ, and n_ at constant p

Since the number density p is easily associated with physical measurements other than fugacity, we consider in
this section the problem of expressing In= and n, as functionals of p and »S. This is done with the help of the func-
tional Taylor expansion.

Let L(z) be any function, such as InZ(z) or n,(1,2,...,s/2), and letting L (z) be its value for a reference
(classical) system, then [see Eq. (19)]

L(z) = L,(2) + L, (2). (29)
Taking the functional Taylor expansion of the right-hand side of (29) about z,, we have

L(z):LO(zo)+L1(z0)+f Az(;;)(%) d};+fAz(;;) (Z—ZL—(%)) i

f [ Az(r’)Az(y’)(a ?V{L)a(zz()yz)) R dite (30)

Here z, is the fugacity of the reference system and
Az=2z - 2,.

We then transform

9L, (2) dL(2) md(7,/2)
aj()ﬁ) —f amd(r,/2) 8z(7) dr,

__PLy(z) f f 3 Ly(2) 92 (r,/ z) anl(¥,/ 2) B 31)

2z(m)az(7h) ol (v,/2)onl(7/z)  dz(v]))  8z(7h)

8L,(2) 8*l(r/z) -
+f o,/ z) 3z(v)oz(73) an,

so that (30) can be written as

o(2)  amd(r,/2)
L(z) = Lo(2,) + L (z°)+/[ az(7) (8 (rl/z) 22(7) ) d'r’ dr,
8L (2) 3nd(r/2) 32Ly(2) and(r,/ z)
o f [ai (g M) L f J 2226 (st 556

0 0(—2/ ) 0t 3T g » aL (Z) aZntl)(;l/z) P IV I teo
X ——————7;12(;’;)2 > z“od'}’l drydv; dry + ff Az(ﬂ)Az(Yz)(a o7,/ 2) az(;/l)az(,;;)>z=zod71 drydv + . (32)

Using the relation

m/ )= 2() Soes)
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from (26) we get

ﬂl(;’l/Z):n?(;l/z) +Z(;1) 56—5((% ) (33)

Expanding rhs of (33) about z,, we obtain

m(/ )=z + (260 )+ f/ AzG;)(———a’;ig{f’) i [ 82(7) [az?m( *) ag((zl’))] R

f f 8z(7)az() (%) e (34)

At constant density we have?!

n (7/2) =17/ z,) = p(7,). (35)

Then each order of correction in (34) is separately zero. Thus
- an;’(;l/z)) - -, 0£(z,) lf Az °nd(7,/ 2) ) -
S o= (B o Gy 1 ) AN GEneaD) L,

B [5;@7 (Z"(;‘) %((27)))] (36)

and so on. Substitution of (36) into (32) leads to

2k (2y) 9Ly zo) - 0L (z,) 9k(zy) (2p) ”
L= Lofeo + 1o - [ ) ZE G - f w0 S ey sy 4+ f )
-\ 0Elzy) dk(zy) 8%Ly(z)) - - -\ 98(z) @ =\ 38(z) \aLylzy) - - . (87)
%2072 52005, 52q(7) Fp(rap (7 A 472 f 2 52 ap(rz)( 27 820(7'1)) () et
e f 0 S [ 0 S
1 2 3k(zy) BE(zg) 9L,(2)\ - - . . ..
+ i/ 30(;2) (20(71)20(72) (;) 20(7’2) ap(yl) )d?’l d72+ (38)

For a uniform system

p(7)=p(7), 2,(1)=2,(7,)

so that
L(2) = Ly(2g) + L, (2,) - 2, agfo) -é%[Lo(zo)+L1(zo)] %ai [(zo a—g-(zz—o))z %ﬁ]w-«q ‘ (39)
0 1]

a. Thermodynamic properties

With the help of (39), we get the expression for In=,

-0 B 30() (42" 15 () (4)]-

=InZ,(2,) +£(2,) - p aga(ZO) 28 3p [(ap‘) (6%(50)) ] o

Here use has been made of the relations

?In= ap ap
9
pP=23, 3 Zo and 2y 5 a W (41)

The pressure P of the system is given by
BP=V'ln=, (42)

Substitution of (26) and (40) in (42) leads to
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BP:BPv”leﬂzf(g‘z’<1,2>+p %};’—”)U;ﬂu,zwz—;—!fff (2g‘;(1,z,3)+p———~ag3‘;;,2'3))

x U1, 2, 3)d2d3—-—pf[f[ [gou 3’4)_5(1’2)gg(3’4)]+(p ag°(1 2,3, 4)>

2 BL2) ag°(3 4] U1, 2) U3, 4)d2d3d4+23 2;5 {(a_ag_) [23_5‘?’_( fg"(l 2)

xU;(l,Z)d2+§1_Tp8f £01,2,3) U§(1,2,3)d2d3>] 2}+... (43)

Integrating with density (43) gives an expression for the Helmholtz free energy per particle

Ba=pa’-3p | Up(1,2) gi(1,2)a2 - p* [ [ UN1,2,3)£5(1,2,8) a2 a8~ %p° [ [ [ UP(1,2) U3, 4)
x(£(1,2,3,4)~ &(1,2) £(3,4)] d2 a3 a4 +86( ) (f o, 2)~—[p2gg(1 2)]d2> Foee, (44)
Other thermodynamic properties can be obtained from (43) and (44).

b. Radial distribution function

For the two-particle distribution function we find from (39) and (28) that
2) (2] (32)- 1 35 0 a2 2
28 =t {2 (22 25 (22 ol @ o2 rf 24

nz< z "2 2, "a Zg gP 9p°/ op ap[”2 zo>+n2 24 )]

L 10 ap of1,2 ] 2
e {( o) &= (3 50) "L (@5)
Hence the radial distribution function of the system in the semiclassical limit is

£(1,2)=g(1,2) + 2(1,2)Ur(1,2) +2p [ £5(1,2,3)Up(1, 3) a3+ 4p? | (831, 2,3,4) — £(1,2) &3(3,4)]

X U3, 4) d3 d4 - 2_;_(%)’;) B(g—p [nggu,z)]) (j—p[pz [ £3,9Ur@, 4) d3 d4]>
Um(1,2,3) &(1,2,3)d3 +p2/g°(1 2,3,4) Un(1,3,4)d3d4 +1p? [ [£2(1,2,3,4)

- 251, 2) &3(3,4)] UR(1, 2) Un(3, 4) d3 d4 +p2/[g2(1,2,3,4)—g2(1,3)g2(2,4)

X U1, 3) Ur(2,4) d3 d4 +p3f[gg(1, ... 9) = £5(1,2,3) &5(4, 5)]Ur(1, 3)Ur4,5)d3 d4 d5

1psf[g‘;(1,...,5)—g‘;(1,z)g§(3,4,5)]U_;;n(3,4,5)d3d4d5_ _1_(ap)6

6pB8 \3p°
) d
(5- p* 21, 2)]) [$<p3f £5(1,2,3)Ur(1,2,3) d2 d3)]+---. (46)

Following exactly a similar method one can derive ! Since at the point of contact of spheres 1 and 2
the expressions for the higher-order correlation »
functions. U:’;n(ly 2, 3) ~ - Ugl(ly 3) - U;n(z’ 3) (48)

d

We make here the following observations: an

1. For a fluid of hard spheres the leading contribu- Up(1, 2)= -1,
tion from U7 to an integral in (43), (44), or (46) is of a contribution to the first quantum correction to the
order a1, Therefore, the first quantum correctionis radial distribution function at »=d also comes from
obtained from those terms which are linear in UF and those terms which contain UP(1,2,3) and UP(1,2)UZ(1, 3).%8

From this consideration one finds that at the contact
Ur=exp(- Q%) 4n point,
=0, 49

where Q2=1{27)*/2(d/A)(#/d - 1); d is the diameter of &(d)=0 (49)
a sphere. For the second quantum correction, one has 2. If we put
to consider all those terms which involve UT [here taken
equal to (1/vVZ)(A/d)PerfcQ, where erfex=(2/Va)[7 Ur(1,2)=- .= 12 - a{zv ,0(1,2) - 8lV,0(1,2)F}
xexp(— ) dt], U™1,2,3), and U(1,3) Ur(2,3), and so
on, and
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n2p?

TZT’VL- [Vld)(l, 2) . V1¢(1’ 3)

Ur1,2,3)=

+V,9(1,2) . V,4(2,3)

+V,0(3,1) - v.0(3,2)].

From the terms written explicitly in (46), we get
[except the three terms which involve UM(i,7) Ur(k, 1)
where 4,7, k,1=1,2,3,4 and i#j, k+#[] the first quantum
correction to the radial distribution function for

a fluid whose particles interact with a pair potential
which is an analytic function of distance.?'%3:24 Higher-
order quantum corrections (which are not given here
because of their length) will be obtained by considering
a greater number of terms in (46) and by the proper
choice of U} and U7,

Exact evaluation of the integrals appearing in (43),
(44), or (46) is not possible because the values of

classical correlation functions gi(1, 2,3), £5(1,2,3,4),---

are not known. It may, however, be noted that in the
perturbation theory of classical fluids such integrals
have been evaluated either by using simplified superpo-
sition approximation®® or the Barker —Honderson dis-
crete summation method. ?® But, any such attempts here
can have only limited success for reasons discussed

in the Introduction. In the following section, we propose
a computationally convenient method through the intro-
duction of an effective pair potential which generates the
correct radial distribution function in the semiclassical
limit.

{Il. THE EFFECTIVE PAIR POTENTIAL FOR THE
PAIR DISTRIBUTION FUNCTION

Here we consider the density expansion of (46).
The s-body distribution function for the reference sys-
tem is given as

£01,2,...,s)=exp [— i)(b(i,j)]

i<j

X[1+Ea,(1,o..,s)p’] , (50)
i=1

where the coefficient a,(1,...,s) is the cluster integral
involving s base points (white circles) and [ field points
{black circles), Now we define the two-body Mayer
function for reference systems,

fa=exp[-p0(1,2)] - 1.
In terms of graphs, (50) can be written as®

£(1,2,...,s)=sum of distinct simple linear graphs
consisting of white 1-circles labeled
1,2,...,s, respectively, some or no
black circles, and some or no f° bonds,
such that there is a path from each
black circle to each white circle and the
graphs are free of articulation circles,
i.e., the graphs are root-connected and
one-irreducible. (51)

If the deviations from the classical behavior are
small so that the contribution of all the diagrams (i) in-
volving more than one f™! bond and (ii) involving f'V or

373 J. Math. Phys., Vol. 18, No. 3, March 1977

higher bonds are negligibly small, then we have to
consider only those graphs in (46) with one ™! bond or
none, Under this condition we find that all the diagrams
of (46) can be generated if we replace in turn each f°
bond in (51) by an effective f*ff bond where

FH =0+ A+ T+ 1+ +fL, (52)

L is a subset of the elementary graphs each of which
contains one f!!! link, That is

R
AN AN [TN\S
= N +2 1B l+2l >
/ \ 1 3 I 4
4 b 4

where the dotted line indicates a (1 +/°) bond and the
curly line an f° bond. Casonova et al.* have used the
same subset of graphs for defining an effective pair
potential which generates the exact two-body correlation
function in the presence of three-body forces. We have
found®* that L,, can be approximated by the following
integral equation:

(53)

Ly=p 'g'g(_iz‘) f £(1,2,3) 71 g3, (54)
From (12) we find that (54) can be written as
L= ?;(‘1’—,2_) £(1,2,3)[Un(1,2,3)
-2Um(1,2)Um(1, 3) - U1, 3) U2, 3)
- Ur(1,2)Ur(1, 3)U7(2, 3)] d3 (55)

IV. EFFECTIVE PAIR POTENTIAL AND A
FLUID OF HARD-SPHERES

In the fluid of hard spheres, the leading contribution
to L,, which is of order A*, comes from cluster forma-
tions in which two distances of a triangle formed by
three particles 1,2, 3 lie within 4 and d +x, and the
third distance is greater than d+x, If v, >d +2x, /[,
can be evaluated following the method of Jancovici. 3
The result is

Lmzzfl fa Mol {[(% - 1—%)

. 1 1
Xsing - 5 cose] -5 },

(56)
where
8 =7 —cos(:cosa)

and

6P
cosa=1-~ '27? .

For the configuration in which 7, and 7, (or 7,,) lie
within the interval (d,d +1) and »,, (or v,,) is greater
than d +x, we find that

S.K. Sinha and Y. Singh 373



FIG. 1. Position of three spheres in a configuration in which
Yoy = d+ A,

47 =
L= 7T p (@) f f (W21, 7159 720) = 1

- U;n(]_,Z) - U;n(]-’ 3) - U;n(ly 2)U;"(1,3)]

X g3 (V3e) Va5 d7pa A5, (67)

Jancovici® has evaluated W7 for a configuration in
which two short distances on which integration has to be
done are 7,,~d and 7,,~d and the long distance which
has to be kept fixed is 7,,> d +x. Here we have a differ-
ent situation; one distance on which integration has to
be performed is a long distance. However, for the cal-
culation of W7, we adopt the method of Jancovici with
proper changes so as to suit our problem. Thus, in
the high temperature limit (\/d — 0), WI(ry,7,47,5) i8
found to be proportional to the probability of one parti-
cle of mass m/2 moving in a plane wedge (Fig. 1), the
summit angle of which is § =7 - cos™(3 cosa), where
cosa=1-1+2,/2d% 7, —d and 7,, - d are the distances
of the particle 1 to the edges, on which the wavefunc-
tions of the system of three-particles are constrained
to vanish. In terms of polar coordinates (7,8, ¢) chosen
as in Fig. 1, the three distances can be written as

+0-2 3
$47=03
oor
A/d =0
_0.2 -
T -0-4 r ollfend =02
1"
g 3
= -06 ~
_0.8 -
- 10
N W 1 A J i 1 i
O 02 04 06 08 10 |2 114 16
r/d —»

FIG. 2. f*f as a function of interparticle separation at the re-
duced density p*=0.3.
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£d3-06

L Ad=04

Ad=02

feff »
i
(@]
BN
T
=0

A/d

-

o} 02 04

L 1 1

06 08 IO 2 -4 -6

r/d —>

FIG. 3. f*f as a function of interparticle separation at the re~
duced density p*=0.6.

¥, =d +7sing,
¥,=d +7sin(f - ¢), (58)

¥p3 =d(2 +4 cosf)' /2

and

©

T
XP (- ?)
m=1

X1, 16(a¥?/ %) sin®(nm ¢/ 6) (59)

where ] is a Bessel function of imaginary argument.

Wrlr,6,0)=

Equation (57) is solved numerically and the results
obtained from (52) for »/d=0.1 and 0.2 are given in
Figs. 2 and 3, respectively, at reduced densities
p* (=pd®) =0.3 and 0.6, We find that the contribution
of term involving / is very small compared to other
terms.

From the behavior of 7! it follows that the effect of
the quantum mechanics is to enhance and make soft the
hard core diameter. Due to this, a substantial change
in the structure of a hard-sphere fluid is found in the
neighborhood of the point of contact. The effective pair
potential is obtained from f°!f by the relation

- B9(1,2) =1In(1 +f11).

We find that the softness of the hard core depends very
weakly on the density but quite strongly on the
temperature,
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Half-space analysis basic to the time-dependent BGK
model in the kinetic theory of gases
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The elementary solutions of the linearized time-dependent BGK equation are shown to have, for the case
of no discrete eigenvalues, the half-range expansion property necessary for half-space analysis. Also the
partial indices corresponding to the basic matrix Riemann problem encountered are shown, for the general

case, to be nonnegative, as required for the half-space analysis.

I. INTRODUCTION

The time-dependent BGK model in the kinetic theory
of gases can be linearized and expressed in the manner

(;i— +Cxéa—» +1)h(X, c,t)= (77)-3/2’[ h(x’c”t)[l +2c-¢’
X
3

+i3c = =e " d’e, (1)

where %(x, ¢, !) represents the perturbation of the dis-
tribution from the Maxwellian distribution, ¢, with
components ¢,, c,, and c, and magnitude c, is the
velocity, ¢ is the time, and x is the space variable. In
the manner of Cercignani,' we find that Eq. (1) can

be decomposed, by taking moments, into a set of two
coupled equations plus three uncoupled equations. Since
the uncoupled equations have been discussed in consid-
erable detail,” we consider here only the coupled
equations,

(582‘— ﬂlé% H)‘I'("’ “’t):(”)_l/zf Q")

+P(u)P(u ) (x, u' ) e™%dp - )

Here, the elements of the two-vector ¥(x, u,f) are re-
lated! to the density and temperature of the gas, and

¥, 4, and { represent, respectively, the position, veloc-
ity component, and time, in dimensionless units. In
addition,

Gr /3 -3 1

Qp) = (3a)

Gre o
and

P(p)=(2)""2u 1o

00

(3b)

We note that the time-independent version of Eq. (2) has
been studied extensively by Kriese, Chang, and
Siewert, 2

Since we wish ultimately to solve initial and boundary-
value problems relevant to Eq. (2), we first will estab-
lish the required elementary solutions.

H. ELEMENTARY SOLUTIONS
We seek solutions of Eq. (2) of the form
¥(x, u,t) =exp(st)® (v, u;s)exp[—-(s +1)x/v], (4)
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where, in general, s is complex, but s# -1, and v is
to be determined. Equation (4) can be entered into Eq.
(2) to yield, after some elementary analysis has been
carried out,

(v~-w) (v, p;s) = wr Q)T +yvuD]M(v; s), (5)
where

y=2s/(s +1), (6a)

(M) 2w =1/(s +1), (6b)

0 0
.0
01

and the normalization vector is given by
M(v;s):f_:é(u)é(v,u;s)e'“zdu. (8)

Since the velocity component p € (-, ), we can solve
Eq. (5) for v (=, ) by writing

¢<u,u;s):w[upu(vi—u>+x<u)a<u—u> (1)

X(I+yvuD)M(r;s). 9)

Here Pn»(1/x) denotes the Cauchy principal-value distri-
bution, and 5(x) represents the Dirac delta distribution.
We note that Eq. (9) is a generalization of the “singular
eigenfunction” introduced in 1960 by Case® and discussed
extensively in the text by Case and Zweifel.® In Eq. (9)
the function A(y) is considered, at this point, “arbi-
trary”; however, if we multiply Eq. (9) by Q(u) exp(- u?)
and integrate over u, we find

vy s) =A()¥ly; )| M(v;s) =0, (10)
where
V(s s) = we™” Qu) QUuNI +yu®D), (11)
and
° X dav
x(u;S):Hqu ‘l’(v,s)y_“ . (12)

From Egq, (10) we deduce that det{A(v;s) —Ai(v)\IT(u;As)}:O
and hence that there exist two X’s, i.e., A;(v) and A,(v).
We thus write our so-called continuum soluticns as

& (v, u;s)=w I:VP”(;‘l:—’l) +x, (v) 6(w - u)]

XQ(uXI+yrvuDIM,(v;s), a=1and?2.

(13)
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In regard to the discrete spectrum, we consider now
v (-, ») and write

&(+v,, u;S):w<V V:M)Q(u)(IiYVa“D)M(Va;S)s (14)
where
A2 v,;8)M(vy;s)=0, (15)
Alz;s)=1+z [m\lf(u;s)ud_uz s (16)

and v, is used to denote each of the “positive” zeros of
A(z;s)=detA(z;s).

As we have discussed in a previous paper, ° the dis-
persion function can be written as

Az 9)= rqyeli®e? +(s +1)ls =$)(s +5)

+[3s%2* +322(4s% = 1) +5(s +1)(&s +1)]A(2)

+2(s +1 +2s2) A%(2)}, 17)
where
1 " e _du
A(z):1+\/_ﬂzf e T (18)

We have shown® that A(z;s) has «(s) pairs of zeros,
where k(s) can be either 0,1,2, or 3 when s is contained
respectively in S,, S;, S,, or S;, as previously
defined.®

Having established the required elementary solutions
of Eq. (2), we now formally write our general solution
{with s as a parameter) as

W(x, u,t; s):es’s’i)[A(va)‘b(ua, p;s)exp[—(s +1)x/v, |
+A(=v)@(-v,, u;s)explls +1)x/v,]]

® o2
+ Z_,lAa(u)cba(u,u;s)

-

x exp[-(s +1)x/v]dv;. (19)

Here A(zv,), A,(v), and 4,(v) are the expansion coeffi-
cients to be determined from the boundary and initial
conditions. If we let A(v) denote the expansion vector

A()=A,(W)M,(v; s) +4,(1) M, (v; s), (20)

then Eq. (19) can be written as

¥(x, u,l;S):e”{”f) [Avy) ®(v,, u;s)exp[—(s +1)x/v,]

a=1

+A(_ Ua)Q(_ Vas u;s)exp[(s +1)x/Va”

+fmd>(v,u;s)A(u)exp[—(s +1)x/v]du},

~o0

(21)
where the continuum malvix is
1
(v, u;s)= wVPv(V — H)Q(“) (I +yvuD)
+6(v — ) e QW) A(v; s). (22)

I1l. HALF-RANGE ANALYSIS

We wish now to show that the “eigenvectors” estab-
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lished in the previous section have an important prop-
erty that allows us to write

k(s) o
Wp)= 2, AWy 8(ve, u38) + [0y, u;5) Alw)dv,

e (0,), (23)
where I(u) is an arbitrary two-vector which is Holder
continuous on any bounded interval of the positive real
axis and further satisfies

1, (w)] <Ce®, a=1,2, pe(0,x), (24)

where C is a positive constant.

Equation (23) is the statement equivalent to Case’s®
half-range completeness theorem for the one-speed
neutron problem and clearly will be required when we
wish to solve explicitly a typical half-space problem.

In order to illustrate explicitly the analysis required
to prove Eq. (23), we consider currently only those
values of s € S, so we can allow «(s) to be zero, By
introducing the sectionally analytic vector function

1 - dv
N(Z):ETZ' f v(I +szD)A(V)V_Z ’ (25)
[}
with limiting values
1 - dv
+ — — _—
N = 5 Pf W1+ yuiD) Aly) 22
0
+ 341 +y?D) A(t), (26)

we can express the equation
u)= f: ®(v, u;s)A(w)dv, we(0,) and scS,, (27)
in the form

P Q(u) e “Iu) =" (u; ) (= w) N*()

=27 (u; )= ) N~ (). (28)

Here we have introduced

n(z):l-(zi>n, (V)22 =i, (29)

1

and

Q4u;s) =T [A(;8) £ 7 u¥(p; )T (w). (30)
It can easily be shown that the matrix

Q(z;8) =M(z) Alz; s) M (z) (31)

has the limiting values given by Eq. (30) and can be
written as

Q(z;s):l+z[ q?(“;s)u‘f“z , (32)
where
W(p;s)=T(w) ¥(u;s) I (), (33)

The §(z;s) matrix has other important properties that

we will soon require,
2(z;5)=0(z;s) = (- z;8) =8(z; s). (34)

If now we let X(z;s) denote a canonical solution, of
ordered normal form at infinity,5'® to the matrix
Riemann problem defined by
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X(u;s)=Glu;s) X (u;s), wpel0,), (35)
where
Glu; s) =@ (u; $)[8 (u39)]7, (36)

then we can write the solution to Eq. (28) as

du
w2 +R(Z)> ’

K(z; $) I~ o) N(e) = 5= ([wrm)

(37)
where
L) = uX ;) [ )] () Q) e Hw).  (38)

In Eq. (37) we use R(z) to denote a vector of rational
functions. At this point we wish to make use of the fact
(proved in the next section) that the partial indices,

k; and k,, basic to the Riemann problem defined by Egs.
(35) and (36), are nonnegative. Since we are consider-
ing here the case x=0, then clearly k, =x,=«=0, and
thus we can normalize our canonical solution by taking

X(o;s)=1, k=0, (39)

On investigating Eq. (37) for large z and noting that
R(z) can be singular only at z=~2z;, we conclude, after
examining the form of Eq. (25) for large |2/, that

R(z)=(z, +2)"R, (40)

where the constant vector R can be expressed as

R= f: T(w)du -(I-D) f: vA(v)dv -yz,D fo"’ AW)vidv.

(41)
Thus we can now write Eq. (37) as
. 3 1 © du 1
1 - = i N — .
1= 2)N() =X (25 8) 5 [fo r(w -+ —— R]
(42)

If now we notice that Eq. (26) yields
N*(#) = N-(¢) = ¢T1(#) TI(— ) A(D), (43)

we can obtain from Eq. (42) the expression

HIE) AlD) = fx (U(t)f—f— + V(1) 6(u —l‘))X(—l;s)Q(oo;s)

R
z, +¢ )
In developing Eq. (44) we have used the fact that the X
matrix factors £(z;s) in the following manner:

XT(u)dp +U() X(=1;5) Q(o; s)

(44)

2(z;5) =X(z;5) R(;s)X(=2;5), k=0, (45)
Here we have defined

2mi U = [Q(t;8)] 7 = [R5 8)]? (46a)
and

v =[R(;) ™ [t )] (46b)

We can find from Eq. (44) the moments of A(v) required
in Eq. (41) to establish R. After using the integral
representation

83z, 8)X(—2;8) =Y (03 8) + [ U(t)X(—t;s)tti—tZ

k=0, 47)

to help simplify our result, we find
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R= -2z [I+X(-z,; s)DX! (z,;8)]™"

Xi(—zl;s)DSJ(‘l(zl;S)f r(w) du
[¢]

IJ'_ZI.

(48)

Since R is now established explicitly, we consider the
proof that I{i) can be represented as given by Eq. (23)
completed for the case x=0.

IV. PARTIAL INDICES

As mentioned in the previous section, we require in
our proof of “half-range completeness” the knowledge
that the partial indices basic to the matrix Riemann
problem defined by Eqs. (35) and (36) are nonnegative.
The proof that we will develop here is similar to the one
given previously’ for a problem relating to the scatter-
ing of polarized light; however, because £(z;s) is not
symmetric and because the problem contains a complex
parameter s, some additional work is required. We
consider in this section the total index « to be 0,1,2, or
3.

First of all, we note that
@(z;s)zﬁ(z;s)i“(— 2;8) (49)
is a solution of the Riemann problem defined by
& (u;s)=Gu;s) @ (u;s), nel0,*), (50)

where G(u;s) is given by Eq. (36), and thus® &(z;s) can
be expressed as

®(z;5)=X(z;5) P(2), (51)

where P(z) is a matrix of polynomials. It is clear that
Eqs. (49) and (51) yield the factorization

ﬁ(z;s):X(z;s)P(z)XN(—z;s). (52)
We note that by definition® a canonical solution of
ordered normal form at infinity is such that

FAR SN
Jim X(z; s)
z o 0 ZK2

=K, detK#0, (53)

where «, < k, and «, are the partial indices and «; +«,
=k. If we use Eq. (53) in Eq. (52), as |z2| — =, we can
readily deduce that x;, = 0 unless P,,(z)=0. Thus to show
that k,> k, > 0, we need to prove that Py,(z)#0.

If we now change s to S in Egs. (35) and (36) and take
the complex conjugate of the resulting equations, we
can use Eq. (34) to deduce that

X(u;8)=G,(1; )X (;8), welo,=), (54)
where

Gl 8) = [Glu; 5)17 = R (3 )R (s 5)] (55)
and we have defined

?:((Z;S):m. (56)

Using the fact that W(z;s)=1(2) II(- z) A(z; s) is sym-~
metric, we can deduce a convenient relationship,

B(u) Gx(u; ) = G(u;s) B(w), (67)
where

B(u) =0 (u) I(=p). (58)
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It is not difficult now to deduce that
X(z; 5) =B (2) X(2; s) R(2), (59)

where R(z) is 2 matrix of rational functions. Further,
we observe from Eq. (59) that R(z) must be of the form

1 -~
R =(575) A, (60)
where /5(2) has polynomial elements. If we let
z* 0

X(z;s)—K(s) , 2| ==, (61)

0 g7z

then we can find the general form of f-’(z) by investigat-
ing Eqs. (59) and (60) as | z| —~ =:

. Ty, T, 27
Pz)— z s 2] =, (62)
Ty 2270 Ty
where
-1 0
T=K"s) K(3). (63)
01

We assume here that «, # k,, for otherwise no proof that
k, and k, are nonnegative is required, and thus we can
consider

[0 1
K(S) = (643.)
1 0
or
1 b(s)
K(s)= (64b)
0 1
L
and deduce that the most general form of /:’(z) is
- 1511 +z 0
/9(2') =t N . ) (65)
P, (2) Py~z

where 13“ and 1322 are constants. If now we use Eqs.
(65) and (60} and evaluate Eq. (59) at z=0, we obtain

X5(0;3) = *(})’322 X,,(0; ) (66a)

and

— 1\ -

b 22(0;3):i(z) P,, X,,(0;5). (66b)
Equations (66) allow us to prove the required state-
ment that the polynomial P,,(z) appearing in Eq. (52) is
not identically zero, Since Q(O;s):l, we can solve Eq.

(52) to obtain

P (0) =X3(0; s) [XT,(0; s) + X3,(0; 5], (67)
where X(0;s)=detX(0;s). To allow P,,(0)=0 yields
X5,(0; 8) = £iX,,(0; 5) (68)

which contradicts Eqs. (66). Since P,,(0)#0 it follows
that the partial indices basic to the Riemann problem
defined by Eqs. (35) and (36) are nonnegative.
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V. THE H MATRIX

If we go back to Eq. (52) and use the normalization
X(o;s)=1, k=0, we can write

ﬁ(z;s):X(z;s)X"(O;s)f“(O;s))N((— z;8). (69)
Therefore, if we define the H matrix by

H(z;s) = X!(- z;5) X(0; ), (70)
then a factorization of £(z;s) becomes

§(z;5) =H™(- 2;5) H(2; 5). (71)

Since ultimately we wish to express all of our results
in terms of the convenient H matrix, we can use

1
-1 . — -l . —_—
H'(z;s)=H (w,s)+2ﬂi

t—-z

Xf H(-2;5) [8°(;5) = Q25 8)] dt (72)

or

dt
t+z

H"(z;s):I-—zf ﬁ(t;s)\f(t;s)
4]
to compute H(z;s) for z¢ (0, =) after we have solved

(73)

HY(u;s)=I- u[ H(; s) (45 s)t :i_“ » pe(0,),

‘ (74)
iteratively. It is clear that Eq. (74) has a solution since
we know that X(z; s) exists and the subsequent definition
of H(z; s) in terms of X(z; s); however, the recent work
of Zweifel and co-workers®?® could prove very useful for

showing that an iterative solution of Eq. (74) converges
to the desired result.

VI. SOUND-WAVE PROPAGATION

It is evident that we can readily solve half-space
problems based on Eq. (2) subject to a free-surface
boundary condition of the form

¥(0, u,t)=exp(st) F(u), u=0, (75)

and a specified condition as x—~ «, Here, we consider

F(u) to be, in general, an arbitrary Holder function.
For example, for sound-wave propagation in a half-
space defined by ¥(x, u,?)—~ 0 as x—~ », and

¥(0, u, ) =expliwt) F(u), >0, (76)
we simply let s =iw and write the desired solution as
V(x, u, ) =exp(iwt) ;LiA(va) ®(v,, 13 iw) expl~ (iw +1) x/v,]

+ fow ®(v, u; iw)A(v) exp[ - (Gw +1)x/u]du]
(1M
If we constrain Eq. (77) to meet Eq. (76), we get

F(u) =35 A(ra)@(vg, 3 i) + [7 (v, w3 i) Alv)dv,

1
u=0, ('78)

The solution of Eq. (78) is given in Sec, III for the case
k=0; we note from our previous work® that w

>2,14517 -+ => k=0, We are confident that explicit
solutions of Eq. (78) for a general index will soon be
forthcoming.
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A lattice of verifiable propositions L, for a spin-1 system is constructed by admitting only propositions
which correspond to appropriate Stern-Gerlach filters. Ly is a complete, orthocomplemented, weakly
modular lattice, and it satisfies the first part of the atomicity axiom of Jauch and Piron, but not the second
part (the covering law) nor related axioms of Zierler and MacLaren. Doubt is therefore thrown upon the
program of recovering the Hilbert space formulation of quantum mechanics from empirically justified
axioms. The class of admissible states on L, is exhaustively characterized, and it is shown that there exist

some nonquantal states but none that are dispersion free.

. INTRODUCTION

in spite of the innumerable confirmations of quantum
mechanics, it is still far from clear how completely
the standard formulation of the theory, namely, the
Hilbert space formulation, is justified empirically. Con-
ceptual difficulties, such as the problem of measure-
ment, can be taken as indications that the Hilbert space
formulation of quantum mechanics is an excessive ex-
trapolation beyond the empirical evidence. The dis-
covery of superselection rules, ! moreover, shows that
certain features of the Hilbert space formulation can be
modified without loss, and indeed with increase of ex-
planatory power. Understandably, therefore, much of
the recent work in the foundations of quantum mechan-
ics has been devoted to attempts to formulate the theory
in a stepwise axiomatic manner, >~® with hopes of exhib-
iting the empirical support of each axiom. We are
rather skeptical on general methodological grounds
about the likelihood that such programs will yield
definitive results, because of the difficuity of assessing
the empirical consequences of individual axioms. Fur-
thermore, it seems probable to us that the solutions to
the problems of the foundations of quantum mechanics
will be inseparable from new discoveries in such areas
as elementary particle theory and space—time theory.
We nevertheless feel that a careful examination of the
various reformulations of quantum mechanics which
have recently been proposed can be illuminating, and
at the least can yield interesting negative results con-
cerning some of the programs in the foundations of
quantum mechanics.

The purpose of this paper is to develop an instrument
which will be useful in the enterprise of examining re-
formulations of quantum mechanics. The instrument
is the set Ly, consisting of those propositions which may
reasonably be regarded to be empirically testable
concerning a spin-1 system (with nonzero rest mass).

A precise characterization of Ly, will be given in Sec.
IV. It suffices for the present to say that a proposition
is in Ly if its truth value can be determined by means of
a suitable spin measuring device, such as a Stern—
Gerlach apparatus. If the standard formulation of quan-
tum mechanics (summarized in Sec. II and Sec. III)

is applied to the spin-1 system, there is a projection
operator (or equivalently, a closed linear subspace of
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a three-dimensional Hilbert space) corresponding to
each proposition in L, but there are also projection
operators which do not correspond to members of Ly
and which in fact do not seem to correspond in any
natural way to testable propositions. It is not our inten-
tion, in paying special attention to L., to insist that
every term in an acceptable physical theory be suscep-
tible of an operational interpretation.® However, the
availability of an operational interpretation of a term
does provide prima facie evidence that there is an ele-
ment of physical reality correlated with the term, and
in the absence of other evidence about the physical sig-
nificance of the projection operators in the Hilbert space
formulation it is a good working hypothesis that those
operators corresponding to members of L, have a defi-
nite physical status which the others do not have.

In Sec. V we establish exhaustively the structure of
L. In principle this could be done quite directly from
experiments, using reasonable interpolations and induc-
tive generalizations. Our procedure, however, will be
to draw upon the quantum mechanical predictions for the
spin-1 system, relying upon the assumption that the
gquantum mechanical predictions concerning actual ob-
servations of spin are all correct. Thus, even though
we are engaged in a critical investigation of the Hilbert
space formulation of quantum mechanics, we may make
free use of the consequences of this formulation in any
domain in which it has been successful. There is no
inconsistency in this procedure, for one can suspect
that some parts of a formalism lack physical content
and nevertheless believe that the formalism is correct
whenever it is physically significant.

Once the structure of L, is determined we check in
Sec. VI whether the axioms proposed in several alterna-
tive formulations of quantum mechanics are valid in
L,. We are particularly interested in the axioms of
Jauch and Piron, *'° because of the remarkable mathe-
matical work of Piron,*? showing that the Hilbert space
formulation of quantum mechanics can be essentially
recovered (with small modifications, such as allowance
for superselection rules) from these axioms. We find
that all the axioms of Jauch and Piron are satisfied by
L, except one, the “covering law.” The failure of this
axiom for a system as simple, well-understood, and
unimpeachably physical as L, throws doubt upon the
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validity of the axiom and makes it appear that the axiom
is motivated by a goal, the recovery of the Hilbert space
formulation, rather than by physical evidence. We also
show that two of the axioms of Zierler® and one of
MacLaren, ! both with programs similar to that of Jauch
and Piron, fail to hold in L,. These negative results
constitute, in our opinion, a serious obstacle to the
program of recovery the Hilbert space formulation

of quantum mechanics from empirically well justified
principles.

In Sec. VII we study the states (in the sense of o~
additive measures) defined on L,. We prove a theorem
which essentially exhibits all the possible states on L.
We also prove in a new way a result previously obtained
by Kochen and Specker'’ and by Belinfante, !! that there
exists no dispersion-free state on L. This result is
philosophically very significant. It might be conjectured
that the nonexistence of a dispersion-free state on the
standard quantum mechanical lattice of propositions for
the spin-system is due to the occurrence of propositions
having no physical significance; but such a conjecture
would obviously not be true of L,, because of the undeni-
ably physical character of all of its propositions. Thus,
restricting attention to propositions which have definite
physical significance does not suffice to save one impor-
tant class of hidden-variable theories.

1. THE CONCEPTS OF PROPOSITION AND STATE

The fundamental concept in our investigation is a
proposition concerning a physical system. The precise
explanation of this concept cannot be given without
solving some of the deep problems of the foundations of
quantum mechanics (including the measurement problem,
which is essentially the problem of determining exactly
when and how a potentiality is realized). We never-
theless can convey the intended meaning in a preliminary
manner, sufficient for the structural investigation of
this paper. A proposition is—with two convenient ex-
ceptions—a bivalent potentiality of the system, one
realization of it being identified as the truth of the prop-
osition and the other as its falsity. The two exceptions
are the “impossible” proposition ¢, which can only be
false, and the “necessary” proposition 1, which can
only be true. There is no a pviori assurance that in an
arbitrary state of the system a given proposition has a
definite truth value, and indeed according to the usual
interpretation of quantum mechanics every proposition,
except ¢ and 1, is unrealized in some states of the
system. We do not take the facts about the constitution
of a system, such as its mass or charge or composition
out of more elementary parts, to be propositions, al-
though one could consider them to be associated in a
many—one manner with the necessary proposition.

Another way of conveying the intended meaning of
“proposition” is to say that an ideal test for a proposi-
tion would be an experiment with only two possible out-
comes, such that one outcome is a sufficient condition for
correctly saying that the proposition is true and the
other outcome is a sufficient condition for correctly
saying that it is false. Such a bivalent experiment can be
‘schematically represented by a filter, through which the
system can either pass or not pass, passage being a
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sufficient condition for the truth of the proposition at
the moment of completion of the experiment and non-
passage for its falsity at that moment.

Several cautionary remarks are essential to prevent
misunderstanding at this point.,

(1) It is a great idealization to suppose that a definite
bivalent experiment can be performed upon a system
regardless of the state prior to the experiment. A
minimum, though usually far from sufficient, condition
in practice is that the system enter the forward aperture
of the filter; but this condition implies approximate
localization and would not be satisfied, for example, if
the system were in a state of nearly exact linear momen-
tum. (The condition of approximate localization imposed
upon the initial state is fortunately not troublesome in
the investigations of the present paper, since proposi-
tions about spin are compatible with those about posi-
tion.)

(ii) Even if we disregard the first difficulty, we stiit
would not be justified in associating a proposition with
a specific experimental procedure, but only with an
equivalence class of bivalent procedures, such that if
any one yields the outcome “true” (or “false”) regard-
ing the proposition in question, so will any other. The
equivalence class of procedures is an “open” class, in
the sense that a physical apparatus as yet uninvented
could conceivably interact with the system in a manner
adequate for a bivalent experimental test of the proposi-
tion of interest.

(iii) In actual experimental situations it is an idealiza-
tion to say that one outcome is a sufficient condition for
the truth of the proposition and the other outcome for
its falsity. Almost always there is a nonnegligible
probability of an erroneous correlation of experimental
outcomes with truth values of the propositions, not only
because of technical difficulties or perturbations, but
sometimes also for reasons of principle. 1*=1

Remarks (i), (ii), and (iii) are strong reasons against
an operationalist interpretation either of specific pro-
positions or of the concept of proposition (see Fig. 9,
pp. 371—3, 408—9, and 425). Nevertheless, these
cautionary remarks do not preclude laboratory experi-
ments which yield realizations of propositions, and
indeed in enough situations to provide weighty evidence
regarding relations among propositions and hence re-
garding the structure of the set of propositions.

We shall suppose that every proposition p has a unique
orthocomplement p’, which is always realized when
p is realized, but in such a way that when realized p
and p’ have opposite truth values. Let us consider any
one of the equivalence class of yes-or-no experiments
associated with p, but idealized so as to be performable
whatever the initial state of the system may be. Then
p' is that proposition which is realized by the same ex-
periment, but such that a sufficient condition for its
truth (respectively, falsity) is the outcome which is
sufficient for the falsity (respectively, truth) of p. In
this way, the bivalence of an arbitrary experimental
realization of p can be used to indicate a sense in which
p and p’ are exhaustive. It must be emphasized, how-
ever, that in spite of the exhaustiveness of p and P’
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there are many states in which both p and p’ are un-
realized potentialities (unless p is either ¢ or 1).

The fundamental relation between propositions is
implication. A necessary and sufficient condition for
p to imply ¢, symbolized by p <¢, is that in every
state in which p is true, ¢ is also true. A bivalent ex-
perimental test of p cannot be considered without further
information to be a test of ¢, since ¢ may not be realized
if p is false.

We shall assume the following axioms concerning the
set of propositions (henceforth designated by L), the
operation of orthocomplementation, and the relation of
implication:

P (partial ordering): (a) a<a for allac L,
(b)ifa<band b<a, thena=»,

(c)ifasbandbsc, thenasc.

B (boundedness from below): There exists a proposi-
tion ¢ in L such that ¢ <a for allac L.

O {orthocomplementation): For every ae L there
exists a unique proposition a’ € L such that

(@) (@) =a,
(b) for any xe L, if x <aq and x <a’, thenx=4¢,
(c)ifa<bd, then b’ <a’.

We regard these axioms as analytic, in the sense of
being implicit in the concepts of proposition, orthocom-
plementation, and implication, and experimental evidence
for them is not needed.

Some derivative concepts can now be introduced.

If {a; | i belonging to an index set I} is a subset of L
(assumed for the moment to be partially ordered, but
with no assumption of boundedness from below or of
orthocomplementation), and if there exists a proposi-
tion x such that

(i) x<a; for allic 1,
(ii) y <a; for allic ! implies y <x,

then x is the greatest lower bound or g.l. b. or the gen-
evalized conjunction of the {a;}, and it is denoted by
Nera;. If I consists of two indices 1 and 2, then a
more convenient notation for the g.1.b. is ajAa,.

If a partially ordered set of propositions L is such
that for every pair a,b their g.l.b. exists, then the set
is a lattice. If any subset {g; lic I} has a g.l.b., then L
is a complete lattice. If any denumerable subset
{e;1i=1,2,...} has a g.1.b., then L is a o-lattice.
(The statement of these definitions does not presuppose
that L is bounded from below or orthocomplemented. )

I {a;li€ I} is a subset of L such that A,cra) exists,
then (\,craj)’ is the least upper bound or l.u.b. or
genevaliz ed disjunction of the {a;}, and it is denoted by
Viera;. It I consists of two indices 1 and 2, then a more
convenient notation for the l.u.b. is a;Va,. Caution is
needed to avoid misconceptions suggested by the name
“generalized disjunction.” The concept as defined per-
mits the possibility—which indeed obtains in quantum
mechanics and is contrary to the ordinary notion of
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disjunction——that V;cra; is realized and true while not
a single one of the a; is realized.

If a<b’, then a and b are disjoint. (Note that dis-
jointness is ot defined as aAb=0.)

The proposition 1 is defined as #’. [It follows from
axioms B and O(b) that for allac L, a <1, so that the
existence of the necessary proposition need not be sepa-
rately postulated. ]

In our informal discussion of the concept of proposi-
tion we spoke several times of the state of the system,
without explaining the locution, We are primarily
interested in pure states, which can roughly be char-
acterized as maximal specifications of the system. In
classical physics a maximal specification essentially
consists in the simultaneous assignment of truth values
to all propositions concerning the system. The struc-
ture of the set of propositions postulated by gquantum
mechanics precludes the existence of pure states in the
classical sense (results of Gleason!® and others) and
motivates a probabilistic conception of state. (If the
logical difference between certainty and 100% prob-
ability is set aside, then the classical conception of pure
state is subsumed under the probabilistic conception. )
We therefore adopt Mackey’s conception of a state®:
namely, a real-valued function defined on the set of
propositions L such that

(i) m(a)= 0, forallac L,

(ii) m(1) =1,

(i) if {e;14=1,2, -} is a finite or denumerable sub-
set of L such that a; <aj for i#j, then (if Va; exists)
m(Vay) =ymla,).

Mackey’s conception seems to catch as much of the
classical conception of a probability measure on the set
of propositions as could be expected, given the physical
evidence that not all propositions are realizable together.
In particular, according to condition (iii) complete
additivity of » holds for a denumerable set of pairwise
disjoint propositions. Although his conception might be
weakened or generalized, it so elegantly combines con-
servatism regarding probability theory with recogni-
tion of the exigencies of microphysics that departures
from it would be reasonable only if they led to substan-
tial theoretical extension or clarification. States in
Mackey’s sense can be classified as mixed or pure by
the following criterion: m is a mixed state if there exist
two distinct states »1; and m, and two positive real num-
bers ¢y and ¢, with ¢; + ¢y =1, such that for allae L
m(a) =cymyla) + cymyla). [Distinctness of m, and i, is
equivalent to the existence of some b<c L such that m(b)
=m,(b). ] If no such decomposition of # exists, then
m is pure.

The criterion of purity has the virtue of not referring
to simultaneous assignment of truth values to
propositions.

We shall have little occasion in this paper to use the
concept of observable (as it is commonly called, though
the usage is misleading, since most instances of the
concept are not associated with actual procedures of
observation or even with Gedanken experiments). It
will suffice to say that the concept can reasonaly be
defined in terms of the set of propositions (see Ref. 3,
p. 63, and Ref. 5, pp. 97—9).
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{Il. THE HILBERT SPACE FORMULATION OF
QUANTUM MECHANICS

One needs to add a single strong axiom H to the
axioms P, B, and O of the preceding section in order
to obtain the standard formulation of the kinematics of
nonrelativistic quantum mechanics (not including, how-
ever, some of the principles concerning composite
systems, notably symmetrization and antisymmetriza-
tion). Moreover, with very modest additional assump-
tions about temporal evolution the dynamics of quantum
mechanics (the time-dependent Schridinger equation) is
also derivable from axioms P, B, Q, and H (Ref. 3,
pp. 81—3). Axiom H is as follows:

Axiom H: The partially ordered, orthocomplemented
set of propositions (now to be called L) has the struc-
ture of the lattice / of closed linear subspaces of a
separable complex Hilbert space 4. Specifically, there
is a 1—1 mapping f: L, ~ / (onto) such that

{i) fla’) = (fl@))* (where 1 denotes orthogonal comple-
mentation in #), and

(ii) @ < b iff fla) C ().

[Note that since f(a) and f(b) both belong to /, the set
theoretical inclusion fla) € f(b) implies that f(a) is a
subspace of £(b). ]

Adjoining axiom H to the preceding axioms has im-
portant consequences, which can easily be demonstrated,
for all the derivative concepts defined in Sec. II. The
impossible proposition corresponds to the empty sub-
space of 4: f(¢) =0. The necessary proposition corre-
sponds to 4 itself: f(1) =4, the generalized conjunction'®
aA gb corresponds to the intersection of the subspaces
matched with @ and b: flaryzb) =f(a) " f(b). Moreover,
since / is a o lattice so is Ly, and f(A;xa;) =0 flay).
The generalized disjunction of ¢ and b corresponds to
the subspace spanned by f(a) and f(b), and more gener-
ally 7{V;.15;} equals the subspace spanned by
U;.1fa;). That generalized disjunction does not corre-
spond to set theoretical union is one of the crucial ways
in which L, is nonclassical. One consequence is that
distributivity does not generally hold in L. Moreover,
modularity does not hold if / is infinite dimensional
(Ref. 5, p. 85). The following principles hold, whether
# is finite or infinite dimensional:

Weak modularity: if x <z, then x =z Mgz’ Vg x).

Atomicity: 1. (existence of atoms) For every x < Ly
there exists an atom p such that p <x. (p is an afom iff
forallge L, ¢g<p iff g=d or g=p.)

2. (covering law) If ¢ is an atom, thena<x <aVgq
=x=a or x =aVyq. It is easy to see that the atoms in
L, correspond under the mapping f to one-dimensional
subspaces, or rays, of 4.

The mapping f permits the construction of a set of
states on L, which will be recognized as the usual
pure states of quantum mechanics. Let 3 be a normal-
ized vector in /, and let P, be the projection operator
associated with the subspace f(a) which correspounds to
the proposition a. Then we define the measure m; on
L, as follows: for all ac€ Ly, myla) =, Pp). 1t is easily
checked that »1, satisfies Mackey’s conditions for being
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a state. A deep theorem of Gleason!® asserts that (with
an almost trivial exception) all states on Ly are convex
combinations of states of this type. Specifically, if Ly,
satisfies axioms P, B, O, and H, and dim{#) is greater
than two, and if »: is a state on Ly, then there exists

a denumerable set of normalized vectors {;} C/ and a
set of positive real numbers {w;} such that Jw; =1 and
m(a) :2”’i“7w,- (@) for all ac Ly.

For future reference it is useful to note that Gleason’s
theorem holds whether #/ is a real or a complex Hilbert
space, i.e., whether the scalars are the real or the
complex numbers.

It is evident that Axiom H is a very strong assump-
tion about the structure of the propositions of a physical
system. Piron has demonstrated, however, that much
of the content of Axiom H is contained in the assumptions
that the set of propositions is an orthocomplemented
o-lattice (so that axioms P, B, and O hold a foriiori)
and satisfies the conditions of weak modularity and
atomicity. The exact content of Piron’s theorem is
rather complicated to state, and we refer to the original
publication? and to the careful statement by
Varadarajan. !” Qur concern in the present paper is with
the validity of the assumptions of Piron’s theorem, and
our main result in Sec. V is that the second part of the
atomicity condition (the “covering law”) does not hold in
the lattice Ly of verifiable propositions of the spin-1
system,

As preparation for the discussion of the lattice L it
will be valuable to write down some details about the
lattice L for the spin-1 system. We shall restrict our
attention to the spin properties of the system, and
abstract from properties defined in terms of position
and linear momentum, The quanfum mechanical formal-
ism facilitates such a restriction of attention, since the
complete Hilbert space / appropriate to the spin-1
system is H:LZ(E3)®H3, which is the tensor product
of the Hilbert space L*(E?®) of (equivalence classes of)
square integrable functions on three-dimensional
Euclidean space, with the three-dimensional complex
Hilbert space //;. Formally, the spin-1 system can be
treated as a composite system, of which one component
is spinless and the other lacks the properties defined
in terms of position and linear momentum. It is the
second component in this formal decomposition which
we shall henceforth refer to by the expression “the
spin-1 system”.

The propositions of Ly, in the case of the spin-1
system, correspond to linear subspaces of Hs. (The
condition of closure on these subspaces mentioned in
Axiom H is automatically satisfied, because of the
finite dimensionality of //5). The atoms of L, corre-
spond to one-dimensional linear subspaces, or rays,
of /5. We shall use the notation {¢) to desigrate the ray
spanned by the vector ¢. A direct physical interpreta-
tion can be given to a ray spanned by a vector ¥ such
that (s-#)y =21y, where s .7 is the spin operator in the
direction # (7 a unit vector in Euclidean three-space),
and X is 1 or 0 or — 1, which are the three possible
eigenvalues of s -# in units of #. The proposition in Ly
corresponding to this ray will be designated by a(i, ),
and the ray itself can be designated, in a manner which
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does not single out any of its vectors, as ¢, 2),
flaGi, M) =G, 0 =@.

The intuitive meaning of a{%, 1) is the proposition that
the spin of the system in the direction # is X (in units of
7). There are also some propositions in L, correspond-
ing to two-dimensional subspaces of 7L/3 which have clear
intuitive content: namely (a(z,))’, hereafter designated
as b(7,2), which corresponds under the mapping f to

&, A" The content of b{n,)) is that the spin of the systen
in the direction # is (in units of %) unequal to A.

It is of the greatest importance for our subsequent
discussion to notice that not every ray of %/3 is spanned
by an eigenvector of s -# for any direction #. (In the
case of the spin-—% system, by contrast, every vector is
an eigenvector of s -7 for some n—a fact which makes
the spin-3 system unsuitable for the purposes of this
paper.) Our assertion is proved by considering the
effect of the standard rotation matrix

D¥a, B,0)
$(1 +cosBle*® - (1/V2)sinBe ™ (1 - cosBlei®
= 1/V2)sing cosfB - (1/V2) sinp
3(1 — cosB)e’® (1/V2) sing e'* 2{l +cosp) &'

upon the column vectors

1

0 0
,  pE0=11}) 9z, -1)={o0
0 0 1

(a, B, and 0 are the Euler angles of a rofation. ) It is
easily seen that if # is obtained from 2 by the rotation
(a,B8,0), then

PGz, \)=Da, B, 0)PE, )

is an eigenvector of s-#, and because of nondegeneracy
any eigenvector of 5.7 is a scalar multiple of §(7, A).

{In particular, for any v, D'(a, 8,%)®(,2) is a scalar
multiple of ¥(#,1), and therefore there is no loss of gen-
erality in taking the third Euler angle to be 0. ] The
vectors ¥, 1), ¥#,0), and (i, — 1) are respectively the
first, second, and third columns of the matrix D!(w, 8, 0).
It is evident upon inspection that there are vectors which
are not scalar multiples of any of these columns, for any
n, e.g.,

1/V6
1/V3
1/V2

Nevertheless, there is a proposition in L, correspond-
ing to ¢, namely f~*((¢)), and from the standpoint of
Axiom H there is no difference in physical status be-
tween this proposition and a(, 1).

Q=

IV. THE VERIFIABLE PROPOSITIONS OF THE
SPIN-1 SYSTEM

Since spin is both measurable and theoretically well-
understood, and since each spin component of the
(massive) spin-1 system is known to have a spectrum
consisting of the three points 7%, 0, and — 7%, it is clear
that the propositions concerning this system of the form
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“the spin in direction # is A (A =1,0, or —1 in units of
%) are physically significant.

A strict operationalist might contend that the evidence
for the quantization of spin does not suffice to endow
every proposition e, A) with physical significance. The
usual method of determining the value of a component
of spin is that of Stern and Gerlach, in which a beam of
particles passes through an inhomogeneous magnetic
field perpendicular to the propagation direction. Con-
sequently, the operationalist might object that once
the direction of beam propagation is fixed, the only
physically significant a{r, A) are those such that # is in
the direction of a field H capable of splitting the beam—
a direction which cannot in practice be far from per-
pendicular to the propagation direction even if the
Stern—Gerlach procedure is generalized, and in prin-
ciple cannot be along the propagation direction.

We can give two answers to this objection. First,
as discussed in Sec. II, a strictly operationalist under-
standing of the propositions concerning a physical system
is implausible on several grounds. Consequently, if for
some 72 propositions of the form a(ii, 1), a(,0), and
a(i,—1) are physically significant, as indicated by the
practicality of Stern—Gerlach experiments, and if
space is isotropic, as a great variety of considerations
indicate, then there is no reason to deny physical signifi-
cance to any a(, 2). Second, we can actually go a long
way toward satisfying the demands of the operationalist
concerning the entire set a(z, 2), though at the price of
imposing some experimental complications. If ions
rather than neutral atoms are used as the particles for
the experiment, the direction of the beam may be
adiabatically changed (slowly enough to make spin flips
improbable), !® so that the final beam direction is
perpendicular to any preassigned axis n along which one
desires to measure the spin. In this way, even when the
initial beam direction is specified, there is no proposi-
tion a(fi, 2) which could not be tested by a Stern—Gerlach
measurement. More precisely, a filter appropriate for
testing a(z, 1) is prepared by blocking the two output
channels of the Stern—Gerlach apparatus corresponding
to spin values unequal to X, so that the particle will pass
through the filter only if its spin component in the direc-
tion 7 has the value A (in units of #7). (See Fig. 1.)

By opening two channels and blocking one on a suitably
oriented Stern—Gerlach apparatus, one prepares a
filter appropriate for testing b{ii, ). (See Fig. 2.) Fil-
ters for the impossible proposition ¢ and the necessary
proposition 1 are prepared, respectively, by closing
all channels and by opening all channels of an arbitrarily

oriented Stern—Gerlach apparatus (the operational con-

=} 4

FIG. 1. Filter for the propo-
sition a(#, 1).
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n

FIG. 2. Filter for the propo-
sition b(#, 1).

straint, of course, being that the beam has been guided
50 as to enter the forward aperture of the filter). As
discussed in Sec. I, the operation of orthocomplemen-
tation can be understood in a natural manner by refer-
ence to filters, even if one does not adopt an operation-
alist point of view. Specifically, if u is a verifiable
proposition and # is a Stern—Gerlach apparatus adapted
by closing some channels and keeping others open

S0 as to be a filter for u, then u’ is the proposition
corresponding to the #’ filter which is obtained by
closing the open channels of # and opening its closed
channels. Obviously, b, )=(a(fi, 1))’ and ¢’ =1. The
relation of implication between verifiable propositions
can be similarly understood, following the general
discussion of Sec. II. We shall designate by L the set
of verifiable propositions, together with the operation
of orthocomplementation and the relation of implication
which have been indicated. The structure of Ly will be
fully stated in Sec. V.

We cannot dismiss a priori the possibility that there
are other physically significant propositions concerning
the spin-1 system than the members of Ly, and it is
even possible that reasonable experimental procedures
can be devised for testing these propositions, in which
case our usage of the term “verifiable” would be too
narrow. Proposals for classifying a set of propositions
larger than Ly as physically significant will have to
be examined on their merits when they are set forth.
There have been, apparently, very few such proposals
for systems of any kind. In this section we shall discuss
one due to Jauch, and two other proposals will be con-
sidered in Appendices B and C.

Jauch (Ref. 5, p. 75) essentially proposes the follow-
ing method for extending any set S, of propositions with
unequivocal physical significance to a larger set S
which derivately acquires physical significance. Let §0
be the set of (equivalence classes of) filters correspond-
ing to members of §;. Then a composite device can be
constructed by connecting in series finitely or denum-
erably many filters (with replicas allowed) from S,. Let
S be the set of (equivalence classes of) devices so con-
structible and satisfying sufficient conditions to function
as filters. Passage or nonpassage through a filter in S
is a bivalent physical test in an idealized sense. Hence
S determines a set of propositions S which may be con-
sidered to be physically significant.

If Jauch’s procedure is legitimate, then it seems
possible to extend Ly. Appendix A shows that for all
atoms a (L 5z~ Ly) there exist projection operators A,
and A, on //, which correspond to propositions a( and
as in Ly, such that A corresponding to @ is the limit
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(in the sense of uniform convergence) of the sequence
AAAAA -, If gy and @, are filters associated with
ay and a,, then the composite device @,d,8,a,d," - - Seems
to be the kind of admissible filter envisaged in Jauch’s
proposal, and it is reasonably associated with the prop-
osition a.!?

Clearly, Jauch’s proposal admits highly nonopera-
tional procedures as tests for propositions. We do not
condemn it on this account, since we have previously
expressed skepticism about operationalist programs.
What we do find disturbing about his proposal is the
absence of clearly articulated and adequately justified
rules governing the admission of filters with infinitely
many components. Even more troublesome is the fact
that in the case of systems other than the spin-1
system there are very plausible constructions of filters
with a denumerable infinity of components which gen-
erate propositions not contained in the Hilbert space
lattice, as we shall now show.

To see the difficulty, consider a spinless particle
restricted to one dimension, and therefore quantum
mechanically describable in the Hilbert space of
square-integrable functions of a single variable L*(E).
Let [c;,d,;] be a nested sequence of intervals on the real
line {(¢; < cy,y, lime; =e, d; 2d;,;, limd; =e) the inter-
section of which consists of exactly the one point e. Let
s; be the proposition that the particle is located in the
ith interval, and let S; be the corresponding projection
operator on L2(E). There is no objection in principle
to imagining a filter §; corresponding to each s;. Now
consider the filter with infinitely many components
s =848,85 . (Note that there is no need to resort to a
complicated interleafing of the §; in order to obtain
a filter, as in Ref. 19, since the propositions s; are
compatible with one another.) Quantum mechanics
predicts that any particle which passes through a device
consisting of §,,...,$, in series will pass through any
replica of one of these filters. It is reasonable then to
extrapolate to the idealized filter § and assert §< §,-,
for i=1,2,--.. The proposition s tested by § is intuitive-
ly the conjunction of the s;, and its content is that the
gystem is located at the point e. By contrast, the g.1.b.
of the projection operators S; on / is the null projection
operator, which corresponds to the impossible propo-
sition rather than to the proposition s. There is, of
course, no projection operator on # corresponding to a
proposition about the point location of particle. Thus,
if Jauch’s admission of filters with infinitely many
components is intended to enrich the set of operation-
ally defined propositions, it does so too well, for it
appears to lead to propositions which are not repre-
sented in the Hilbert space formulation of quantum
mechanics.

We do not wish {o draw the conclusion that nothing
can be salvaged from Jauch’s ingenious proposal. It is
possible that a reasonable set of operations upon physi-
cally unimpeachable filters may indeed generate a set
of ideal filters with precisely the structure supposed
by the Hilbert space formulation of quantum mechanics.
We only contend that this program has not been achieved
and is not likely to be easy. In the absence of satisfac-
tory methods for treating filters with infinitely many
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FIG. 3. A representative sample of propositions of Ly and
their relations. A line (solid or dotted) indicates that the
proposition represented by the lower dot implies the proposi-
tion represented by the higher dot. The absence of a line be-
tween two dots indicates that no implication relation holds
between the corresponding propositions. The direction #’ is
orthogonal hoth to 7 and to #”, but # is not parallel, anti-
parallel, or orthogonal to #”; and #* is not parallel or anti-
parallel ororthogonal to any of the other directions.

components, we can continue to explore the conse-
quences of the working hypothesis of this paper: That
those propositions of Ly which belong to Ly have a
physical significance which other propositions in L4
do not possess.

V. THE STRUCTURE OF Ly

Since the orthocomplement of each verifiable propo-
sition is immediately determined, the structure of L,
is completely known when one knows which propositions
are related by the implication relation. The only inter-
esting instances of the relation are those involving
a(i,A) for some #,, and b@’,1’) for some #’,1’, be-
cause it is evident that

¢ <x and x<1 forallxec Ly, (1)

a@,\) <a@’,)') iff 7 =#" and A=2",

~ -~

orn=-n"and A =~ ', (2)

b, \)<b@',\') iff n=n"and A =2X",

orn=-#%"and A==2". (3)

The implication a(i, ) < b(#’,)’) holds iff G, 2)

C ', A", or equivalently, iff the rays ¢z, ) and ¢, 1)
are mutually orthogonal. The complete set of possi-
bilities for obtaining mutual orthogonality can be found
by first taking #’ to be Z and afterwards performing the
appropriate rotations to achieve generality. Using the
columns of D(a, B,0) as the expressions for ¥, 1),
¥(#,0), and @@, - 1) respectively, we see that , 0)

is orthogonal to ¢, A} iff A =0 and cosB=0 (i.e., 7 is
perpendicular to z), and that (Z,+1) is orthogonal to
@,2)if x=F1land B=0 (i.e., #=z) or A==1 and

B=m (i.e., #=—2). Generalizing, we obtain the
following: a@, ) < b(’,\’) iff either
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fi=n' and A#X’' (4a)

Ai=—#" and A#~2)', (4b)
or

7L’ and A=2"=0. {4c)

All instances of implication in Ly are comprised in

Egs. (1)—(4). We illustrate the implications in Ly in
Fig. 3, using solid lines to indicate implications of types
(1)—(3), (4a), and (4b), and dotted lines to indicate
implications of type (4c).

It is evident that axioms P, B, and O hold of Ly.
Furthermore, an examination of Fig. 3 makes it clear
that any two propositions in Ly have a greatest lower
bound, so that Ly is an orthocomplemented lattice.
(Indeed, Ly is a complete lattice, but this is a fact that
we shall not use.) Since xApy and x Vyy exist for all
x,y € Ly, it will be very useful to compile an essentially
exhaustive list of them (Tables I and II), and this can
be done almost immediately from (1), (2), (3), and (4)
or from inspection of Fig. 3. The most interesting en-
tries in Tables I and II are those such that xAyy
#xAgy or xVyy #xVyy. In several cases b(#, )

Ayb@’ A"y =0, whereas b1, A) Agb(i’, A7) =F (G, )"
NG, A+ 6, since the intersection of two two-dimen-
sional subspaces of a three-dimensional Hilbert space
is a subspace of dimension at least one (a ray), but this
ray may not be spanned by an eigenvector of s -7 for
any 7 and hence may not correspond to a verifiable
proposition. If so, then the g.1.b. of b{(#, 1) and
b@(’,2’") in Ly is O. Likewise, there are several cases

TABLE 1. Generalized conjunctions.

) n'=n
aln, VA ya(@, N =aln, )} if M =2,
=a if A7 =,
aln, AD@, M) =ali,\) i A =2,
= if A =2,

b, WAy, ) =0, 0) if N =2,

=a(i, A") if A = A, where A” =, A" =)\".

“
n=—-n

a@, VAga(=7, ") =al, ) if N =~2

=0 if Af = =2,
a@, MAB(=7, N ) =alm,A) if A = =2
=6 if A ==,

b, M Apb (= A, M) =b@,\) if A/ ==2
=a(n”,A”) if M =~ where A =i, A" = —A.

WLl
a (i, N Apaln, 2') = 6.
al, M Aybln’, M) =a@@,n) if A=0 and A" =0,
=3 ifA=0and A =0,

b, DAL, M) =a(@",0) if ¥=2=0, wheren'Ln'Lln
=¢ if neither A’ nor x=0.

If # and #’ are neither parallel, antiparallel, nor
perpendicular:
b@, 0ALbH, 0)=al(@”,0), wherenl n” Lln'.

a@B, NN R N =0, a@®, M Npali?, 2) =9,
b, MAB@E, A )=¢ If A =0o0r A=0.
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TABLE II. Generalized disjunctions.

# =i
b, MV bR, A= b, N if A% =2,
=1, if A7 = A
b(r, NV ya(f, \)=b(#, A), if A =2,
=1, if A=A,
alii, WVyad, M) =ali, A), A =2,
=bn, N, if A=A, where ¥f =), M =X,

bl SN

n —n

bR, NV (-, M) =b(R, N,  if M= =2,
=1, if Af=—A,
b, MVpal=R, M) =br,N), ifA=-2,
-1, i Af= A,
a@, Va7, M) =aln, ), if M=—=2],

=b{n,A"), if A'= —A, where A" = A, AV =X

R LA
b, Vb, M) =1,

b, My , N)=bG,\),  if A =r=0,
=1, otherwise.

ai, Wvyaln®, N)Y=b@G",0), if A=A'=0, where #Lla" L 7’,
=1, otherwise.

If # and #’ are neither parallel, antiparallel, nor
perpendicular:

al, WVyal@, M)=1, il A’=0o0r A= 0,
al, 0V a(m’, 0)=5b(",0), wheren L a” L7,
aln, WV b, M) =1, B@E,AVB R MY =1,

in which a{ii, 2} Vyalii’,2") =1, whereas a(i,2)Vya(i’,2")
can never be 1 since the subspace spanned by two rays
has dimension of at most two. But again this subspace
may not correspond to a verifiable proposition, and

if s0, the l.u.b. of @G, ») and «(i’,\’) in Ly is 1.

VI. THE VALIDITY OF VARIOUS AXIOMS IN £,

In this section we use Ly as an instrument for
examining several crucial axioms proposed in programs
which aim at establishing the Hilbert space formulation
on a firm basis. We find that all of Piron’s axioms are
satisfied by L, except the second part of the atomicity
axiom (the “covering law”’). We do not examine other
axiomatizations in detail, but we do show that two of
Zierler’s axioms and one axiom of MacLaren fail to
hold in L. Also we find that modularity (which is
assumed in the pioneering work of Birkhoff and von
Neumann, though not in recent axiomizations) does not
hold in L.

That Ly is an orthocomplemented o lattice has al-
ready been pointed out in Sec. V. Consequently, the
only axioms of Piron which must be checked for Ly are
weak modularity and atomicity.

L, is weakly modular if for all x,z € Ly such that x
<z, x =z Ay(g’Vyx). Evidently, the equation holds if
either x or z is ¢ or 1. If both » and z are of the form
a(@,)), or both x and z are of the form b(#%, ), then x
=z, and again the equation holds. Hence, the only in-
teresting cases are those in which x =a(#,2) and z
=b(@,2"). But by Sec. V, a(@, ) <b@’ ) iff (i) a=7'
and x#)', or (ii) #=-#" and A # -~ X', or (iii) #1742’ and
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A=x’=0. Using Tables I and II one sees that the equa-
tion holds in each of these cases.

The first part of Piron’s axiom of atomicity asserts
that for every x € Ly except ¢ there exists an atom p
such that p <x. The validity of this assertion is evident
from Eqs. (1)—(4) of Sec. V or {rom Fig. 3.

If Ly satisfies the second part of the axiom of atomi-
city (the “covering law”), then for every atom ¢ of L,
the following holds: If x Sy €xVyg, then either y =x or
v =xVyq. A counterexample is provided by choosing ¢
=a(fi, 1), x=a@',-1), y =b@{',1), with ## +#’. Then by
Table I xVyg =1, so that ¥ equals neither x nor xV,q.
The breakdown of the covering law in this case is clear-
ly due to the fact that the l.u.b. of x and g in L, is a
proposition not associated with spin in any direction,
and therefore their l.u.b. in Ly does not equal the
l.u.b. in Ly,

Two axioms of Zierler® which we shall now consider
use the concept of a finite proposition, i.e., a proposi-
tion which is a generalized disjunction of a finite num-
ber of atoms. The dimension of a proposition x is the
I.u.b. of the number of implications in chains (consist-
ing of distinct elements) of the form ¢ sx  Sx,; <+ sx,
It is clear from Sec. V that every proposition in Ly is
finite, the dimension of a{fi, ) being 1, of b(#, \) being
2, and of the necessary proposition being 3. The two
axioms in question are the following:

1, If b, ¢, and d are elements of the sublattice of ele-
ments <a (where « is finite), and if d<¢ and bAc =¢,
then (dVb)A e =d.

2, If ¢ and b are finite elements of the same dimen-
sion, then the sublattices L, and L,, which consist re-
spectively of elements <a and elements <), are
isomorphic.

That the first of these fails to hold in Ly is shown by
taking the operations V and A to be Vy and Ay, and letting
d=a@,\), b=a@’,\"), c=b(@,\"), where i+ +7, # is
not orthogonal to #’, x#0, and A”# . Then (dV,b)=1,
50 that (dVyb) Ape =c¢. That the second fails can be seen
by taking @ and b to be b(i,0) and b(z, 1) respectively
and looking at Fig. 3.

MacLaren’ proposes the semimodularity axion, which
can be stated as follows:

It x and y are propositions such that for all z with x
<z, (xV¥)Az =xV(yAz), then for all z such thaty sz,
(vVzinz =y Vi{xnz).

A counterexample in Ly is provided by taking x
=Db@{@,2) and y =a{@”,)’), where 2% +A"” and 7 is not
orthogonal to #”. Then xVy,y =1, so that (xVyy)Apz =2.
The only values of z such that x <z are b(#,) and 1,
and for each of these alternatives xVy(y Ayz) is seen to
be z. Thus, the antecedent of the semimodularity axiom
is satisfied for this choice of x and y. However, the con-
sequent is not satisfied, since y <z holds when z is
chosen to be b{#"”,1") where A”#X’. Then (y Vyx)Apz
=1Ayz =8(@",2"}, while ¥ VylxAyz) =a@”, A" )Vy 6
=a@”,\").

A lattice is modular if xV (yAz)=(xVy)Az whenever
x <z. That Ly is not modular is seen by taking x
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=ali,1), y=a@’,1), z=b(#,0), with 2# +7A’. As seen
from Fig. 1, a@,1) <b{#,0). From Tables I and I we
have

a(ﬂ; 1)VV[a ﬁ’) l)AVb(ﬁ’ O)]:a(ﬁ, l)Vyﬁza(ﬁ, 1),
whereas
la@, Vvyaln’, ]Ayb@, 0) =1 Apb(#, 0) = bR, 0).

The failure of modularity for Ly is an interesting
curiosity, since Ly can be embedded in Ly, which is
modular. (Modularity does not hold for the lattice of
closed linear subspaces of an infinite dimensional Hil-
bert space, but it does hold if the Hilbert space is
finite dimensional. See Ref. 5, p. 85.)

VII. STATESON L,

It is well known that if #/ has dimension greater than
or equal to three, then there are no dispersion-free
states on Ly, or equivalently, no states m such that
m(a) is either 0 or 1 for each ae L, (Gleason, '* Kochen
and Specker, 1% Bell, % Belinfante!!). This mathematical
fact precludes interpreting the usual quantum mechani-
cal states as probability distributions over a space of
classically pure states, for these latter would have to
be dispersion-free. However, someone might conjec-
ture that Ly,—which is the “physically significant” part
of L,—does admit dispersion-free states, and that L,
does not admit them just because it is laden with non-
physical elements. The conjecture is false, and its
falsity is philosophically significant, for it shows that
one of the most important nonclassical features of quan-
tum mechanical states cannot be blamed upon the
admission of nonphysical elements into the lattice of
propositions.

The nonexistence of dispersion-free states on Ly can
be read immediately from the arguments given by
Kochen and Specker, and Belinfante concerning L. In
this section we shall present a new proof of the nonexis-
tence of dispersion-free states on Ly, by taking Glea-
son’s theorem as applied to a real Hilbert space as
our starting point. An advantage of this procedure is
that it enables us to exhibit all the possible states on
L.

Consider the orthocomplemented sublattice L, of Ly
generated by all the propositions of the form a(#, 0) for
arbitrary 7, i.e., closed under the operations of ortho-
complementation and g.l.b, Tables I and II show that
L, consists only of {a(#,0)}, {p(#,0)}, @, and 1. We shall
now show that L, is isomorphic to the lattice of sub-
spaces of a real three-dimensional Hilbert space. We do
this by constructing a concrete realization #/(R) of the
space, consisting of all real multiples of the column
vectors

- 2712 ging exp(- iar)
#(#, 0) =| cosB
2712 ging explia)

HR) is closed under real linear combinations, as can
be shown by checking that c¥(#, 0) +dyp(’, 0) is a real
multiple of (%", 0) for some direction #”. Because of
rotational invariance it suffices to check this fact by
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choosing the polar axis perpendicular to both # and #’,
so that 8=8'=7/2. Then

- 2712 ¢ exp(- i) +d exp(— ia')]
ciln, 0) +ddin’, 0) =| 0
2-1/%[ ¢ explia) +d explia’)]

and since the third row in this column vector is the
complex conjugate of the negative of the first row

- 2712 exp(—ia™)
c(i, 0) +dy(n!, 0) =k |0
212 explia™)
for some real k2 and a”,

If the inner product of two vectors of /{(R) is taken to
be the matrix product of the Hermitian adjoint of the
first with the second, then it can be checked that the
conditions for an inner product of a real Hilbert space
are satisfied. It is clear that #/(R) is three-dimen-
sional. The correspondence between the atomic proposi-
tions {a@, 0)} of L, and the rays of //(R) is now obvious,
and it then follows that the lattice L, is isomorphic to
the lattice of subspaces of #/(R). If a dispersion-free
state existed on Ly, it would automatically define a
dispersion-free state on the sublattice L, and by the
isomorphism just exhibited one would also be defined on
the lattice of subspaces of a three-dimensional real
Hilbert space. Since that would be in conflict with
Gleason’s theorem (see Sec. III), we conclude that there
is no dispersion-free state on L.

Any state on Ly must be an extension of one of the
class /Mg of states which are definable_on Ly in accor-
dance with Gleason’s theorem, i.e., m e /g if for all
acL,

mla) = 2wy, Paby),

where the 3; are normalized vectors in /(R), the w; are
positive real numbers summing to 1, and P, is the pro-
jection operator on #(R) corresponding to the proposi-
tion a according to the isomorphism indicated in the
preceding paragraph. The following theorem gives an
exhaustive compilation of the states on L.

Theorem: For m to be a state on Ly it is necessary
and sufficient that there exists a state m < /z and a non-
negative function a(#) such that

(i) m@)=m) if xe L,,

(i) ao@)<1-mla@,0),

(iii) a(-#A)=1-mla@#, 0))-a@),
(iv) mla(@, 1)) =a@),

(v) ml@, -1)=a(-1),

(vi) m(@,+1))=1~mla@,+1)).

To prove this theorem note that the only relations among
the a(#, £1), the b(#, 1), and L, which impose con-
straints upon the function m(x) are the following (as

can be seen by examining Tables II and III):

al@,l)=al-%,-1),
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TABLE III. Disjointness relations in L.

#=n
a@m, ) La@, V), iff a=n'.
an, ) Lo, N), iff A=),

w=—n
ali, ) La@’,N), iff x=—2'.
a@,\) Lb@', A7), iff a=~2",

R LA

alm,2) La@,\), iff A=2"=0.

Otherwise, a(#, ) is not disjoint to a(®,’, A) or b(n’, ).

b{#,1)=b(-7,-1),

a@,\) La@,\') for x#2’, and aln,A)Vyali,r’)
=b{@, ") if A, A’, A" are all unequal,

a(@,\) L b, n), and a(@i, 2)Vyb(i,2) =1,

Hence, by the general conditions on states, if m is a
state on Ly, then

mla(i, 1)) =mla(-#, - 1)),
md@, 1)) =m®(-7,-1)),
m{b@, \)) =mla@,\")) +mla@, \")) for
X, X', A" unequal,
mla(@, \)) + m(d@, ) =mla#, 1)) + mla(i, 0))

+mla@,-1))=1.

These constraints and the previously noted constraint
concerning states on L;, as well as the general condi-
tions on states, are clearly satisfied if conditions (i)—
(vi) are fulfilled, thus proving the theorem.

All the quantum mechanical states on Ly (i.e., states
of the form m(x) =3 w,(¢;,P.¢;), where the ¢; belong to
the complex Hilbert space 45, and P, is a projection
operator on this space) are included in the compilation
given in the foregoing theorem. However, in this com-
pilation there exist some nongquantum mechanical states.
For example, let

;n—(x) = ((L',lep),

where s+2$=0, and let a{#) =1 - m(a(#, 0) for # =% and
7Ai=%, but otherwise let @ () have any value allowed by
(ii) and (iii). Then

mla(x,0)) =ma®,0)) =0,
and by (iv) of the theorem,
mla®, 1)) =mla(y,1)) =1.

But no pure quantum mechanical states assign the val-
ue 1 to two distinct atomic propositions, and hence no
convex combination of quantum mechanical states would
do so. Therefore m is not a quantum mechanical state,
although it is a well-defined state on L, when a(#) is ful-
ly specified.

VIIl. CONCLUSIONS
The concept of a verifiable proposition of the spin-1
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system has been examined, and it has been argued that
the members of the lattice Ly have a preferred status
which other propositions concerning the spin-1 system
lack. The structure of L, has been exhaustively
investigated.

The results concerning Ly are not decisive evidence
that the Hilbert space formulation of quantum mechan-
ics cannot be fully justified. Nevertheless, the fact that
the lattice of verifiable propositions of a specific physi-
cal system faile to satisfy some of the crucial axioms
proposed in programs which aim at recovering the
Hilbert space formulation does constitute a serious
challenge to these programs. An obligation is placed
upon advocates of such programs to exhibit the physical
significance of propositions concerning the spin-1 sys-
tem which are not elements of Ly, or at least to show
that there are great mathematical advantages in extend-
ing Ly by admitting “ideal” elements. The possibility
remains open that a structure somewhat different from
the standard one would be adequate for deriving the
well-known physically significant consequences of
standard quantum theory, and may even be superior for
the purpose of handling hitherto unsolved problems.

The fact that L, does not admit a dispersion-free
state is an interesting contribution to the evidence
which has been gathered recently against hidden-variable
theories.

APPENDIX A

Let £ be a vector in 45, but suppose that {(£) does not
belong to Ly. A composite filter @d,3,8,8, ¢+ will be
associated with {£) in accordance with Jauch’s proposal
if £ lies in the intersection of the two subspaces
oG, ), F(b@’,2"). Then &, and @, can be taken to be
the filters associated respectively with the propositions
b, ) and b@#’,1') of Ly,. Clearly, then, a necessary
and sufficient condition for a composite filter of the indi-
cated kind to be constructible for (£) is that £ be ortho-
gonal to two nonparallel vectors ¢(@, ), @, r"). We
shall now show that for any £ it is possible to find a
vector ®(#,0) and a vector ¥(i’,1) orthogonal to £.

We first write

dy+ieq - sinB exp(- ia) - X +iy
t=|dy+ie,| and V2y(#,0) = |V2cosB = (Va2 .
d; +ies |, sing exp(ia) x+1y

If £ is orthogonal to ¥, 0), then the real and imaginary
parts of (£, (2, 0)) must both vanish, imposing two con-
ditions on the real vector (x,y,z), which can always be
simultaneously satisfied, and except in degenerate cases
essentially only in one way.

In order to investigate orthogonality to ¥, 1) we
rewrite
(1 + cospB) exp(- iar)
29(,1)={ V2 sing
(1 - cosp) exp(ia)

and multiply £ by a scalar to yield a vector of the form
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¢y expli(k - 8)]

¢y expli(x +5)]
where each ¢; is real and nonnegative. If either ¢; or
¢y is 0, then £ is orthogonal to either (},) or (8), and
0 1
the required orthogonality is achieved. Hence, in the
following argument both ¢; and ¢; will be assumed
nonzero. ¥{n,1) is orthogonal to &’ (and hence to &) iff
0=c,(1 + cosB) expli(y + k)] + ¢,v2 sinf
+¢3(1 - cosp) expli(- v + «)], (A1)

where ¥y =a - §. Take the real and imaginary parts of
(A1),
0=c(1 +cosB) cos(y + k) +V2c, sinf
+¢5(1 = cosB) cos(=y + k), (A2)
and
0 =c,(1 +cosB) sin(y + k) + ¢3(1 = cospB) sin{~ y + «).

(A3)

¢y sinly + k) + ¢y sin(=y +x)
~ ¢y sin(y + k) + ¢ sin{=y +«) °

x=cosf= (A4)
Since c¢; and c; are nonzero, a sufficient condition for
—1<cosB<1 is that sin{y +«) and sin(- ¥ + k) have op-
posite signs, which will be the case if the direction of

v is closer to the y axis than is the direction of «, or
equivalently if cos®y is less than cos’k. We shall now
show that except in special cases, which will be inves-
tigated separately, the equation resulting from the sub-
stitution of Eq. (A4) into Eq. (A2) has a solution y for
which COSZY<COSZK, so that B is a real angle.

From Eqgs. (A2) and A4) and the assumptions made
so far concerning ¢y, ¢3, ¥, and k, one obtains by a
straightforward calculation

0=2c,cqu? — (2¢cqc3 +cdu + chw, (A5)
where u =cos?y and w = cos’k. Hence
w=3+v+3[1+4r(1-2w)+4ar’2, (AB)

where 7 =c/4cc;. Since 0 <w <1, we have
=3 <3[1+4r(1-2w)+ 4" <7 +3.

Hence, choosing the negative sign in Eq. (A6) we have
0<u <1, which is a necessary and sufficient condition
for y to be a real angle. In order to check whether
cos?y is less than COSZK, we fix w and seek an ¥ which
maximizes u. It is easily shown that du/dv =0 implies
that w equals either 0 or 1. Hence, except for these two
extreme values of w, # is monotonic in 7, and therefore
to check whether u is less than w we need only look at
r=0and r—~, At =0, Eq. (A6) (with the negative
sign) yields # =0, so that u is less than # unless w = 0.
For r—+ o,

u=3+7=7r[1+1=2w)/r +1/82 1 220 = (w —w?)/2r,
by keeping only terms to first order in l/r. Therefore,

if w does not equal 0, u is less than w for large but
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finite . (The case of infinite » has been excluded, since
we have assumed that ¢; and c¢; are nonzero.) We have

established, therefore, that cos’y is less than cos’x
except if w equals 0 or 1, which we now investigate

separately.

I w equals 0, then x is 7/2 or 3n/2. If the former,
let ¥ be 17/2; if the latter, let ¥ be — 7/2. In either case
Eq. (A3) is satisfied and Eq. (A2) becomes

0=[(c; = c3)? = 2¢2] +2(c} = c}) cosB +[(c; + c;3)* +2cE]
Xcos®B.

With the proper choice of the root we obtain

2 _ 2 2

—-ci+ +2

<cosB < CF cy ZC]cP c? ,
+c5+2c5

Cy + 20103

cj—ci+2c}

cI+2cicy +ci+2c%
so that -1 <cosB<1. Hence both Eq. (A2) and Eq. (A3)
are satisfied by some real angles 8 and v.

If w equals 1, we distinguish two cases, 2cics < ¢}
and 2c¢,c; > ci. In the former case let ¥ be 0. Then Eq.
(A3) is satisfied, and Eq. (A2) yields {for proper choice
of the sign of the radical)

cosp _ch=ci 2} - ciep) = (eycy)*” .
ci=2c.Cy +cf+2c3
Therefore,

ct-c} <cosB< ch—ct+2(ch - c1c3)
c5=2cic5 + i +2c¢5 ci—2cicy+ci+2c5°
so that - 1 scosB<1. If, however, 2c;c; is greater than
c% we return to Eq. (A5) but take the positive sign of
the radical. Then

u=3%+v+52r-1)=2r =2c}/4cic, < 1.

Hence, 0<cos?y <1=cos’k, and therefore real angles
B8 and ¥ can be found so as to satisfy Eqs. (A2) and
(A3).

All cases have now been covered, and the proof is
complete.

APPENDIX B

One may try to use a suggestion of Stein (Ref. 9, p.
390) for the purpose of finding physically significant
propositions outside L. Let x be a proposition in Ly
and define x(¢) as the proposition which is realized at
time 0 by virtue of realizing x at time ¢, the truth value
of the former being the same as that of the latter in
case of realization. Clearly, the expression “x(f)” is
elliptical, since its content depends upon the dynamics
of the system. We shall restrict our attention to the
only physically realistic Hamiltonian of which we are
aware for the nonrelativistic spin-1 system, H=- B
*8, where B is in general a time-dependent magnetic
induction. With this choice of the Hamiltonian it can be
shown that x € Ly implies x{t) Ly, so that no extension
of the class of physically significant propositions has
been accomplished.

It suffices to give the proof for an infinitesimal time
interval A¢ (which the advantage that B can be taken to
be effectively constant), since the result for finite ¢
follows by iteration and passing to the limit. If P, is the
projection operator on the Hilbert space corresponding
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to x, then the Hilbert space corresponding to x, then
the projection operator corresponding to x(t) is

Priapy =exp(inB « sAt/H)P, exp(- iuB° 8At/F).

With no loss of generality B can be taken in the z direc-
tion, so that

P.(aty = exp(iQs )P, exp(— iQs ),

where @ is defined as pBat/h, If x is a(@,1), with #
given polar coordinates 8, ¢, then

3(1 +cosh) exp(~ig)

expli@s,) | 2°1/2sing

3(1 - cos) explio)

exp(i@f) 0 0
0 10
0 0 exp(- iQ%)

3(1 +cos8) exp(—i¢)

2712 ging

[l

3(1 - cosb) exp(iop)

3 (1 + cos8) exp[— i(¢p - Q)]
2712 5ing

2(1—cos8) expli(¢ — @#)]

il

is an eigenvector of P,(,;, and it also has the form of
an eigenvector (with eigenvalue 1) of the spin operator
in some direction #’. Consequently, x{At) equals
a(@’,1) and hence belongs to Ly, A similar argument
holds for x =a(@, - 1) or a(#, 0), and no further argu-
ment is needed for x =b{#@, 7).

APPENDIX C

In 1968, Jauch and Piron® published a formulation of
quantum logic with differs radically from their earlier
work. Two features of the new formulation are especial-
ly relevant to our argument: (a) They propose a new
definition of conjunction, which may permit the exten-
sion of Ly to a larger set of physically significant pro-
positions; (b) They claim to prove the covering law.

In order to make judgments on both of these points we
must summarize their salient definitions and (since
there are some obscurities) make some comments on
how they should be construed.

(i) A yes—no experiment o is said to be true if a
performance of o will necessarily give the result yes.

(ii) A partial ordering < is defined on the class of
yes—-no experiments as follows: If ¢ true => 3 true,
then o <p.

(ii1) The proposition {a} determined by the yes—no
experiment o is {818 <o and a <B}.

(iv) If for each 7 in an index set I, «; is a yes—no
experiment, then Ila, is the experiment which consists
of randomly choosing and measuring one of the «; with
the result yes (no) being ascribed to I1 e; if the result
yes (no) is obtained for a;. If a; is the proposition
given by a; ={a;}, then N q; is the proposition {1 o;}.
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(If i=1,2, we can write Na; as a;Nay.)

(v) The state of a system is the set S of all true pro-
positions of the system.

Definition (i) is clearly elliptical, and some phrase
like “when the system is in state S ought to be inserted
between the words “true” and “if.” Without such a
qualification the predicate truth would be reserved only
for necessary yes—no experiments, which surely is
not the authors’ intention. Instead of the phrase “when
the system is in state S” one might suggest “when the
system is prepared in manner X,” but we suppose that
the difference is probably not very important.

If the elliptical definition (i) is expanded as we have
just suggested, there are important consequences for
definitions (ii) and (iii): Specifically, whether or not the
relation < holds depends not only upon the experiments
o and B, but also upon the extension of the set § of
states. The reason is that the phrase “a true = 8
true” is elliptical and means something like “in every
state in which a is true B is also true.” It follows that
the concept of a proposition, defined in (iii), also de-
pends upon the extension of §, since a proposition is
defined as an equivalence class of yes—no experiments
symmetrically related by <. As an example, consider
a=1{a}, a suppose that there is no state in which the
measurement of o is certain to yield yes. In that case
we have o <1, where ¢ is the impossible experiment,
and a then equals the impossible proposition. We see,
therefore, that the new gquantum logic of Jauch and
Piron differs radically from their own earlier formula-
tion, in which the structure of the lattice of propositions
was in principle specified without reference to the set
of possible states of the system; in fact, as we saw in
Sec. II, the set of states was explicitly defined in terms
of the lattice of propositions. We do not wish to condemn
the new procedure of Jauch and Piron, since it is legiti-
mate and often very fruitful to axiomatize several con-
cepts in tandem. What is unsatisfactory in their pro-
cedure is first that they do not seem to recognize that
the concept of state is involved in their definition of
implication, and second that their characterization of
the set of states consists of nothing more than their
definition (v), which is insufficient to fix the structure
of either the set of states or the set of propositions.

We now inquire whether definition (iv) of M a; provides
a reasonable extension of the set of physically signifi-
cant propositions. Let b(#, ) and b(#’, \’) be two propo-
sitions in L such that

G =bl, IAybG XY £ b0, A Agbln’, X).

What is the content of the proposition b(#, )N b@’, 1%),

in the sense of definition (iv)? It is the proposition which
is true in those and only those states in which b@, )}

and b(#’,2’) are both true. Now suppose that the set of
states contains the state which is represented in the
Hilbert space formulation by the one-dimensional inter-
section of the two two-dimensional subspaces

f(b(, 7)) and F(b@, 1")). (This is a reasonable supposition
to ascribe to Jauch and Piron even though, as noted,
they say little about the set of states.) Then b(#, )

N b{#H’, ") is not identical to the impossible proposition.
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Prima facie, then, we have obtained a physically signi-
ficant proposition outside of Ly by performing an opera-
tion upon members of Ly. But has anything significant
been achieved thereby? The only way that we can check
whether b(7Z,2) N b@#H', 1) is true of a physical system at
time f is to equip oneself with an ensemble of systems
which are somehow guaranteed to be identical with the
system of interest (perhaps because of identical pre-
paration), and then to check (i, A) on an arbitrarily
large subensemble and b(#’, X’) on another arbitrarily
large subensemble. The two subensembles must be dis-
joint, because of the non-corealizability of b@%, x) and
b([#A’,A"). There appears to be no way of checking

b{#, )N b{H’, ') other than by investigating the features
of an ensemble. But the ensemble in question can be
characterized perfectly well in terms of the lattice Ly,
and therefore only a verbal maneuver seems to have
been performed in attributing physical significance to
the proposition b{@, A} N b{#E’, ).

We shall not discuss the covering law in detail, be-
cause the argument of Jauch and Piron is rather lengthy
and has to be made even lengthier in order to achieve
rigor.?! It suffices for our purpose to note that their
argument depends crucially upon the following assump-
tion: For any state S of a system and any proposition «,
there exists an ideal measurement of the first kind of
a. (A measurement of a is of the first kind if an answer
“yes” implies that a is true immediately after the mea-
surement. A measurement of a is ideal if and only if
any proposition which is both corealizable with a and
true prior to the measurement is true immediately after
the measurement. ) The assumption of Jauch and Piron
is hard to judge without much more information about
the physically allowable states and the physically possi-
ble measurements. It appears to us to be at least as
strong an assumption as the covering law itself, and as
difficult to judge a priovi.

One judgment which we can make confidently is that
ideal measurements of the first kind cannot be ac-
complished by measuring propositions which are con-
junctions in the sense discussed in the preceding para-
graph. Suppose that a particular system of interest is
in a state S in which neither ¢=b6, X} N b(#’, 1"} nor its
orthocomplement ¢’ is true. Measurement of ¢ con-
sists, as we have seen, in carrying out experimental
tests of b{i, 1) and b(%’,1’) in subensembles selected
from an ensemble of systems in state S; in one or both
of these subensembles the answers obtained will be a
mixture of yes and no. This procedure obviously does
not affect the system of interest, and in particular it
does not throw that system into a new state in which
either ¢ is true or ¢’ is true. In fact, the procedure
does not have this effect for any of the systems of the
original ensemble, whether chosen to be tested in one
of the two ways or not. In short, even if the new con-
ception of conjunction of Jauch and Piron is accepted,
it does not seem to advance their proposal to establish
the covering law via the performability of ideal mea-
surements of the first kind.
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We conclude with a brief philosophical comment on
the new conception of a state proposed by Jauch and
Piron: that a state is the set of all true propositions
(in their sense of “true”) of the system. Since neither
potentiality nor probability enters explicitly into this
conception, it is much closer to the concept of state in
classical physics than to the usual quantum mechanical
conception. Only the circumstance that in standard quan-
tum mechanics there is a one—one correspondence be-
tween pure states and atomic propositions—both being
represented by rays—prevents outright discrepancy
between the two conceptions, but it would be a mistake
to rely heavily upon this circumstance, because (as
argued in the present paper) the physical significance
of many atomic propositions is doubtful. (Also see
Stein’s argument in Ref. 9, p. 431, that states cannot
properly be regarded as subject to yes-or-no tests.)
Even if it turns out that quantum mechanics can formally
be cast into the new formulation of Jauch and Piron, we
believe that their conception of state would neverthe-
less disguise one of the profound philosophical implica-
tions of quantum mechanics: that potentialities constitute
an essential aspect of what a physical system is. (On
this point we agree with Heisenberg, Ref. 22, p. 53.)
Finally, Jauch himself recognizes®® that the new concep-
tion of state is problematic when applied to one part of
a system consisting of several correlated parts, as in
the example of Einstein, Podolsky, and Rosen.
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Asymptotic approximations, with error estimates, of the
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A scattering matrix function is defined, which obeys a nonlinear (Riccati) matrix differential equation,

containing two coupling potential matrices U and W, which are slowly vanishing, and which are mildly
oscillatory and rapidly oscillatory, respectively. The scattering matrix is the limiting value of this scattering
function. The equation is first transformed to separate the effects of U and W, thereby yielding separate
equations in each. The long range effects of U and W are included in approximations for the scattering
matrix, errors are assessed, and a prescription is outlined for the numerical computation of these

approximations. In the case where the effect of W is entirely neglected beyond a certain point, the
approximation obtained by Alder and Pauli [Nucl. Phys. 128, 193 (1969)] is recovered. An assessment of

the error in this approximation is obtained.

1. INTRODUCTION

Numerical solution of the coupled radial equations
which occur in the partial wave description of Coulomb
excitation is very cumbersome in practice because of
the slow decrease wth distance of the coupling potentials.
This problem already occurs in the distorted wave Born
approximation to the solution, in that DWBA integrals
whose integrands are oscillatory, have to be carried out
to prohibitively large distances. When coupling between
the various inelastic channels is to be included to all
orders, the difficulty is compounded, and inclusion of
more than five or six channels becomes prohibitive using
the conventional algorithms for solving coupled equa-
tions. A similar situation is encountered in atomic phy-
sics, where polarization potentials between atoms per-
sist to large distances. Approximate methods of solution
have been devised in both the nuclear!™* and in the atom-
ic%% cases. These methods exploit the fact that at large
distances the coupling potentials become very small and
either asymptotic expansions of the radial functions in
powers of (1/7) are presented, or else iterative solu-
tions in orders of the coupling potentials are devised.
The approximate solutions thus obtained are then match-
ed to the solution obtained by the conventional numerical
solution of the coupled equations carried out from the
origin to the matching point. None of these studies,
however, systematically explore errors incurred due
to neglecting the higher order terms. In the present
paper we investigate the long range behavior of the solu-
tions of coupled radial equations in the presence of
coupling potentials which decrease like the sum of in-
verse powers of the radial distance of », »™! with A= 1.
The purpose is to examine the leading terms in the solu-
tion, and the order of magnitude of the associated cor-
rections so as to guide future numerical approximation
methods. In particular, a scattering matrix S(») is de-
fined as a function of », whose limit at infinity is the
scattering matrix §, from which the scattering cross
sections are derived. Approximations to § are obtained
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and examined by integrating a Riccati equation for S(r).
The zeroth order is identical to an approximate solution
first proposed by Alder and Pauli, and the higher order
terms provide a method for obtaining the asymptotic
behavior of the corrections.

The first order correction terms provide a practical
method for improving upon the method of Alder and
Pauli, as is shown in a companion paper. ’ In that paper,
methods for computing the correction terms are pro-
posed and numerical examples are given.

Solutions of the coupled equations involving asymptotic
series in powers of 1/¥ have been employed. ¢ However,
as used, the applicability of this method depends on the
requirement that the differences between the wavenum-
bers in the various scattering channels are not too
small, The smaller these differences, the larger the
radius 7 has to be chosen at which the series gives a
desired accuracy. This difficulty was circumvented by
Mercer and Ravenhall® by setting all nuclear excitation
energies equal to zero. Their method represents a sig-
nificant improvement over previous methods in that,
once the excitation energies are set equal to zero, it
includes the effect of coupling at large distances in an
essentially exact fashion. In the present formulation the
nuclear excitation energies need not be zero, yet the
above mentioned difficulty is avoided. It is hoped that
the method will provide a basis for computation of dis-
persion corrections for inelastic electron—nucleus scat-
tering where a large degree of accuracy is required.

2. GENERAL FORMALISM

The projectile is assumed to have no spin, The posi-
tion of the projectile relative to the center of mass of
the nucleus is denoted by r, the spin of the nucleus in
state ¢ is ZI;, and the orbital angular momentum of the
motion relative to the center of mass is #ZL. A given
total angular momentum %J can be achieved by coupling
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various ZL’ s to various #I;’ s, and the corresponding
radial projectile-target wavefunctions {zp sy, ) are
coupled to each other through the equation

dZ
[_2 Daa +Kao¢] Z/)a (7) :Z;Vaa' (T)Zpa' (’l"). (2- 1)

d
Here the index « denotes collectively the quantum num-
bers L, I, and J, The magnetic quantum number M is
suppressed because it is the same for all @’s. D is a
diagonal matrix which contains the centripetal and mono-
pole Coulomb potentials and K is the diagonal matrix of
the various wavenumbers k;, =[20(E — ¢ )/t Here
K is the projectile-nucleus reduced mass, ¢; are the
nuclear excitation energies, and E is the total energy.

For the case of a point nucleus,
D, 0r)=L(L +1)/v"+ 2n;ky/7,

where 1; are the Coulomb parameters ze*/7w, = pze?/
7ik;. The coupling potentials V,, have the same meaning
as V,, rp defined in Eq. (10) of Ref. 1, They are also
equal to (2u/72){(Y V1Y), where the V is the sum
over the nucleons in the nucleus of the projecticle—
nucleon potentials and Y(L,)JMJ(r £+ £4) is an eigen-
state of the angular momentum operators g 2, L2

and I? and is also an eigenstate of the nuclear
Hamiltonian H4(&; - -+ £4). The potential V,,. can be ex-
pressed in sums over multipole terms A, which at dis-
tances beyond the nuclear surface decrease as r"“1

with x = 1. The monopole term, A=0, has been removed
from V. and included in D,,. The value of @ runs
from 1 to .

There are # linearly independent solutions y¢, s
=1,2, ,n of Eq. (2.1) which are regular at the ori-
gin, but Wthh may not yet obey the proper asymptotic
boundary conditions, If all the components zl)‘s’
=1,...,n for a given s, are placed in a column, and if
all the columns s =1,...,n are placed next to each
other, one obtains the matrix () of the regular
solutions,

(Was =15 (r).

In matrix form Eq. (2.1) then reads

2
(18- 00y + 2] 0 =V 0 (2.2)

The matrices D(r), K%, and V() are real and symmetric.

At large distances, say ¥ =R, the diagonal potential
reduces to the usual point Coulomb form

Doo(r)=Lo(Ly+1)/72 +2n5ke/7, 72 Ry,

where 7, are the Coulomb parameters ze2/ﬁva =pnzet/
tik,, and the coupling potential matrix can be expanded
in powers of 1/'r,

Viry=22 V™,
az1

with [, | Vag() | dr < for each entry Vas) of V(r),
The pomt Coulomb function® which asymptotically con-
tains outgoing waves is denoted by 2, (),

ha(r) :h'(lon Nas kay)
= ¢4 (r) exp(id,).

v=Ry, (2.3)

(2.4)
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In the above ¢, is the amplitude which at large distances
goes to unity and the phase is

0o () =ko? = N In(2k,7) = Lo/2+0, 0 . 2.5)
A diagonal matrix H(») can now be defined by
Hy o) =n 01, a=1,...,n, (2.6)

and the corresponding matrix of the ingoing point
Coulomb waves, k¥, is given by Hl,=H%,. (In what fol-
lows, Hermitian conjugation of a matrix M is denoted
by M', complex conjugation by M*, transpose of a ma-
trix M by M7, and M’ denotes dM/dr.) Furthermore,

H'(¥)H*(v) — Hy)H*!(r) = 2il. 2.7)

Employing the method of variation of constants, matrix
functions A (») and A (») are defined by

) =H@)A ) + H*@)Br), (2.8a)
Y @) =H (A ) +H*"(r)B ), (2. 8b)

which, together with Eq. (2.2) and (2.7) yield for »

>R,,

Ar)=UA+ WS, (2.9a)

By =U*B + W*A4, (2. 9b)
Here

V) =g H* WV HE) @.10)
is skew Hermitian, i.e., U'=- U, and its elements are
slowly oscillatory functions of ». The matrix

W) =t H*(r)V (r)H* (7) (2.11)

is symmetric, and its elements are rapidly varying
functions of . By means of Eq. (2.7), the “matching”
equations for 4 and A in terms of ¥ and ¥’ are given as

Alw) == [H* ' (r)p(r) - H* @)’ )]/ (24), (2.12a)
B =[H"(r)v(r) - Hr)p (r))/ (20). (2. 12b)

If ¥(r) is real, which can always be chosen to be the
case since the potentials are real (no complex optical
potentials are present), then S(r)=A@)*.

Since the coupling potential V(») has integrable entries
for R, <¥ < and the point Coulomb wavefunctions are
uniformly bounded there, the elements of U and W are
also integrable for R, <7 <<, in which case the solu-
tion matrices A4 and A of (2.9) tend to finite limits at
o, Furthermore, since ¥ is regular at the origin, and
its columns are linearly independent solution vectors of
Eq. (2.1), then A() and B (r) are nonsingular for R,
<y <, even as ¥ tends to «©, and we can define the
matrix function S(r) by

A@B @), Rysv

and its limit

Sr)y=- (2.13)

5 = 111’1’15(’}"),

g 0

both of which are unitary and symmetric since ¥ is reg-
ular and the potentials are real and symmetric. § rep-
resents the scattering matrix associated with Eq. 1. To
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see that S and § are well defined and unitary, note that
since P is regular and the potentials are Hermitian,

Ty~ wfrp=0 for all 7,
but

3T = (A'H* +BH)H'A + H*'B)

=ATH*H'A + BTHH*'A + ATH*H*' + BTHH'A

SO

0 =AY H*H' — H*'H)4 + AN HH*' — H'H*)f

=2i[A - B'B],

where we have used (2.7) and the fact that H is diagonal
and so commutes with H’,

Therefore, A'w)A ) =8#)8 ) for all ». If B is sin-
gular at some point 7 =R, then for some nonzero con-
stant column vector £, 8{r,)£=0. But then 0=£'3"(r})
XBwo)e =AM (ry)E, so that A(r)£=0. But then
from (2.8) we see that $(ry)£ =0 and ¢’(r;)£ =0, in which
case the vector solution ¢(») =¥(r) £ of (2. 2) is identical-
ly zero for all ¥, contradicting the linear independence
of the columns of . Therefore, A(r) is nonsingular for
all = R,,. Similarly A(r) is also nonsingular for » = R,,.
Thus S(v) is well defined, and since AT} () =B (+)B W),
I=B"'4481 =S (»)S(r), whence S(+) is unitary. Since
A@) and B (r) tend to definite limits at , and S(r) is
unitary, § is well defined and unitary.

Since in addition, the potentials are real, then
dTYr =T =0 for all 7,

in which case one obtains in a manner similar to the
above that

0=y"y' =97 p=2{[B"A - A"B] for all v =R,,.

Thus ST =~ (BT)" 4T =- AB"'=S, and § is symmetric.
Making use of Eq. (2.9) one obtains for S a Riccati
equation

SHy)=U@)SE)+S@)UT(r) - W(r) +S@)W*(r)S(r).
(2.14)

In view of Egs. (2.10) and (2. 11) the above equation can
also be written as

S'(r) =~ (SH — H*)V(HS — H*)/2. (2.15)
The integral form of Eq. (2. 14) is
S=S®R )+ [o [UES(E) +S(E)UT(6)]dE
= S WO e+ [S(e)W*(£)S(e) de, (2.16)

which can be iterated to yield successively better ap-
proximations for §. It will be seen later on, that in or-
der to obtain approximations to §, it is advantageous to
first solve the system

Allr)=UW)Alr), r=R,,
AR,) =1

The solution matrix A(r) of Eq. (2.17) is unitary. This
follows from the fact that A"(R,)JAR,)=1 and (A*(»)
XA@)) =A'U'A + A'UA =AY (U + U)A. The latter ex-

(2.17a)
(2.17b)
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pression vanishes since U is skew-Hermitian and ATA
=] for all ».

3. COMPARISON WITH THE METHOD OF ALDER
AND PAUL!

The authors of Refs. 1 and 2 solve the system of equa-
tions (2.9) approximately by dropping the rapidly oscil-
latory terms in W and W*,

Alr)=U@@A, @), (3.1a)
Bl(r)=U*(x)B,(r), (3. 1b)
Y (r)=HA,+H*B,, v=R,. (3.2)

In order to maintain the continuity of ¥ and §’ at the
matching point R, the initial conditions for A, and B,
are determined by equating ¥, and ¢}, obtained from Eq.
(3.3) in terms of A, B,, A, and B/ to i and ¢’ at v =R,,.
Making use of Egs. (3.1) and (3. 2), the resulting equa-
tions for A, and B, at ¥ =R, are

(I +iH*"W*)A =4 - H¥*HV /4, (3.3)

(I - iH*W)B, =8 - HXH*V/4,

where all quantities are to be evaluated at v =R, and
where 4 and 3 are obtained from Eq. (2.12), Since W
decreases with V on the order of »™0~! A;>1, we see
that for R, large enough these equations can be solved
explicitly for A, and B,, which will be nonsingular.

Again, if i is real then B (R,)=A¥R,).

The solutions of Eq. (3.1) can be expressed in terms
of A(r), defined by Eq. (2.17), according to

A ) =A)ARy), (3.4a)
B,(r)=A*)B,R,), (3.4pb)
and the scattering function analogous to (2.13) is
S4(r)=~A,)B;\(r)
=A@~ A,R)B,R)AT(), (3. 4c)
S.(r) =AW)S, R JAT(¥). (3. 44d)

The scattering matrix is again obtained in the limit of
large distances

S, (=) = 1imS, ().

7o

(3.5)

Code AROSA! computes A(r), the solution of Eq. (2.17),
for increasing # until, for » =R 4, the values of S,(r)
change less than a predetermined amount. Thus S, (=)
SR ).

Direct differentiation of the scattering function for
this approximation yields

Sir)=Ur)S,(r) +S,0UT (). (3.6a)

Note that this can also be obtained from Eq. (2. 14) by
setting the oscillatory term W equal to zero. Further,

sa(RM) = (‘AaB#)r:RM' (3. 6b)

This initial value is not exact, since at the matching
point B, we have
Y=HA,+H*B,=(H* - HS )B,,

and
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b=HA +H* = (H* - HS)A,

so that yB;! =H* — HS, and ¢3~' =H* - HS, yielding, for
r=R,,

S-S, =H"p(B;'-B™).

This is not zero, since B,#/3. The error in AROSA’s
scattering matrix function is

Ar)=SF) - Sy(r). 3.7
In view of Egs. (2.14) and (3. 6a) it satisfies

A'r)=U@)AW) +AXUT(v)

- W) +SW*)sw), (3.8a)

AR,)=S(R,)-S,(R,). (3.8b)
Introducing the matrix 8(r) by means of the
transformation

A)=A@)s(AT(K), (3.9)

one finds that the first two terms on the right-hand side
of Eq. (3.8a) cancel in view of Eq. (2.17), and one has

5'r) = - ATWA* + ATSW*SA*, (3.10a)
5(R,) =AR,). (3.10b)
The integral of Eq. (3.10) is
5(x) =AR,) - fRMA*WA* dt + fRMA*SW*SA*dg.
(3.11)

An integration by parts of the first integral yields

fR:A*WA* dt=-YR,)+ fR:lA*[UY +YUTJA* dE,
(3.12)
where

Y(r)=- [ W(g)ds. (3.13)

Similarly, for the second integral in Eq. (3.11), one
finds

f,;; A'SWHSA* dE=- SR )Y* R, )SR,) - [, A'ST*S
+SY*S|A*dE + fR;A*[USY*S

+SY*SUTlA* dt. (3.14)

The Euclidean vector norm

NEl = (| & |2+ & ]2+ o+ |£,]|DY/2
for a vector
5.1
=L,
induces a natural matrix norm
1Ml = max{||M&ll; £ a unit vector}. (3.15a)

Since IMEN? =¢E™M'ME is a positive semidefinite,
Hermitian, quadratic form,? we see that
[IMII2 = maximum eigenvalue of MM, (3. 15b)

We shall find this a convenient norm, since for U a uni-
tary matrix, Ul =1, and
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MUl =M} =1|UM|} (3.16)

for any matrix M.

Recalling the expansion for V given in Eq. (2.3), we
define

vay = max RIHENV @)l
raRM
where 1, is the index of the leading term V,‘OV‘XO'1 in that
expansion, and % is the smallest of the wavenumbers
kys 1< a <n, in Eq. (2.1).

(3.17)

Since R, is greater than the turning points of each of
the point Coulomb functions k,(¥), 1 < a <n, then |k (r)l
is nearly 1 for ¥ =R, so that vy, is very nearly equal
to 11V, 1.

We, therefore, have for U and W defined in (2.10)
and (2.11) that

U@ =0, kv, (3.18a)

W)l =0y v 0™). (3. 18b)
In Appendix A it is established that

1Y @) =0y fetr ™). (3.18c)

This result is due to the fact that the integrand W in

Eq. (3.13) is a rapidly oscillating function of v, which
is also responsible for the additional factor of k! in
(3.18c). Since S is a unitary matrix, it follows from Eq.
(2.14) that the norm of S’(r) is of the same order of
magnitude as that of the norms of U and W. Hence the
norms of the integrands of all three integrals on the
right-hand sides of Eqs. (3.12) and (3. 14) are of the
same order of magnitude, 0@} k®»07?). Thus all three
integrals have norms of order O(viok"sr'”‘()"). The above
argument shows that

15() = AR I = OV = Olwp e *R3p07). (3.19)
Further, from Eq. (3.3), it can be seen that
AR =ISR,) -SRI
:“74(RM)B-1(RM)_Aa(RM)B;1(RM)|I
=0, kR, (3.20)

It is not too surprising that (3.19) and (3. 20) are of the
same order of magnitude since the error in both was
due to the neglect of W. Combining (3.9), (3.19), and
(3.20) it is found that the error in the scattering matrix
computed by AROSA is

a(E)ll =115 =Sl
=05k R3F0™) + 0@ LR,

Since in practice k=1, kR, >1, this is just

1S = Sa(=)ll =0,k 2R0™). (3.21)
From Eq. (3.4d) we see that since A is unitary, the
unitarity and symmetry of S (»} depends on the unitarity

and symmetry of S,(R,,) =~ A B;!, However, since the
matching equations (3. 3) show that in general A, differs
from A at R,, S,(R,) is not in general unitary. Since V
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and P are real, we see that B,=A¥, and S,(R,)
=- (A A¥1) so that S,(R,)S*(R,) =1, in which case S,(R,)
is unitary exactly when it is symmetric,

The matching equations at R, yield

Y=HA,+H*B,=(H* - HS,)B, (3.22)
and
Y =H'A,+H*'B,+ HA. + H*B]
=[(H*' + H¥U*) — (H' + HU)S ]B,. (3.23)

Using the regularity condition ™’ - "3 =0, and the
invertibility of B,, we obtain
('@’ +HU) - o" HIS = [9" &>’ + H}U*) - " H*].
(3.24)
If S, were unitary, then using the fact that U is skew-

Hermitian, Vis real and symmetric, and @ is real, we
would obtain from (3. 24) the equation

WT(H*H)V H*H)Y — 7 (H*H)V (H*H)Y
+ 3 [ (B*H) 'V (H*H) - (H*H)V (H*H)' ] =0.

Certainly, if we were dealing with a single scalar equa-
tion, or if by some other means ¥V commuted with H,
then this equation would be correct, But there is no
reason to expect that it is an identity for all cases.
Hence, in general S,(v) is neither unitary nor symmetric

(3.25)

4. SUCCESSIVE APPROXIMATIONS FOR THE
SCATTERING MATRIX

The starting point of the present considerations is the
observation that the equation for the exact S(») matrix
function, Eq. (2.14), and that for S,(r), Eq. (3.6a),
differ only by the terms in the rapidly oscillatory ma-
trix W.

In the spirit of Alder and Pauli, it is possible to sepa-
rate the effect of the slowly oscillating coupling matrix
U from that of the rapidly oscillating matrix W by de-
fining a new matrix R(r) by the unitary transformation

Sr)=A@)Rr)AT(r), (4.1a)

R(r)=A"r)S(r)A*(r). (4. 1b)
Note that

S(R,)=R(R,) (4.2)

since A(R,)=I. Eq. (2.14), with the help of Eq. (2.17),
reduces to

R'(r)=-A"WA* + R(ATW*A)R, (4.3)

According to Eq. (4.1b), R is symmetric and unitary
since S is symmetric and unitary, and A is unitary. By
integration of Eq. (4. 3) one obtains

R()=SR,)- f;MA*WA*dg + fR’MR(ATW*A)R dt.
(4.4)

Integration by parts, recalling Eq. (3.13), yields

fR:”A*WA* dt =~ Y(RM)+fR:A*[UY+YUT]A*d§ (4.5)
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and
fR";R[ATW*A]R de=-SR)Y*R)SR,)
- Jo [R'ATY*AR + RATY*AR'] d¢
- Jo RAT[UTY* + Y*U] AR dt.
(4.6)

Collecting terms, using Eq. (4.1a), and defining
S1=A(=)SR,) +YR,) - SR, )Y*(R,)SR,)]AT(),

4.m
one obtains
S=S51-A()fe, AMUY +YUT]A* dt
+ f};; [R’ATY*AR + RATY*AR']d¢
+ fR";RAT[UTY* +Y*UJAR dEFAT (). (4.8)

The above equation is exact. However, each of the inte-
grals above is of order O}k R;?*™) as can be seen by
arguments similar to those made in connection with Eqgs.
(3.18)—(3.21), and hence

IS - Sill =0} e R;Pe). 4.9)
The above represents a considerable improvement over
the error in the approximation of Alder ef al, given by
Eq. (3.21). It requires the computation of Y(R,,)

=— f};’u W(£)d¢ as the only addition to what is calculated
in AROSA. Numerical methods for the calculation of

Y in terms of a continued fraction method are described
in Ref. 7. Since S(R,) and Y(R,) are symmetric matrices,
it is clear from Eq. (4.7) that §, also is symmetric.
Furthermore, direct calculation shows that

SIS, =1+ AX[Y*Y +SYY*S — (SY)? - (Y*5)?]AT
and, therefore,

15181 - Il =0@} kR0 (4.10)
which shows that §, is unitary to a higher order than its
error given in (4.9). If a better approximation to § than
S is desired, a further examination of the integrals in
(4.5) and (4.86) is required. By means of an additional
integration by parts, and by defining the matrix

X(r):fr”WY*dg, (4.11)

one obtains as a higher order approximation of § the

result
52 =51 +A(°°)[X(RM)S(RM) +S(RM)XT(RM)]AT(°°)- (4- 12)

S, is obviously symmetric.

Since X(R,) +X'R,) = I;M[WY* +Y*W]dE =[5 (YY*)' dt
=-Y({R,)Y*R,), one sees that

X'"Ry) == XR,) + 00} K R;P2), (4.13)
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Using this result together with the assumption that kR,
>1, one can show that

Ns3s, -1l :0(1,)§ﬂk‘4R;,2"0'2)., (4.14)
Note that the unitarity of §, is not better than that of §,.
However, the accuracy of §, is better than that of §,.
Examining the integrals in (4.5) and (4.6) and an addi-
tional integration by parts performed by means of the
introduction of X(»), one finds

IS = $all =0@} kR P07, (4.15)

This is better than (4.9) by another power of (kR ).

The calculation of X{r) is not easy, because first Y
has to be computed at all integration points in (4.11).
However, since, as shown in the Appendix, Y*(»)
~ ~ (i/2R)W*(r), the integrand WY*= (- i/2R)WW* is a
slowly varying function of », and the integration steps
could be widely spaced. The merit of computing ¥ and
X as compared to only computing ¥ and using a larger
value of R, should be decided in each particular case.
In the numerical example given in Ref. 7, it is shown
that the inclusion of only Y, i.e., the use of §; rather
than §,() of Ref. 1 enables one to reduce R, from 70 to
30 fm. The inclusion of both ¥ and X would reduce R,
further to 20 fm. However, this may not seem worth
the extra effort of calculating X.

5. CALCULATION OF A {(r)

It is tempting to solve Eq. (2.17) for A by using an
asymptotic expansion in powers of (1/1/) of the elements
of A, This method is essentially the one used by Burke
et al,® and by Mercer and Ravenhall, 3 in the solution of
Eq. (2.1). However, the matrix elements U;; contain
phase factors 8; - 6; which make them slowly varying
functions of . This in turn leads to the requirement
that

Aly > 1, (5.1a)
where
Ak = min |k; - k|, (5.1b)

kiﬁzj

in order that the error in the asymptotic series is to be
kept small. ! If all the wavenumbers are equal, this dif-
ficulty does not arise and the asymptotic expansion can
be used, On the other hand, numerical evaluation of
Y(R,) by the methods discussed in Ref. 7 only requires
that R, = (k; +k;)"'. This is much less stringent than
(5.1).

Defining A (¥) by

A'ly)=UA, (5.2a)
A=) =1, (5.2b)
we have, by successive iteration, that
E(r):l— fr” U(s)A(s)ds :ZE,(')’), (5. 3a)
vzl
where
Ay =1 (5. 3b)
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and

A 0) == [ U(s)A,(s)ds, v=0. (5.3c)

Since 1U@)N SUX0(2kr"0*1)'1 for » 2R, one readily
obtains

= 1
A, )l Sﬁ[vm/@kkgrm)]" r=R,, (5.4)

which implies absolute and uniform convergence of the
series (5.3) for » =R,,.

For any point R4 >R, we have that the solution A{r)
of (2.17) is given by

AP)=ATA RIAR,).

In particular

(5.5)

A(©)=A()A" R AR ) =ATR AR ).

Since .71(1/) is also unitary, we see that
A=) =2 AL,

Furthermore, since U is skew-Hermitian, we see that
Alr)=- [*Us)ds = [~ Uls)ds.

Therefore, defining the matrix A (), by

A=) =[I+AIR VAR ) =1+ [, Uls)dsIAR ),
(5.6)

we see that

A@) - 4,) =] BAR)| AR ) =000,/ @R P
(5.7)
1f we approximate A() in (4.7), by A(~) and define
Srby
Sr=A{(®)[SR,) +Y(R,) - SR, )Y*R, ISR AT (»),
{5.8)
then we have

1S = Sell = 0@} /R0 + O/ (BAGRE).  (5.9)

The first term on the right in {5. 9) reflects the error in
$ due to truncation in W, and the second reflects that

due to truncation in U. It is clear that § is symmetric,
and is unitary up to the order given by (5.9).

If we represent the actual errors in § dueto the two
truncations as Ey(R,) and Eyz(R,), so that

S=Sr+EwR,) +EyR ),

then the numerical prescription for computing the ap-
proximate scattering matrix §r to a given accuracy e
is as follows,

(5.10)

One solves (2. 1) numerically on some interval {0, R,,]
for a regular solution matrix ¢ and its derivative ¢’ at
R,. One then solves (2.17) numerically on some interval
[R,,R,]. In addition one computes the integrals
J';MW(s)ds and [g,U(s)ds. These quantities suffice to
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construct §x, given by (5.8). Methods for computing the
integrals are discussed in Ref. 7. The points R, and

R, are determined by requiring that the numerical
roundoff error, plus the truncation error lEy(R !

+ ILE4(R 4)} be bounded by e.

Since the error in §; due to truncation in W is given
to leading order by (4.12), we see that

NS = Sl =WEwR Il < 201X (R M

~vio/(zyeﬂ(zxo +1)R%M), (5.11)
Furthermore,
15— Sl =NEp@® I = 2{|A (%) = A{()
= 2llA,R VI < v} /(4ERF). (5.12)

Therefore, assuming that R, is beyond the turning points
of the point Coulomb functions %, (r), and that roundoff
error is negligible compared to the truncation error,
one can estimate R, and R, by requiring that

Ey B I +IEGR I <e. (5.13)

If one wishes simply to balance the two truncation er-
rors, then one obtains an approximate relation between
R, and R, given by

R, zR,[kR, (20, +1)/22P0/2, (5.14)
In the numerical example discussed in Ref. 7, R4 has
the approximate value 60 fm, as compared with 400 fm
in Ref. 1, in order to obtain an accuracy of 10", In Ref.
7 a series method for evaluating A,(R,) is presented,
which does require that B, be larger than the turning
points of the point Coulomb wavefunctions in all the
channels involved, but does not require that ARR , > 1.

6. SUMMARY AND CONCLUSIONS

An 7 dependent scattering matrix, S(»), is defined
which approaches the scattering matrix § as ¥ — «, The
way in which S(») approaches § is studied by means of
a first order nonlinear (Riccati) equation satisfied by
S. This equation contains the matrices U(r) and W(r),
both of which are obtained from the coupling potential
V(») by multiplication by the matrix of point Coulomb
functions, The former, U(»), is a slowly varying func-
tion of 7, the latter a rapidly varying function, since
they contain factors exp[i(k; - k;)v] and expli(k; + k;)7],
respectively (k;, i=1,...,n, being the wavenumbers).
Both U and W decrease in magnitude as # increases,
the leading term being of the order »0™!, A;>1. As a
consequence of the difference in the oscillatory behavior
of U and W, 5(r) can be advantageously transformed so
as to separate the effects of the two. Transforming
S(@#) by Sr)=A()R(>)AT(r), where

A'=UA, AR, =1, (6.1)
A is unitary, and where
R’'=-A'"WA* +R(ATW*A)R, RR,)=SR,), {6.2)

R is symmetric and unitary, the effect of the matrices
U and W on § can be separately analyzed. An assess-
ment is made of the error introduced in § due to the
approximation made in Ref. 1 of neglecting W beyond
R,. More refined approximations for § are obtained by
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including W to various orders beyond R, and by approxi-
mating A beyond a point R , > R,, by iterating (6.1)., The
errors due to the truncation in W and in U are assessed
and compared. The final result §» given in (5.8} re-
quires the calculation of S(R,), Y(R,), and A,(~) given
in (2.12), (2.13), (3.13), and (5.6). Methods of comput-
ing the latter two are described in Ref. 7. The numeri-
cal example discussed there shows that §; provides an
approximation for the scattering matrix for the problem
discussed in Ref. 1, accurate to 10, while reducing
R, from 70 fm to about 30 fm, and reducing B, from
500 fm to about 60 fm,

APPENDIX A

Set fla, B;7)=exp(— iar)r®, a+0 real, Ref>0, Set

Ha,B; ) =["fla, B;s)ds. Then (A1)
Ia, B;7)= fﬂexp(—icvs)s'ﬂds
= _____exp(i—;as)s_ﬂ j-% fexp(— ias)

ars

I, B;7)=fla, ;1) - Lotta, 8 +1;7), (a2)
1 B

1(0!,3;1’)=5f(0£,3;1”)—mf(0,3+1;1’)
B, 02, (a3)

From these we have

ial(a, B;7) |8 fla,B+1;7) BB+1) I(a B+2;7)
fla, B;7) = ia (@, B;7) ia  fla,Br)
< P ICES Yad B
- ZQ')’ ia /snB2dS
] BB+1)| pes v 7o
= lar 4 e | ReBTD
B+1
:(1+ ReB+1) (!3—1-)
Thus
1 | 1
ra, fir) =gt 57) [140 (55| )| (a9)

The matrix W(r) = (1/26)H*(#)V{r)H*(r) has entries of
the form

WDas= FEOLEEL vostr) expl- 6,0 < 0,01}, (49)

where v,4(7) is the @, 8 entry in V(r), and where
o (7) =ky¥ — n 17 + const,,
Palr) =1+ D7+ 0 ),

Vag?) =0 By 0t 4 pfy ot oL 2T oy tm,

=l
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¢, has an asymptotic series representation® in 7, and
Vo) is analytic in 1/7, with 3y>1. Consequently
2iVkokg (W) ga =1 (ko + kg, g +1 = i, + Na); 7Y%
+flko + kg, Mo +2 =1 (g +1); VI S
+fky + kg, Ny +3 = i(ny +1g); YWY
+flko + g, N+ 4 — i(ny +1g);7)046(1),
(A8)

where wgl, w(l}, w% are constants, 1w!%| =121, and

O«s(1) is uniformly bounded as  — ., Here f is the func-
tion defined in (A1).

From (A6) it is clear that

|26V oW ()| =‘?”%°%’r'<1 +0Q/r) forr>R,,

(AT)
in which case
W@ =0,/ re™), (a8)
where
k=min k, and v, =max[EIHE)IIVE)IP 0],
i<a=n r=R,

Integrating (A6) throughout and using (A4) we have

2iVE Ry [ (W) ands

(0
— i o) Pap
=flko + kg, Mg+ 1 =1i(n, +n5)’r)i(ka+k5)

x[1+0(

) f(ka+k5:7\0+2-i(na+n8);’r)

(ko + Ra)r

e H R ()

(2)
— LY
+f (kg +kg, Ag+3—i(n, +15); Y)Z(k )

[l +0(\m )]‘i‘ r/f(ka +Fkg, A+ 4
= (N, +Ms);5)0as(1) ds

(g + M{w;"g [1 + 0(

1

(k e T Ra, M+ 1 - 1
(Ry + ko)

i(ko +kg)

we have

¥) flk, + kg, X+ 1= i(n, +1g); 'r)

8 ol )] <o it ]

z(k +Ra) I ke, + R +4 - i(ny +mg);8)
80 Ag +7g); )

Flleo F gy Mg+ 1= i, +mgs7)) - Cosll) s
Since the last term in braces is {1k, +k;1/7?), which
is negligible compared with O(11/(k, +%,)r!), we have
that

g+ 1=, +15):7)
— 7% Tl +kﬂ)

S 076 gpas Ll

)

i
Xty [”00 ok k Ty

(A9)
This yields the result that
© Ua

I S we)asl =0(7c;z;x‘gn>, >R, (A10)

A similar argument applies to U(r) =(1/20)H*VH, yielding

|26V E R (Ur)) o | = on [1 +0< )] (A11)
16N =0 (5o) , 7> Ra, (a12)
S wenpas Lzl ‘f?;‘;) i)
(
Xttag [”O( 7 kB(k e )]
(A13)
SO

I [ v asti=0 () (A14)

where Ak=miny !k, - ks!. The Eqs. (Al13) and (Al4)

are valid for Aky > 1,

Set Y{r)=- [“W(s)ds. Then, since in analogy with
(A6)

SRy = kg, M +1 = i(n, = 7g); 7) (0)[14_0(_91;)}’

(U))ap= + 2k kg

(A15)

"f(ka—kud)\ +1—1’(nq "7.;)
[UY]“":(EQ - 4i(k kY kg) 2k, + og)

w=1

JRy + Rg, 200 + 2~ (1, +1s);7) 1
(UY ] :W‘LL— [1 +0 (m;‘b]

Z"; . Ugh Wl [1 +( (
= 20 flky + kg, 20 +2 ~ i (1 +7g); 7)4i(kakuk3) (e, +kg)

n( IRLIR{)
AV CREN AV

)0 )
)

1
#r

(A16)

We see by arguments similar to those for [[°(W(s)),sds, that

Rog + gy 20 + 2 = i1y +11); 7) S
f[UY]asd L Jqu(i{eL 1;(2 +ZB;yu-1(
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% ) (1o ()

(A17)
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Consequently,

; 2
rfU(s)Y(s)dsII:O[(P;"rgq) ] r=R,,

(WY*),

(Ef(k +ku,)‘0+1_z( +7’p)1-'r)f(_
2 (kok,)

(Ef(k — kg, 20 +2— i

4i(k k)7

s ) [10
g = g, 2y +2 = iy = 1);7) [HO(EQI_)](E"
7] I\ .z

(A18)
Ry —kg, X +1~d(=1, ~0);7) ) *(09[ (1 ]
2, kg) 2, + fp) wautls )1+ O\,
€0) % (0)
WouWhs ) (A19)
k,(k, +kg)

Equation (A19) shows that (WY*),, is a slowly varying function of » compared with say (UY),;, since |k, - kgl is

small compared with &, + &,.
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The Weyl ordered form of the operator explad *+B4d>" +y(d "d+ 44 *)] is derived in a very simple way.
Using this result, we also obtain the normal and antinormal ordered forms as well as the diagonal coherent

states representation of this operator.

1. INTRODUCTION

Very often one is interested in writing a given opera-

tor in a well-ordered form. Consider an arbitrary oper-

ator function G(&, @) of single mode Boson annihilation
and creation operators satisfying the commutation
relation

(@, a*]=1. (1.1)

One may use this commutation relation to rearrange the
operators a and a occuring in G and write it in a de-
sired form. When all powers of creation operator occur
to the left of all powers of the annihilation operator, we
say that the given expression is in the normal ordered
form. Thus for example the normal ordered form of

ad* is '@ +1. The expression is in the antinormal or-
dered form, if all powers of the annihilation operator
occur to the left of all powers of the creation operator.
If on the other hand the form is completely symmetric
in the ordering of @ and &%, such as (2@ +a'd) or

(a %a + a*aa” + aa™) ete., we say that the operator is in
the Weyl ordered form. Several other orderings have
also been discussed in the literature.'~® The operator
ordering plays an important role in phase space de-
scription of quantum mechanics, * quantum C-number
correspondence,l ete.

We shall denote by Gy the normal ordered form of G.
On the other hand :G: will denote an operator obtained
from G by arranging all powers of @ to the left of all
powers of @& without making use of the commutation re-

lation (1.1). Thus, for example, if G = aa*, then Gy
=a'd+1and :G:=a"a. By definition
Gy, %) = :Gyla, a*) (1.2)

In a similar way we shall denote by GA the antinormal
ordered form of G and by Gy the Weyl ordered form of
G. We also use the notation “G” and |G}, to denote op-
erators obtained from G by simply putting it in the anti-
normal or Wey! ordered form, respectively, without
making use of the commutation relation (1.1). It is to
be noted that, in general, G #“G” etc. However, we
always have G =Gy = GA = CW, and hence

Gla, a") =G uld, a*): =“G,(a, a*)” ={G,(a, a*)},.

We also note that Gy (v, #*), Galv, v*) and Gy {v, v*) are
the classical functions corresponding to the operator
G in the normal ordering, antinormal ordering and
Weyl's rules of association respectively® (cf. also Ref.
1.

(1.3)
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Several methods are available to obtain a given or-
dered form of the operator. These include parametric
differentiation, ¢ Fourier transform algebra, use of co-
herent states,® etc. In particular, if | @) denotes a co-
herent state, i.e., a normalized eigenstate of a with
eigenvalue o,

il )= ala), (ald*=axal (1.4)

(o being in general a complex number), and if Gy(a, a*)
is the normal ordered form of G(a, @’), we readily find
that

Gyla, a*) =(a|G(a,a")| o). (1.5)

The antinormal ordered form of G is closely related to
its diagonal coherent state representation. We have the
relation

Gla, @) =(1/m [ Gula, a¥)| a)a|da, (1.8)
from which we find that’
Gale, v%) = (1/m exp(|0]?) [(~ o[ G| @)
X exp(| @|?) exp(a*v - av¥) P 1.7

An expression similar to (1.7) is also known®? for the
Weyl ordered form of G:

Gylr, v*) = (2/m) exp(2| v |?) [ (- @] G| a)

X expl2(a*v — av*)|dPa (1.8)

The Fourier transforms of Gy, G,, and Gy are related
in the following manner. If T'(a, ®*) denotes the Fourier
transform of G(», v*),

(o, o) = .fG(z), v*) exp{av* - a*v) d®, (1.9
then
Cyle, a¥) =exp(| a|?/2)0 y(a, o*)
=exp(- | @|2/2)T 4 (a, a¥) (1.10)

Since the inverse Fourier transform of exp(-|ai2/2)

is exp{- 21v1%, we find from the convolution theorem
that
Gy, v%) = (2/m [ Gylo', v"*) exp(= 2|z = 2"1?) d®’.
(1.11)
We also have the relations
Gylo, v*) = (2/17)f Galo’, v'*) exp(~ 210 — 0" 2%,
(1.12)

Copyright © 1977 American Institute of Physics 404



Gylv, v*) :(1/7r)fGA(v',v'*) exp(- lv—0"1%) d®’.
(1.13)

The various ordered forms of the operator exp(— a*a)
are well known''®® and are easily derived using coherent

states. We have
exp(— Aa*a) (1.14)

(1.15)

il

expl(e™ - 1)a*a}:
“exp{?\— (e)L _ 1)&*&}”

_}2e ex 21-6"&,0
VF P\ T A .

In the following we derive the various ordered forms
of the exponential of a general quadratic:

(1.16)

expl oa? + Ba*? + v(a*a + aa*)]. (1.17)

2. WEYL ORDERED FORM

In order to obtain the Weyl ordered form of the op-
erator exp| aa® + Ba*?+ ¥(a*a+aa’)], we first consider
the special case when ¢ =8=0. The Weyl ordered form
of the operator

exply(a*a +aa”)] = e’ exp(2va*d) (2.1)
may readily be written down using (1. 16):
exp[¥(@’a + aa*)| ={sechy exp(2a*a tanh )}, (2.2

It may be observed that, even through the fact a’is
Hermitian adjoint of 4 has been used in deriving (2. 2),
the result, being a consequence of rearranging powers
of @ and @', only depends on the commutation relation
(1.1). Thus, for any two operators 4 and ¢ for which
[d, ¢]=1, we find that

exp| ¥(¢d + dc)] ={sechy exp(2¢d tanhy}y, (2.3)

where the right-hand side is a completely symmetric
ordered (Weyl ordered) form in ¢ and d.

We now consider the general case

G = expl ad® + Ba*® + W(a'G + aa) . (2.4)

We introduce two operators d and ¢ which are linear
combinations of a and a*,

d=xa+vya, (2.5a)
(2.5b)

such that x, y, z, { are c-number quantities, such that
the commutator

¢=za+ta,

[d,c]=1, (2.8)
and such that

aa® + Ba*? + vaa* +a'a) = Méd + dc). (2.7
It may readily be seen that X is proportional to the
discriminant of the quadratic,

A=A~ af)’z, (2.8)

When 2#0, it is always possible to find x, v, z, and ¢
which satisfy the above conditions. They are, however,

not unique. A possible choice is given by
x=(1/20(+ 1), p=/2)

z=B(r+N", t=1. (2.9)
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We now use (2.3) to obtain a completely symmetric or-
dered form of exp[Mcd +dc)] in ¢ and d. We also observe
that since ¢ and d are both linear combinations of @ and
a’, the resulting expression is also completely sym-
metrie in the ordering of a and a'. Hence we find that

expl ad® + Ba*% + v(aa + aa*) | = exp[ Mcd + de) ]
=sechi|{exp(2¢d tanh)},

X, - - .n
= sechx{exp[tm;h (aa® + Ba*? + 27a’a)] } W (2.10)

The case A=0 does not present any difficulty, since

in this case we may write
ad® + Ba*? + v(@a +aa*) = (Vaa + vV ga*)?. (2.11)

The operator exp| @a® + 8a*? + y(@'a + aa*)] when expanded
is then given by

2 (3a+VBa
T .

Z o (2.12)

Each term of this expansion is already in the Weyl or-
dered form. Hence we find, when ¥’ = af, that
expl aad® + Ba*? + v(a‘*d + aa’) |

={exp| aa® + Ba% + v(a*a + aa*) 1. (2.13)

Equation (2.13) is in agreement with (2. 10) in the limit
A=0. Hence we find, in general, that

expl aa® + Ba*? + Y(a*a + aa*) ]

A - ~yn
=sechh {exp [tar;\h (aa®+ Ba*? + Z'ya“a)]}w, (2.14)
where X is given by (2. 8).

3. NORMAL ORDERED FORM

The normal ordered form of the exponential of a gen-
eral quadratic has been derived earlier, using param-
etric differentiation® (cf. also Ref. 10). We may also
derive this form by making use of Eqs. (2.14) and
(1.11).

From (2.14) and (1.11), we find that

A
Gylv, v%) :—Z—S%Ch— /exp(— 2|v-2"]?

hx
Xexp{tal;\ (auz+ﬁ1r*2+2Y‘U ’2) }dzl’- 3.1)

We assume that @, B, ¥ are such that the integral on the
right hand side of (3.1) is well defined. The evaluation
of the integral is long, but straightforward, and we ob-
tain on simplification the following expression for Gy:

Y -1/2
Gylo, v¥) = (coshZA - XsinhZA)

@v? + Po*? 4+ 2(y - AtanhA) | 2]
x
exp [ 2(Acoth2r ) SR
Hence we write
expl aa® + Ba*? + v(a‘a + aa*)]
y /2
= (coshZ)t -3 sinh2X
an® + Ba™® + 2(y — XtanhN)a*a
X . 3.3
e [ 2(xcothzr—7) ] 3.3)
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It may be remarked that, even though (3. 2) was obtained
from (3.1), under certain restrictions, the final result,
being analytic in @, B, ¥, is valid for all values of ¢,

B, ¥, even in the limit as X approaches zero except for
the singular case when Acosh2i =¥ sinh2A.

4. ANTINORMAL ORDERED FORM

The antinormal ordered form of (1.17) may be ob-
tained from Egs. (1.10) and (2. 14) or from Egs. (1.7)
and (3. 3). Alternatively, one may obtain this expression
also directly from (3. 3). We rewrite (3. 3) in the follow-
ing form. Let d and ¢ be any two operators with [d, ¢]
=1, then from (3. 3) we find that

expl ad? + B2 + wed + dc))

v -1/2
= (coshZA - sinhZA)

(4.1)

y ad? 4 B6% + 2(v - AtanhN)ed
€xp 2(Xcoth2r - 7) ca

where { - - -}.s denotes the ordering such that ¢ always
occurs to the left of d. We now write
d=a*, ¢=-a (4.2)

so that [d, ¢] =1 is still satisfied. Hence from (4.1) we
obtain

expl aa*? + a2 - v(a*a + aa*)]

-1/2
= <cosh2>\ - %sin2>\>

. oG"? + Ba® - 2(y — AMtanhNa'a
X 7. .3
exp [ 2{Acoth2x—-7) (4.3)
Redefining the constants @, 8, and A, we find that
expl a@® + Ba*? + y(a*a + aa®) )
= (coshZA +§ sinh2n)-/2
« aa® + Ba*® + 2(y+ AtanhMNa'a],,
X . 4.4
ex [ 2% coth2x + ) 4.4

As before, the result is valid for all values of @, 8, and
v except for the singular case when A cosh22 + ysinh2
=0.

Whenever the operator exp|aa®+ Ba*? + v(a*a + aa’)}
is a bounded operator, we may write its diagonal co-
herent state representation using Eqs. (4.4) and (1. 6):

exp| ad® + Ba*® + y(a'a + aa’)}

/2
= l (coshZA +Zsinh2)\)
i A

y X(a’zrz+Bv*2+2(7+Atanhh)lvl2>
exp 2(Xcoth2A + 7)

x|y |d%. (4.5)
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5. SOME GENERALIZATIONS

In this section we derive some generalizations of Egs.
(2.14), (3.3), and (4.4).

We rewrite Eq. (2.14) in the form

expl @d® + BE + ¥(éd + dc))

A - - e
= {sech?\ exp [tax;h (ad?® 4+ Bc? + 270(1)] }W,

(5.1)

where d and ¢ are any two operators for which [d, ¢]
=1and »=(»* - oB)!’%, We now consider a general poly-
nomial

P=oaa®+pa?+v(ata+aa*) + 264+ 2ea* (5.2
and write it in the form

P=afd+x)%+ Bla +v)?

+A @ +y)a+x) +@+x)@+v)]+e. (5.3)

One may readily verify, when A#0, that

x=2*(ey - o), (5.4)

¥ = X2(y5 - ae), (5.5)

8 =21"2(qe? + 6% - 2y€0). (5.6)

By identifying d=a+ ¥, ¢=a"+v, we then obtain, from
(5.1), the relation

&F — ¢ sechx {exp[taih)\ (P- 9)]} we

Proceeding in a strictly analogous manner, we obtain
the following generalizations of (3.3) and (4.4) (cf. Ref.
6):

(5.7

N &

B _
€ “Tcosh2x = (v/X) sinh2A 72

B _2M& +v)(d+x)tanhr - 8 }
X - - - . .
'eXp[ 2(Xcoth2a - 7) : (5.8)
I
~{cosh2x + v/ A sinh2M)T7?
P+ 2Ma* +v(d+x)tanhr - 8
X“ s . y 5.
eXp[ 2() coth2x + 7) ’ -9

where x, v, 6§, and A are given by Egs. (5.4)—(5.6)
and (2.8). Equations (5.7)—(5.9) are valid even in the
limit as A approaches zero.

We introduce a parameter ¢ and rewrite (5.7) in the
form

exp(oP) = exp(06) Sechoh{exp [t_ar})t\lif (P~ 9)] }W.
(5.10)

On differentiating (5. 10) with respect to ¢ a number of
times and then setting ¢=0, we may obtain the Weyl
ordered form of any power of P. In fact we may formal-
ly write for any arbitrary function of p,

f(P) = { [f(%) exp(of) sechor

(5.11)

xeXp(tanl;\Ao (P- 9))] =0}W.

C.L. Mehta 406



407

Similar expressions may be written for the normal and
antinormal ordered forms of f(P).
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We derive the Weyl, the normal, and the antinormal ordered forms of the exponential of a multimode
quadratic expression in boson operators. The trace of this exponential operator is also evaluated.

1. INTRODUCTION

In Paper I,! one of us obtained the various ordered
forms of the exponential of a quadratic in single mode
boson operators. It is of interest to consider the more
general multimode case, and derive the various ordered
forms of the exponential of the general quadratic.

Let {@;,a}} be a set of boson annihilation and creation
operators, satisfying the usual commutation relations

(1.1)
(1.2)

[&i’ a;] = 61'1"
[aix ] [ana ]

It is convenient to express the set as a 2n~dimensional
column vector A,

0 (,j=1,2,...,n).

(1.3)

The commutation relations (1.1) and (1. 2) may now be
expressed in the form

[A A ] :]; (1.43.)

{(ll,... Ay, ai,...,ﬁ;}.

or
AA-AK=z,

where z is the (2rnX2n) matrix

— 01.
Z=\<1 o)’

R denotes the transpose of the matrix R, and 0 and 1
are (#X»n) null and unit matrices, respectively. The
general second order monomial in boson operators
(ignoring the constant term)

(1.4b)

(1.5)

E L 8,4, + By 0% + v (0,05 + a3a,)]
ird=1

n
+2 25 (8,a; +€;a}) (1.6)
i=1
may be written in the form
P=AtA+27A, 1.7
where £ is the (2nX2xr) symmetric matrix
a vy
={- 1.8
: (7 B) .8
and 7 is the column vector
77:{61,.--,5,,,61,...,6,1}. (1.9)
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Matrices a, B8, ¥ are each (nXn),
symmetric.

of which a and B are

In this paper we derive the Weyl, the normal, and
the antinormal ordered forms of the operator ef. We
use the notation GW for the Weyl ordered form of éG.
Similarly éN and GA denote the normal and the anti-
normal ordered forms, respectively, of G. On the
other hand, {G}W will denote the operator obtained from
G by putting it in the Weyl ordered form without making
use of communtation relations (1.4). Similarly {G}N

=:G :and {6}, =“G” denote the normal and the antinor-
mal ordering operations on G. Thus we have

GA)={G,(A)},, p=W,N, orA. (1.10)
Our results derived in Secs. 2—4 may be summarized
as follows:

e? — K {exp(AET, A + 25T, A)},, (1.11)
where p=W,N, or A, K, is a constant,
inhz -1/2 - _
Ky= | S5 I, [V el (T- D), (112)

(IRl denotes the determinant of R) and T, is the matrix
T, =[(sinhz£)/z£][coshzE + &, yz sinhzg]™. (1.13)

Here z is the antisymmetric matrix defined in (1.5), y
is the symmetric matrix

=1 )

and ky =0, ky=

(1.14)

1, kA:"l.

It may readily be verified that Eq. (1.11) agrees with
previously known special cases. For the single mode
case (n=1), Eq. (1.11) reduces to the results derived
in Paper I (cf. also Refs. 2 and 3). For the case when
a =f=0, the normal and the antinormal ordered forms
agree with those obtained in Ref. 4. Using methods in-
volving group theory and parametric differentiation,
Berezm has also obtained the normal ordered form of
exp(P) when P is Hermitian (i.e., when @ =8*, §=¢*

and ¥ =%*). Equation (1.11) in this special case is in
agreement with his result.
We also obtain in Sec. 4, the trace of exp(ls), when-
ever it is a trace class operator. We find that
Tr(ef) = (1/2)" |y sinhzt |*1/2 exp(- n£"'n). (1.15)
Copyright ® 1977 American Institute of Physics 408



2. WEYL ORDERED FORM

We first consider the homogeneous guadratic

§ =AtA. @2.1)
Let us make a linear symplectic transformation
ﬁz{é;,...,ﬂin, 81,...,6,}:58, (2.2)
which reduces the quadratic Qtoa simpler form
@ =202, d, +d,¢,)=BAB. (2.3)
i=1

The symplectic transformation S satisfies the identity
Sz8 =z, (2.4)

so that the components of B satisfy the same commuta-
tion relations as those of A:

[B;,B,)=z,,. (2.5)
The matrices £ and A are related according as

£=SAS (2.6)
or

A=8"1gs, 2.7
From (2.3) we find that A is of the form

A:(S 3) 2.8)
where the nXn matrix A is diagonal

Nis=2X0; (2.9)

Thus the required symplectic transformation (8-Y) is
the one which reduces £ to the form (2.8). The existence
of such a generalized Bogoliubov transformation can be
established, since § is symmetric. We shall, however,
not require an explicit expression for 8.

We now proceed to obtain the Weyl ordered form of
the exponential

-~
-

G=e". (2.10)
From (2.3) we can write

G =T exp[\;(Z:d; +dic))]. (2.11)
The ope;ators ¢, and d, satisfy

[d,e;]l=1, i=1,2,...,n; (2.12)

whereas those with different subscripts commute with
each other. From Eq. I(2.3) (of Paper I) we may then
write

G=Il {sechy; exp(2 tanh), ci;é,)}w, {2.13)
i

where the subscrlpt W stands for the Weyl ordering

operation in ¢ and d. However, since ¢ and d are linear

combinations of 2z and a*, the Weyl ordered form in &

and d is also the Weyl ordered form in @ and a*. We re-
write (2,13) in the matrix notation
G=1{]A; |2 exp(BA,B)}y, 2. 14)
where A, and A, are given by
secha 0
Al_( 0 sech)t)’ (2.15)
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Q tanhX
= .16
AZ—(tanhx 0 )’ (2.16)
and |A; | stands for the determinant of Ay, Using Egs.

(2.8) and (1.5) and observing the fact that sechX is an
even function of A, we can rewrite (2, 15) in the form

A1=sech<3 _(D =sech(zA). 2.17)
Further from Eqs. (2.8) and (2. 16) we also find that

zA; =tanh(zA). (2.18)
From Eqgs. (2.14), (2.17), and (2.18) we obtain

G = | sechzA 1172 exp[B7 tanh(zA)B 1}y, (2.19)

Using the properties of the symplectic matrices dis-
cussed in the Appendix [ef. Eqgs. (A7)], we finally re-
write (2.19) in a form which does not contain 8
explicitly:

G- | sechz I“z{exp(zigTWA)}w, (2.20)
where

Ty = Ty(£) = (tanhzf)/z¢. (2.21)

It is of interest to observe that we may also write
= |sechzt] “%exp{f&'f‘wg&)}w, (2.22)

or more symmetrically as

G = |sechzk| “2{exp(1§’~1‘}y’2£T}/25)}w. (2.23)
Hence, if we define

A’=TLA, (2.24)
we find that

exp(AtA) = |sechzt|!Hexp(A’EA )y, (2. 25)

i.e., the Weyl ordered form of the exponential of a
homogeneous quadratic is apart from a multiplicative
constant, the exponential of the same quadratic in trans-
formed operators.

The transformation matrix T%/2 is an even function
of z¢. Also from Egs. (1.5) and (1. 8) we find that

Y —Ba_ YB-BY

2

ayp=(T P oM, (2.26)
Hence, when By and ya& are both symmetric, (2£)? is

diagonal and in this case the transformation (2.24) is
equivalent to multiplying different components of A by
constants (no mixing of the components). Of course,
further simplification occurs when (z£)? is a multiple
of unit matrix,

In the special case when * =apf and both By and ya
symmetric, the matrix (z£)* =0, In this singular case

(tanhzt)/zf = sechzt =1, (2.27)

and the exponential is already in the Weyl ordered
form.

We now include the linear terms also in the quadratic.
Let P be the general second order monomial [Eq.

(1. 7)]
—AtA+ 294,
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which may be written as
P=@E+nENEA + £ -7,
Since £7'7 is a c-number matrix, the components of
A+¢gly satisfy the same commutation relations as
those of A, and hence, using (2.20), we obtain the
following expression for the Weyl ordered form of

e®:

(2.28)

e};: |sechz|'/? exp@(Ty ~ 1)£7n)
X {exp(KETWA + 2ﬁTWA)}W’ (2.29)

where the matrix Ty depends only on £ and is given by
Eq. (2.21).

3. NORMAL ORDERED FORM

The method employed for obtaining the normal or-
dered form of the exponential in the single-mode case
may readily be generalized for the multimode case.
The relation [Eq. I{1.11)]

Gylv,v*) = 2/m [ Gylv,v*’) exp(- 2 |v—v’|2db’
(3.1)

valid for the single mode case now generalizes to

Gy(V)=@/m)" [ Gy(V') exp[— (V* = V*)(V - V")]d?"V’,
(3.2)

where GN(A) and GW(A) are the normal and the Weyl
ordered forms respectively of G. V is the column
vector

V={vy,...,0, v¥, ..., 0%, (3.3a)
V* its Hermitian adjoint {row vector),
V=¥, ..., v, v, ...,0,), (3.3b)
and d*"V stands for
n n
d*v =11 d*v; =11 d(Rev;) d(lmv;). (3.4)

i=1 i=t

If we take G to be that given by Eq. (2.10) and use
also Eqgs. (2.20) and (2.21), we find from (3.2) that

Gy(V) =(2/7)" |sechzt |!/? exp(- V*V)

x [ exp{V’¢[(tanhz)/zE] V' = V*V

+VV VY, (3.5)
Observing that
V' =V"y, (3.6)

where y is the matrix defined in Eq. (1.14), and using

the Fourier transform result®

f exp(— V/*XV’ +VY +V+Vl)d2nvl
=(a/2)"|X [/ exp(V*X"'V),

we obtain from (3.5), after simplification, the following
expression for Gy(V):

Gy(V) = |coshzt — zy sinhzg |1/?
X exp[VETyV],

(3.7

where
Ty =T y(£) =(tanhzt) (z£ — y& tanhz )™,
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We rewrite (3. 8) in terms of the annihilation and
creation operators t{o obtain the required normal
ordered form®

exp(AtA) = |coshzf — zy sinhz |*1/2

X : exp(AET,A) :. (3.10)

In analogy with the case of Weyl ordering, we may
also include the linear terms in the quadratic. Thus we
obtain [cf, Eq. (2.28)]

exp(li&l& + 27A)
= | coshz - zy sinhz& |/ exp[F(T, - 1)}
X exp(i&TNA +2nTLA):.
It is to be observed that, even though Eq. (3.10) and
(3.11) have been obtained under certain restrictions, ¢

these, being analytic expressions, are valid for all §
and 1 except in the singular case when

(3.11)

| coshz& — zy sinhzy | =0. (3.12)

In this case, the normal ordered form does not exist.
It may, however, be noted that the Weyl ordered form
[Eq. (2.29)] always exists.

4. ANTINORMAL ORDERED FORM

As in the single mode case, we may directly use Eq.
(3.10) for obtaining the antinormal ordered form. Since
only the commutation relations are of significance in
obtaining a particularly ordered form of an operator,
Eq. (3.10), viz.,

exp(ﬁ{ﬁ) = ] cosh z{ — zy sinhz¢ l -1/2

x{exp[Bt tanhzf (z¢ - yt tanhzg) B},  (4.1)
is valid for any operator column vector
é:{ji,-'-’(’{m 81’-"3571}) (4-2)

where [B;, B;]=z,; and { ], denotes the ordering such
that all c-operators appear to the left of all d operators.
We now take

~

B=[a],...,a% =Q1y.0.; —ay)
—zA, (4.3)
and
t=ztz, (4.4)

From (g. 1) we then obtain the antinormal ordered form
of exp(AEA):
exp(AEA)

= |coshz& + zy sinhzg [*1/2% exp(XETAA)”, (4.5)
where

T, =T4(£) =(tanhzt) (zt +yE tanhzt). (4.6)

As before, if we also include the linear terms, we ob-
tain
exp(igg.& + 2771&)
= |coshzt +zy sinz& | /2 exp@M(TH) E71n)
X exp(ALT 4 A + 27T ,A)". 4.7

Expressions (4.5) and (4. 7) are valid for all cases ex-
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cept for the singular case

]coshzg +zy sinhz§| =0. (4.8)
If we introduce a parameter k,, such that
ky=0, ky=1, and ky=-1, (4.9)

we may express the Weyl, theanohrmal,hand the anti-
normal ordered forms of exp(AtA + 27A) [Eqs. (2.29),
(3.11), and (4.7)] in a single equation, (1.11), given
before.

We may use any of the ordered forms of an operator
to obtain its trace. For example, if we make use of the
identity operator

1=/ [ [V)yv|dnv, (4.10)
where |V> is the (n-mode) coherent state,® we find that

TrG = (1/m) [ (V|G|V)a¥v, (4.11)
Hence, if 6,,, is the normal ordered form of é, we obtain

TrG =(1/m") [ Gy(V)d®V. (4.12)

Similar results also hold for the Weyl and the anti-
normal ordered forms as well. In fact, one may readily
verify that?

/7 [ G, (V)d*v
does not depend on whether u =W,N, or A.

Thus, whenever exp(K§A+2ﬁA:) is a trace class
operator, we find from Eqs. (1.11) that

Tr exp(KEA + 2ﬁ1§)
=K, [ exp(VET,V +27T,V)d*V,

One may use a result analogous to Eq. (3.7) to carry
out the integration on the right-hand side, We find on
simplification that

Tr exp(ﬁ&z& +254)

(4.13)

=(1/2")| y sinhz "1/ exp(- 5i£"1n). (4.14)
In particular, for a single mode case we obtain
Trexplad® + Ba*? +y(@*a +aa*) + 2(5a +ea*)]

=3 (sinhA)"! exp[A~? (ae® + 8% — 2¢57)], {4.15)

where A? =92 — . It is being assumed that the exponen-
tial operator on the left-hand side is of trace class,
which will certainly be so if &, 3,y are real, y<0, and
¥ > aB.

APPENDIX: SOME PROPERTIES OF SYMPLECTIC
MATRICES

In this appendix, we consider some properties of
symplectic matrices. A (22X2n) matrix S is said to be

symplectic if it satisfies the relation
Sz8 =z, (A1)

where S denotes the transpose of § and z is defined by
Eq. (1.5), i.e,

()

From (A1) we find that § is nonsingular (I8! ==+1) and

(A2)
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that
Z = S_1Z§"1 N

so that 8! is also symplectic. In fact, one may readily
show from (Al) that S and 8* (the Hermitian adjoint) are
also symplectic.

(A3)

If ¢ is any (22X 2r) symmetric matrix, then exp(z{)
[or exp{tz)] is symplectic.

If £ and A are any two matrices related by the sym-
plectic transformations

£ :§AS’
then
Zg = S-1ZA.S.

Hence any function of z¢ is related to the same function
of zA as

(A4)

(A5)

Flz8) =Sf(zA)S. (46)
In particular we have

tanh(zA) =8 tanh(z£)8™! (A7a)
and

sech(zA) =S sech(z£)S™, (ATb)

Equations (A7) have been used in deriving Eq. (2. 20).

It has been noted in the text that the transformation

B—SA (A8)
leaves the commutation relation
AA_AA=3 (A9)

invariant if and only if S is symplectic.

In classical dynamics, if we denote the set of position

and momentum variables ¢q;,...,q,, P1,...,P, by a
column vector
A:{qu' '7qn>p1)---apn} (AIO)
and if B; ({=1,2,...,2x) are some functions of ¢’s and
p’s, then one may readily verify that the transformation
B, =B;(A) (Al1)

is canonical if and only if the matrix S, where
S;;=0B,/34,, (A12)
is symplectic,

Analogous to symplectic matrices, one may also
consider matrices which satisfy the relation

RyR=y, (A13)
where y is the symmetric matrix
(A14)

=7 o)

These matrices are useful while considering fermion
operators, since the transformation

B=RA (A15)

-~
A~

leaves the anticommutation relation AA +AA=y
invariant,
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Unitary, analytic representations of SL(3,R) are studied by operator formalism. It is found that SL(3, R)
has two different principal series of representations. Analytic representations are labeled by an integer n
and a real number a. The Hilbert space of analytic functions f(z,x) is constructed, and an invariant scalar

product is formed.

I. INTRODUCTION

In this paper we determined two different series of
principal representations of SL(3, R) by the operator
formalism method which was applied to several groups
before.’

The unitary representations of the complex group
SL{(3, C) was studied by Bars? by the same method which
we use. It is a known fact that unitary representations
of real unimodular group exhibit some differences in
comparison with complex unimodular groups. Real
unimodular group admit several principal series of
representations. In their paper Gel’fand and Graev®
showed that SL(rn, R) has (n +1)/2 principal series of
representations if » is odd, and (r/2) +2 principal
series of representations if » is even. Our aim is to
label the analytic, unitary representations of SL(3, R)
and to form the representation space.

The unitary representations of SL(3, R) were used by
various authors: Dothan, Gell-Mann, and Ne’eman*'®
used the ladder representations of SL(3, R) which are
labeled by L =0,2,4, - -+ to obtain the higher spinned
meson and baryon states. They adjoined to three angular
momentum operator L five components of a noncompact
operator @, such that L and @ generate an SL(3, R)
algebra. Higher spins are excited using L=J -8 (an
internal orbital angular momentum). Change in the L
values will cause a change in J. They suggested that
these representations could be used as an algebraic
model of Regge trajectories. Cusson® used SL(3, R)
symmetry in nuclear physics. Weaver and Biedenharn’
studied the nuclear rotational motion assuming transi-
tion f.)Z operators generate SL(3, R) symmetry. Besides
Dj. Sijacki®® determined the unitary representations of
the covering group SL(3, R) of SL(3, R) and presented
the group SU(6)® SL(3, R) as a model unifying SU(6)
quark model and the Regge classification.

This paper is arranged as follows:

In the first chapter the Lie algebra of SL(3,R) is re-
viewed and the matrix © is constructed. In the second
and third chapters the commuting operators Z, and Z,
are determined in terms of the generators and the
generators are expressed as functions of canonically
conjugate operators Z, and II,. In the fourth and fifth
chapters representations are labeled and the Hilbert
space of analytic functions f(z, ¥) is formed.
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H. THE LIE ALGEBRA OF SL (3, R) AND THE
MATRIX @

SL(3, R) is a simple group of rank two. It has eight
generators which are given as the following in three
dimensions:

Y1=€un —€22, Ya=F€13 Y7:=¢€a,
Y2 =€12, V5 =€33 —€2y, Vg €33, (1)
Y3 =€a1, Y6 = €23,

where €, (h,7=1,2,3) is a 3 X3 matrix with a one in
row k and column j. ¥,,7,,v; are the generators of
SL(2, R) subgroup. In general €,; satisfy the following
commutation relation:

(€nss €rsl =05 €ns = O €ay- (2)

Commutation relations of eight generators can easily
be found using Eq. (2). The metric matrix F,;=Cy,, C,,;
for SL(3,R) is an 8 X8 nonsingular symmetric matrix
with nonzero elements

F,, =12, F,;=6,
Fys=6, Fy, =6, (3)
Fy, =12, Fg,=6.

C,;» are the structure constants defined as
[Vh, '}’j]:Chib'}’k . (4)
A matrix @ satisfying the equation
UQU =AQA™ (5)

is essential for the operator formalism of SL(3,R).
Here U is a representation of SL(3,R) and A is its 3 X3
representation. Let us define 2 as

Q=(F ")y, T,. (6)

It is a 3 X3 matrix with operator entries. Its explicit
form is

27, - T, 3T, 3T,
Q= 37, -T,-T, 3T, . (1)
3T, 37, 2T,~T,

Let i be the eigenvector of @ with eigenvalue 2x. That
is,

=2y, (8)
By defining two Z operators Z, and Z, as
zZ,= d)xd):;l: Z,= ﬂbzwsd (9)
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and using Eq. (5) the transformation law for the eigen-

vector, ¥ is obtained as
UpU™t =y =AT9C(A), (10)

where iy, i, ¥, are operator components of  and C(A)
is a diagonal matrix. Hence

UZ U =2Z!=(A]1Z, + A3 Z, +ABNAZZ, +A5Z, +AD)™,
(11)
UZ,U =2, = (A5 Z, +ARZ, + A A3 Z, +A2Z, +A70) .

1ll. DETERMINATION OF THE OPERATORS Z,, 2,

Operators Z, and Z, are functions of the generators
T;. The following three homogenous equations which
are obtained from the eigenvalue equation (8) are used
to determine Z; and Z,. The procedure is the same as
in the Ref. 2:

(Q,,-20)Z, +Q,,Z, +Q,,=0, (12a)
R, Z, + (S5, =20 Z5 + 5, =0, (12pb)
R4, 2, + Qg Z, +(255 = 21) =0, (12¢)

Notice that the coefficients &,; are operators. There-
fore, one should be careful to determine Z, and Z,. The
elements §,; satisfy the commutation relation

[th,QkI]:3(6thkj —5“9111)- (13)

Using the above commutation relation and any pair of
equations (12), one can eliminate one of the unknowns.
As an example we will calculate Z, using Eq. (12a) and
(12b). Multiplying Eq. (12a) by 2,, and Eq. (12b) by
€, -2 -3 from the left and subtracting (12b) from
(12a) and using the commutation relation [, £, ]

= -32,,, we obtain Z;*® as follows:

Z(a = [Q Q12 - (Qu - 22 _3)932]—1
x[(2y; —2x =3)(€2,5 = 21) = Q5 04,], (14)
Zz(b'C) = [Qal(gzz - 2}\) - Quﬂsz]‘l [921(933 _2)\) - Q31923)] >
(15)
Z(ﬂ » [(sz -2x ~ 3)(911' ZA) Q12921]
X[€2,58255 — (Rap — 22 = 3)2y,] (16)
Z(a ¢ [ 32(911 - 2)\) 912931].1 [912(933 - 2)\) _932913] ’
(17
Z(b @ [932921 - (sz -2\ - 3) }
X[(sz - 27’ - 3)(933 - 2>\) - Q32923] . (18)

To show that all Z,’s and Z,’s are compatible respec-
tively, let us write Z; in a compact form as in the
Ref. 2.

Define

K20 =(Q,; =2x = 3)(Qy, — 2)) - (19)

Izj ]k,
K 2N == (R, —20 =3)Q;; +Q,,Q,; ,

or (20)
K (20) = =Ry, = 220) +92,,82,, i#].
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Here ¢,j,k are in cylic or in anticylic order. In this
notation Z; are obtained as

Z, =K#£(2MK,,(2)), (21)

Z, =K@\ K, (22), n=1,2,3. (22)
K,; has the following property:

K (20K (21 +3) =K (20K, (2 +3). (23)
Hence

Z, =K32NK,,(21) =K, (21 +3)K5, (21 +3), (24)

Z,=K2(2NK,,(20) =K, (21 +3)K;5,(2) +3). (25)

Equations (24) and (25) show that three Z; obtained using
any two pairs of Eqs. (12a), (12b), (12¢) are compati-
ble. Besides using the property of K, (2)) one can easily
show that Z, and Z, commute, In fact,

Z,Z, = K3H20K,, (20K, (21 +3)K5,(2) +3),
2,2, = K3 (2K, (MK, (21 +3)K5, (2 +3),
(2,, Z,] = KA @N[K,,@VE,, 2 +3) — K,, (20K, (21 +3)],

(28€)

Kt (@21 +3)=0.

IV. DETERMINATION OF GENERATORS IN TERMS
OF THE CANONICALLY CONJUGATE OPERATORS
Z, AND II,

Q,,and Ky,
relation:

[Q Klm]:s(éimKli - 6tiKim)-

ij

satisfy the following commutation

27

Hence the commutation relations of Z, (k=1,2) with €,
are obtained as in the Ref. 2:

[Qu1, Z,1=(21, Q3] =[R2, Z, | =-32,,
(Q41,Z, 1= [0, 2, = [R01, Z,] =[R2, 2,1 =0,
[Qu, 2,1 =R, Z,]1=0,
(R1, Z, 1= (22, Ra3] =[R2, Z2]= =32y, (28)
(214, Zo| = [R5, Z11=32,2,,
[R5, Z,]=3822, [, Z,1=323,
R0, Z 1= =3, [, 2Z:]=~
Now, let
Q=12 -, Q,=1LZ, (29)
R, =1, 2, 9 =32, — 2, (30)
I, =y I, = Qgs. (31)
Tr2 =0 gives Q45 as
Ry =~11,2Z, =1, Z; +21. (32)

The elements ©,, and ,, are obtained using homogenous
equations (12a) and (12b):

Q= ~1,Z2 4302, - 1,2, Z,, (33)

Q= ~ M, 22 +30Z, 11,2, Z,. (34)

Hence we determined the elements Q,; in terms of the

Y. Guler 414



canonically conjugate operators, Il, and Z,. Using the
commutation relations (28), one can easily check that
the commutation relation

[QhJ’le]:3(6thkj —ijQhI) (35)

holds. The generators 7T, in terms of II, and Z, are as

follows:
3T, =0, = =1,2Z, —1,Z,, (36a)
3T, =8, =11,Z,, (36b)
3T,=Q,=1,2,, (36¢)
3T,=Q,, =1, (36d)
3T =Qyy = Qpp=~11,7, =211,Z, +321, (36e)
3T =Qyp =11, (361)
3T, =Q,,=-1,Z2 +30Z, - 11,2, 2Z,, (36k)
3Ty =y, =~ 1,25 +3)02, - 1,2, Z,. (361)

V. LABELING OF REPRESENTATIONS

We will label the unitary representations of SL(3, R)
by the eigenvalues of two Casimir operators C, and C,.
C, and C; are real multiples of the identity for unitary
representations. Defining the second and third order
Casimir operators C; and C, as

C, =Tr?, (37)

C,=Tre?, (38)

one can label the unitary irreducible representations
of SL(3, R) by the eigenvalues of the matrix . By letting
the eigenvalues A, A, be

M=o i, A=, Hif (39)

and using the condition TrQ2 =0, the unitary condition
gives

Im(Ter):.‘Za‘Bl +20,8, +a,B to,8,=0, (40)
Im(TrQ?)
=20,0,8 +20,,8, +B,(af - B3) +B,(af - BY) = (41)
Equation {40) gives

31/32:—(2(12'4'0/1)/(2(11 +'1’2)- (42)

Inserting B, in Eq. (41) and doing simple algebra, we
obtain a final condition,

(2a, + az){ﬂl[a’z -, ][(2a, + @) +BE}=0. (43)
This condition gives mainly two classes of
representations:

{(a) A, = @, +iB, (complex), (b) A, =a, (real),

2, =-2q, (real), A=, (real), (44)

Ay =a, —iB; (complex), 3= —a, - a, (real),

Using the definitions of Z,(21), Z,{2) and the commuta -
tion relations [;,2,,]=3(6,8,; - 6,,Q,,), one can
easily show that Z,(21) and Z,(2)) are Hermitian opera-
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tors if A is real. Besides

Z,(20) = ZY(2)\%). (45)
Let us define a new operator Z(2)) as
Z@N) = (1/B[A51Z,20) +AZ Z,(20)], (46)

where 8is a real number. The transformation law of
Z(2)) is determined from the transformation law of
Z,(2») and Z,(2x). In fact,

z'(220) =(1/8)[A51Z{(20) +A52Z;2N)],
z/@N) =(1/B[(A AL +ABADZ,(20) +(AGIAL; +ASAS
X Zo(20) +AZIADL + ApAGL [ BZ(20) + AT, (47)
Letting
(1/B(AZATT +AZADZ(20) +(ASIAT + ABAZ)Z,(2))
=aZ@N) =(a/B[A3Z,(2)) +ALZ,(2N)], (48)

one can define the real parameter « in terms of Ajj,
the real and imaginary parts of Z,(2x) and Z,(2A}. In
fact we will later show that real and imaginary parts
of Z(2)) are functions of Aj}. Hence « is a rational
function of A7}. Hence the transformation law of Z(2x)
is obtained as

z/@\) =[az(@)) +y][z(@2r) +6] ™, (49)
where
Y= (I/B)(A;iAié + A;éA;é): b= Aéé,
(50)

B=arbitrary real number.

V1. CONSTRUCTION OF THE REPRESENTATION
SPACE

Let us define the common eigenstates |z(24,), z(2a,),
z(2x,), Ay, Ay of the commuting operators Z{2x,),
Z(2x,), Z(22,), C, and C, as the basis of the representa-
tion space. Since we know the generators in terms of
the canonically conjugate operators II, and Z,, it is an
easy job to find the transformation law of the eigen-
state, Using the case (a) of (44) and Eq. (45), we will
notate z(2),) as z and z(2),) as 5. z(2x,) is z*. Hence
the transformation law of the eigenstate |z, z*,7) is
determined as follows:

8 3
U(A)| 2, 2%, m) =exp (ik_z; kab(2A1)> exp Z:Ll b, T(22,)

SEERICN) [FRART R G

where b, are real parameters and 7,(2x,) are Hermitian
infinitesimal generators of the unitary representation.
Noting that I1,=—-23/3z,, we obtain the following infini-
tesimal transformation:

Uinf(A ‘l)' Z, Z*; 77> :(1 _i:Z=i kak(z)\l))(l ‘i:Z/; kak(2A3)>
x(l -ié kak(th)\)]z,Z*,n>, (52)

UiaelA) 2, 2%, )

(1 +idz, aa +2Az288 )é +idz) aa +iAzy aa )

3 3
(1 +1Anlan +iAn, — o~ ) 1 +in, (b2, 1 hyz, +b;)
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X[1 +irg(bqzf +b,23 +b,)[d +ixg(bany + byt + b))
x|z, 2*,m, (53)

Uinl(A-l) ’ Z’ Z*, 77)
=[1 +b,2, +bgzy +b5]M (1 +b,2, +byz, +b,]™s
x{1 +bmy +bgn, +b5]“2 l z',2"%,m7, (54)
where

Az =b,2, +byzy +by —bg2y = b,22 ~byz,2,,
(55)
Azy=—b 2, +by2y = 2b52, + by~ byz,2, — by2l.

On the other hand the infinitesimal form of 3 X3 rep~
resentation of SL(3, R) is as follows:

1 +ib, ib, iby
A= by 1 —ib,—-ib,  ibg . (56)
ib, ibg 1 +ibg

Integrating Eq. (54) and using Eq. (56), one obtains
transformation law for the eigenstate |z, z*,n):

UA™) ]z, 2%,

=[As1 2 TAG 2 A A 2 + AGL z, +AGL] e
X[Asiny +AGm, +A53)72 |2, 2%, "), (57)

UA™)] 2, 2%,

=[Bz +0|™ [Bz* + é]i"lk[ﬁn +6])2 27 2% 0", (58)
where

2'=[az +y][Bz +0]", n'=[an +y][Bn+5]".
A wavepacket | K) is written in terms of the basis states

fz,z*,m) as

|K>=ff(Z,Z*,n)|Z,Z*:’?>d°d77, (59)

where dodn=dxdy/y*dn is the right invariant measure
and z=-x +7y. The transformation law of the “compo-
nent” f(z, z*,7n) is obtained using the transformation law
for the basis |z, 2*,n). In fact,

UANK)= [Az, 2%, mUA™Y) ]|z, 2*,n)dodn, (80)

U(A) Az, 2*,m) =[Bz + 6]t [B2* +6]3 [gn + 5]
Xfl(az +¥)(Bz +6)!, (az* +¥)(Bz* +06)7,
(an +y)(Bn +08)7]. (61)

By letting A, =3(a +4b) and using the condition (a) of
(44), the transformation law (61) becomes

U(A)j(z,z*,n):( Bz ”’)_b( Fn 40 )'mﬂ(az +9)(Bz +0),

| Bz +61 | Bz + 61
(az* +y)Bz* +6)1, (an +¥)(Bn+6)7].
(62)

VII. ANALYTIC REPRESENTATIONS

In their paper Gel’fand and Graev® determined the
principal series of representations of SL{z, R) in the
space of the analytic functions f(z,x). The real parame-
ters a, B,y, and 0 appeared in the transformation law
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of the functions f(z, x). Besides, the real and the imagi-
nary parts of the complex variable z are obtained in
terms of these parameters, Indeed z is obtained as

z=(aB—y0/(8 +6°) +i(ad - By)/(B* +8%). (63)

These real parameters appear in the subgroup If,,, with
elements 2 given as

-~ a ’
E=ly & 5 ). (64)
0

On the other hand the canonical decomposition g=kx

of GL(n, R) enables one to obtain the real parameters
a, B,y, and J in terms of the elements of g, Here the
matrix x is the element of the subgroup X,,. Its explicit
form is

(65)

=

I
Qo
= O
- 0o o

Hence, letting | fz +6(*=1ad - By| and (87 +9)*

=|ad -~ By, we can express the variables z and 5 in
terms of A} which is the case in Ref. 2. So the trans-
formation laws of functions f(z, z*,n) becomes

+6 ® ;
UA) flz, 2%, m) = (T%W) |ad — gy

X flz’, 2", ). (66)

Analyticity requires that analytic function f(z, z*,7)
should remain analytic after the transformation., Assum -
ing analytic continuation is possible, one should remove
the branch cuts on the real axis. This removal imposes
the condition b is an integer n. The Hilbert space L, of
square integrable functions f{(z, z*,n) forms the repre-
sentation space. An invariant scalar product in this
space is given as

(fi, f) =c [filz, 2%, M) .5z, 2*, ) | Imz |2 dxdy dn.
(67)

CONCLUSION

Principal series of representations of SL(3,R) are
determined by the operator formalism method. It is
found that SL(3, R) has two series of principal repre-
sentations. Case (b) of (44) corresponds to the series
d, and (a) corresponds to the series d, of Ref. 3.
Analytic representations are determined in the Hilbert
space of functions f(z, x) analytic in the upper or lower
half plape. It is shown that they are labeled by an
integer » and a real number a.
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Evolution of isometries in the Bondi formalism
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It is shown that if an additional symmetry, assumed part of the BMS group, is imposed in the Bondi
formalism at one retarded time, and if gravitational radiation is absent, then the symmetry will evolve to
fill the region of space-time where the Bondi metric is nonsingular. Furthermore, that region will admit a
static Weyl metric. There is no necessary evolution if there is radiation present. The evolution of vector
field which are nearly isometric is then examined: These evolve as small perturbations off a Weyl metric. A
simple and nonlinear but approximate energy formula is written in terms of a quadrupole moment.

I. INTRODUCTION

Recent interest in relativistic stellar structure and
black holes has been concentrated in the rotating case
where the Kerr metric is, almost certainly, the end
point of collapse. Nonrotating spherical stars and
collapse had been previously worked on and basically
understood. Nevertheless, nonrotating but nonspherical
possibilities, except small perturbations off Schwarzs-
child, have been usually ignored. Essentially one would
not expect high nonsphericity to maintain itself without
rotation. Although this may be so, some nonlinearities
in the perturbations may be more easily gotten by start-
ing with exact solutions, The axisymmetric static ex-
terior solutions would be part of a Weyl space~time; at
least some of these should be able to be fitted to in-
terior solution generated by some source that somehow
avoids sphericity through anisotropic pressures and
stresses. Of course, the rotating cases are, probably,
more important in astrophysics.

A recent calculation! of the effect of the quadrupole
moment of the sun on the proposed gyroscope experi-
ment, using 2 Weyl metric, verified the previous lin-
earized approaches but showed various nonlinear ef-
fects, which in this case are too small to be measured.
There is further recent interest’ in Weyl space—times.
Perturbations of these may show radiation and other
nonlinear effects, and recent interest?® in the nonstatic
case also exists. Fittings of Weyl space—time to an in-
ternal solutions are known,! and recently a special case
has been examined and fitted.®

We® have previously examined a radiation formalism
in an axially symmetric nonrotating (reflection sym-
metric) asymptotically flat space—time, due to Bondi,
Van der Burg, and Metzner, ' specifically as to restric-
tions imposed in the results by a further isometry, and
found that the radiation was eliminated. Here the sym-
metry is weakened to an initial time: We impose an
arbitrary isometry at one retarded time and see if it
evolves and what it restricts. Previous evolution of non-
lightlike isometries off timelike hypersurfaces, assum-
ing analyticity, has been demonstrated, 8 and here those
results will be complemented for lightlike hypersur-
faces. If there is gravitational radiation, it will be
argued that the symmetry will not evolve. Otherwise,
and if we assume that the initial isometry is part of the
BMS group, " and if certain smoothness conditions (see
later) are assumed, it will be shown to evolve to fill
out the space—time., Furthermore, previous results®
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are strengthened by showing that the region of space—
time treated must necesarily be of Weyl type. Of

course, results hold for large enough, but not necessari-
ly infinite, distances from the source where the coordi-
nate system used is well defined.” The initial cone used
is actually the future light cone of a point: This causes

no formal problems and is intuitively acceptable.®

The evolution of small asymmetries in axially sym-
metric nonrotating space—times is then studied. These
evolve as arbitrary axially symmetric nonrotating per-
turbations off Weyl. Using the Bondi formalism, we
get a radiated energy formula, which include nonlin-
earities, radiative wavetails, in terms of a quadrupole
moment constructed from the field. The results are
similar to those found previously!’ using the Newman—
Penrose formalism. 1!

We use Bondi’s formalism throughout, Reference 7
will be called Paper B, and formulas from it will be
preceded by a B and in parenthesis. Similarly for Ref.
6, called BH, where the present notation is taken and
for Ref. 15 denoted by S. Section IT treats the main
problem, with Secs. III and IV as special cases. Sec-
tion V treats the small asymmetries. Appendix A has
equations (BH18). Appendix B is another gpecial case.

H. FIRST PART. INITIAL ISOMETRY IN BONDI:
GENERAL CASE

The region of interest M will be far enough from all
bodies, and we will call it space—time. M is axially
and reflection symmetric, and asymptotically flat. T An
additional isometry is imposed on M at one “Bondi re-
tarded time,” u =u,. " Absence of radiation is also im-
posed throughout M, c,=0. It will be shown that the
initial isometry evolves off the light cone to fill out M,
Furthermore, M will necessarily admit a static asymp-
totically flat Weyl metric. The problem of the evolution
of symmetries was treated in other circumstances with
different methods. %1%13 In Refs. 12 and 13 there was an
assumed timelike isometry before a retarded time,

u =1, (but in a more general M) and no radiation after-
wards: They showed that the isometry evolved. Refer-
ence 6 is described in the Introduction.

Here the timelike case is straightforward if the
initial-Killing vector field is 3/8u, u the “Bondi retard-
ed time.” For if it is so, taking, without loss of gen-
erality, #,=0, Killing’s equations at u=0 give M,(0)
=C4(0) = No(0) [ £(0)=£(0, 6, #)], and all higher metric
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coefficients have zero derivative at u =0, With cy(u) =0,
(B35) gives My(u) =0, (B36) gives Ngy(u) =0 so that
Ny(u) =0, (B34) gives Cyy(u) =0 so Cy(u) =0. Similarly
for the higher order terms so that 2/du is Killing at

all ». It is also easy to see that if cy(u) # 0 (but is analy-
tic in %, which tends to happen’) then it would not nec-
essarily evolve, For c(0) could be unequal to zero and
there would be no way to force My (0), from (B35), to be
0. An isometry at #=0 and at u =du will still leave
My0(0) free. Thus, as in preceding studies, absence

of radiation or shock waves are necessary for the
evolution.

A. Asymptotic conditions and ¢ dependence

With 77(0) as our Killing vector field at u=0, A,B,f, g
as the same functions they denoted on BH except now
defined only at # =0 so far, and since 53, the axial
rotation generator, is also Killing, [1*, 52 ] :n"' » must
also be Killing; hence its (A, B,f, g) is (A,, B,, f4,84)s
at u=0. u is taken to be 0 throughout this subsection
(TIA). Assuming (A, B, f, g) smooth enough in ¢ in [0, 27],
a Fourier series expansion may be performed, e.g.,

F =30 frexplike) so that N® =Y 5,15 exp(ik¢) and then

w« o0

LngaB: g Lnke"k@ Bapg™= g exp(ik¢)(LnkguB

+2ik62 1) = 0, (I 1)

where some known properties! of ¢, the Lie derivative,
have been used and where . will denote that & is not
symmetrized. Since the exp(ik¢$) are linearly indepen-
dent on L%(0, 2w, R) for each k, we have a Killing vector,

exp(-ik¢) L,,keitw up= ["’kg"‘ﬁ +2iR0°% (7, = 0. (1. 2)

Now, as » — « the Killing vector field will be as-
sumed to be one of the generators of the BMS group.
This is necessary if we are to remain in asymptotically
flat space—time. Then, since the BMS group has its
(A, B, f,g) independent of ¢ except for spatial rotations
where k=1 terms come in, "1 the 2=0 or k=1 terms
will appear, and we will take as our vectors the k=0
+ k=1 components only, Since R(3) has B, =0 and as
will be seen in the next subsection, B,=0, our B must
be the same it is at » == so we will take B, =0,

f: Of(u’ 97 7’) + (-)f(u; 9’ T) Sin¢ + (+)f(u, 9’ 'V) COS¢

and A, g similarly. However, in Appendix C it is shown
that A may be taken independent of ¢, and so we will do
so henceforth,

B. Further asymptotic conditions

1(0) gives rise to an asymptotic vector field, as-
sumed nonzero, Nu=0, » —~=)=1,(0). 1,(0) is then
part of the BMS group at all u. If n(u) exists, it will go
to n.(x) as » — and so its {A, B, £, g) would have a
known u dependence® as v — = 5(u) will have to be
defined with that dependence of u as v <, Thus,
(SM1. 2) gives B, =0 at all u and #; we will then define
B off =0 such that B,=0. Similarly for all the other
coefficients. Of course, the consistency of all these
definitions will have to be shown. (SIIL 2) gives f ¥
=g =0 for N>1 and (BH19¢) and (BH19f) at all
and ». Were we to expand everything in (BH19a) in in-
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verse powers of 7, the terms to 0O(1) and below in 7
must give 0: at all « because of the first of (SIIL 3); at
all » because the coefficients in the series are inde-
pendent of ». Similarly we get A“™ =0 for N>1 Vu,r
and for all the other equations in (BH19) we will get,
for all u,

L,80=0 to 0(1), (1. 3a)
Lng3=0 to 0(?), (IL. 3c)
Lng33=0 to 0(?), (11. 3d)
Ly823=0 to 0(*), (I1. 3g)
Lagy=0 to O(r?), (II. 3h)
L[,80=0 to O(1), (I1. 3i)
Lr8i3=0 to O(1), (1. 3j)

(IL. 3b) is B,=0 V¥ u, (II. 3e} and( II. 3f) are (BH19e) and
(BH19f) respectively, ¥ u. Of course, (II.3) hold at
=0 for all orders of . The form of /, g,z in (II. 3) are
copied in Appendix A from (BH18).

C. Solution for the vector field: General case

The procedure will continue as follows: (4, B, f, g)
will be defined so that (II. 3) hold and so that we get the
vector field 77(0). The higher orders necessary in (II. 3),
to show that 7(x) is Killing, i.e., the rest of (BH19),
will be shown to hold. To start we will take B=1, From
the no-shock condition B will be a regular function of
cosb [including B(x =0)]: In Appendix C it is shown that
B is a constant, Without loss of generality this may be
taken to be 0 or 1. If B=0 and B =1 occur at different
regions in the same initial problem, we solve for each
initial region separately. Since, as we will see later,
in all cases the result is the same, namely evolution
and a Weyl metric, this does not affect the result.

B =0 is treated later. Lind' uses a coordinate-tetrad
transformation to make B =1 (or 0 if not timelike); this,
however, could not directly be done here as it could
change the metric conditions.

Also notice that (BH24) through (BH39) hold at all u
since they are gotten in accordance with (II. 3). Similar-
ly (BH40e), (BH40k), (BH40i) and (BH40j) also hold at
all #. The rest of (BH40) hold only at #=0.

Now, (II. 3f) gives
&,/g=-("/7),/("/7)
so that
g=ree
with
exp(A) = exp(,py A) + exp(,_, 4 sing) + exp(c,, A cose)

(2,2 arbitrary functions of #, 6. Then (II. 3j) gives since
A, is a cos¢ or sing term

(O)gu/(O)g.’_yu:O to 0(1)
s0
(D)Au = 0.
Also, (Il.3g) gives, similarly,
— sinfe~"34(e”/sinb) ~ (4, 6/ (& =0 to O@?)
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so that
w,ﬁ:—1n|sin9, +cf
and

o & =cy¥sinfe?. (IL. 4)

Notice that (IL. 3g) holds for all orders of # if there is
no ¢ dependence, Similarly, (II.3e) gives

(e/v)f, +(e"/7) f+U,=0
so that

f==Ure” +H(O, ¢, u)re’.

H is arbitrary. But (BH32) gives £V’ =0 and B=1,
(BH37) and (BH39) give f{*1) =0, so that with (3, =const
H=f"Y=1(¢)= g + (I sing + (,y] cos¢$. In Sec. IV,

(s 1#0 are treated, ()l =,l=0, =0 is treated in
Appendix B. Here we take [ =0 and then (II. 3j) and

(II. 3g) give also (,,g=(.,2=0 as well as

(1I. 5)

’

== Ure". (11, 6)

Next, notice that (SIII2) last gives a relation valid at
all # and » between (BH18c), (BH18d), and (BH18g).
(BH18g) is already zero for all ¥ and 7 so that if we had
(BH19c) holding at all « and 7, (BH19d) would do like-
wise. Thus we define A for all #» and » by (BH19¢). It
can be solved for A unambiguously. Then all of (BH19)
hold for all » and » except possibly (BH19a), (BH19h)
and (BH19i). We will see, with our (4, B, f, g) whether
they indeed hold, i.e., if they evolve, The definitions
of (A, B, f, g) in BH give

1% =(B,Ae’¥ - {B vy, BU+fe” /v, ge'/r sind) (I1. 7)
so that using (II. 4), (II.6), and B=1,
n* =(1,Ae" ¥ - jvr1,0,c). (L. 8)

However, n*=(0, 0, 0, c;) is Killing, and hence setting
¢y =0 will affect nothing. Also, (BH19c) gives, on re-
arranging, using (II. 6) and B=1,

(Ae - 3V )y, +1/7) = -7, (L. 9)
while (BH19d) similarly gives
(Ae - SVr)(1/y -7, =7, (I1.10)

so that one must clearly have for the definition of A

Ae-2B - %V’V'l =0. (II. 11)
Hence,
e =52, (I1. 12)

From arguments in Sec. I this will evolve to fill out the
region M of space—time so that the remaining three
equations will evolve. The definition of A by (II. 11) will
not be inconsistent with any of the three remaining
equations: E.g., (BH19h) to 0(1/7%) gives (BHT9) which
gives A = M, But (Il. 11) gives just that; further
(BH19h) gives, using (II.11), 8,=0, and is thus consis-
tent. Similarly (BH19a) gives 2,(Vr-ie?® - Ulr?e?”) =0
and (BH19i) has ¥, =0, both consistent. The definition
will, of course, be consistent with the initial data.

In the cases considered so far it has emerged that
the isometry evolves and M must be Weyl.

IH. SPECIAL CASE: 8=0, ,,/=0

Checking back on the discussion leading to (1I. 8), g
can be taken to be 0. (II. 3e) gives
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F=H(0,u)re”

and then (BH24) gives H=0. (BH10c) gives A=0 at
=0 and (BH19a) gives A,=0 at #=0. A can be defined
to equal zero without inconsistency. This is a trivial
subcase.

IV. SPECIAL CASE: (_,/, 1)/ %0

Since (cos¢, sin¢g) are linearly independent in
L*0,27,R), (IL.3j) and (IL 3g) give respectively, at
u=0, for B=1or B=0,

- A, e exp(- (£) A) £ (, f Ue?/sinf =0 (v.1)
and
= (75— cotb) re™ exp(— (+) A) - ve™” exp(= () )= 75— (,yAs)

F(y f€8"/5in6 =0

(Iv.2)
with the obvious notation
F=of+ yf sing + ,, fcosd (1v.3)
and so on. {IV.2) may be written as
exp(—(£) A)(,,, Ag + cotb) =¥ (, L' /sind (1v.4)

with (,,/ constants. Clearly acos¢ in f gives asing in
g and vice versa. Now, since the left-hand side of
(Iv.4) is independent of #, the right-hand side will also
be soatu=0, i.e., ¥y=0atu=0. (IV.1) gives U=0,
so C =N=0; then, (B22) gives $=0 and (B24) gives _
V=7-2M, My=0from {B35). (IV.1) also gives (,, A,
=0atu=0. If B=1, (BH19¢) and (BH19d) give respec-
tively, at u=0

A-3VrYA/r) ==, (Iv.5)
(A-3vrY1/7)=vy,~ (o] cosb/sinb (Iv.6)

so that g7 =0, v,=0 and o A = V#1/2. Then (BH192)
for (,,f gives M, =0 and then (B36) gives N;==0, all at
#=0. An examination of Paper B then clearly shows
that, since cy(x)=0, the initial value problem evolves
uniquely as spherically symmetric, i.e., y=8=U=90,
etc., continue at all 4, If B=0, (BH19¢) gives A =0,
and (BH19d) gives (=0 both at ¥ =0. (BH19a) for
(S gives M, =0 and then as before the metric evolves
spherically. Birkhoff theorem, of course, gives us a
static space—time.

V. SECOND PART. SMALL ANISOMETRIES: SMALL
PERTURBATIONS OFF WEYL

Since imposing an isometry in Bondi gives us a Weyl
space—time, one becomes interested in the next best
thing: imposing an “almost symmetry.” If by this is
meant taking a vector field 7 and taking / (,.en) Sas= Of€),
where € is a small parameter which will denote the mag-
nitude of the symmetry breaking, then this will be a
space—time very near to a Weyl one, i.e., g45= ,&us
+€hgg and

L(n-rbn)gaB: angaﬂ +6/—nh°tﬁ +€L(6n)wgaﬁ’

The last term may be removed by a gauge transforma-
tion. We see that if we wish to stick to our definition of
“almost symmetry,” 5 will have to be a Killing vector
field of , g4s; if we do not necessarily wish a timelike
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vector or axial symmetry, the base Weyl space—time
will have to be thus restricted. The equations for any
perturbation k,; may be written down!’ and compared!®
with those for /,h,, and one sees that equations for
both, in vacuum, are identical. Metric perturbations
of Schwarzchild space—times have been treated exten-
sively in the literature, 1%?® spurred by interest in
radiation near nonrotating black holes. Metric pertur-
bations in Weyl space—~times have also been carried
out.?! The expansions used have been essentially of two
types: a double series of multipole moments— multipole
moments, ?! and in a 1/7 series and later in multipole
moments. Objections and convergence problems of the
latter method are not important if one remains far away
(but not at ©) from the source. Here we carry out a

1/7 expansion and calculate perturbations far away in

a way that, very simply, would show some second
order perturbations effects had one started with linear
theory. ! Of course, higher order perturbations in this
scheme could be carried out, and the convergence is an
open question. We start with Weyl and perturb it, keep-
ing the axial symmetry and nonrotation, and thus use
Bondi’s method linearized about Weyl. In a very simple
way nonlinear effects appear. The only drawback seems
to be that one never really relates masses and so on to
exact sources (e.g., fluid or kinetic densities). This is
a standing unsolved problem in all of gravitation.

We start with a Weyl s—7 transformed to a coordinate
system where ¢ =0. 7?2 A perturbation will involve a
small change in ¢ to ef(u, ), € a small parameter to be
specified later. We will keep only terms of O(e). (B35)
gives

M=3eF+m,, (v.1)
where
F=fy, +3f,cotd — 2f, (v.2)

and m,, is the constant mass in the Weyl unperturbed
case. (B36) then gives

Ny=-1eF,. (v.3)
(B34) gives
4Cog=€[2m,, fo— 1 (F, cotd — Fyy)]. (V.4)

We will now calculate the quadruple moment. There
are different nonequivalent definitions and we used Eq.
(3) in Newman and Unti, 2

Q(u) =31 fo' CP% (cosf) sinf do (V.5)

(I a numerical factor so that the linear approximation
should give the right answer), where P% is the (3) asso-
ciated Legendre polynomial

P% =3 sin’; (v.6)
then, using (V. 4),
& =19¢ fo' [2m, fo— %(Fz cotb — Fy,)] sin®0 46 (v.n

This integral will of course depend on f. So will F. Ex-
panding f in Legendre polynomials in cosé with u depen-
dent coefficients

f= 23 dylu) P, (cos0). (v.8)
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Then, from (V.2), with ¥/ =d¥/d(cos0)
F= Eo d,{[1 - cos?0] P7 — 4 cosfP, - 2P,}

and since P, satisfies its differential equation

F= an d,{- 2cos6P! - [2 + n(n+1)]P}; (v.9)
since P} cos8 =37 (K, P;,

F= nZ} a, P, (V.10)
with )

a,=-2 "i) Ay Ky — da[2 +n(n +1)], (v.11)

so that if f has d, =0 for n> %, a,=0 for n> & also.
Since

F, cotf — Fyy = (F'), siné,
we get, integrating by parts,
Ji (= Fap + Fycotd) sin’6 d6 = -8 [ FPy(cosb)d cosb).

V.12)
Also, (

ST fosin®0 a0 =% [} £olPo— P;ld(cosb). (v.13)

Thus, we see from (V.11), (V.12), and (V.13), and the
orthogonality of the Legendre polynomials, that the only
contributions to § will be from the n=0 and n=2 terms
of f and the n =2 term of F(i,,d,,d,, a;). Higher terms
of f, i.e., dy,dg and so on, will only contribute in a,.
This is because

[: 2o —2d,cos6P.P,d(cos8)

na(
=2 23 [d,{£8,,+20,0} - 2 (if n even)].

Hence,
Q=4elbm,(dy - $4;) +9(- £ &))], (V. 14)

where the superscript dot indicates d/du. This is exact
to O(e) and relates the quadrupole moments to two coef-
ficients of ¢. The lowest order effect in m, is, from
(B58),

my=— ldp? +3d2 +5dy + o+ *]. (v.15)

It is clear that the dj, d; (:>2) are independent of @,
even at higher orders of . Thus, at least part of the
radiated energy is not related to quadrupole moment
change. If we, however, take the 0 and 2 terms of f as-
suming the 7> 2 terms and d; to be much less than the
others (or simply ignoring their effects on m,) and if
we let time () derivatives be much less than 1/m,, i,
for any coefficient d;, dym, <<d;, so that the background
should be strong and the change slow, but not totally
negligible, and so that € could be roughly taken as the
energy radiated/total energy and € <<m, /T, where

1/T =rate of energy radiated/total energy
as that the approximation is consistent, then
Q= (@0 em,(dy - 5d5’) - & d; 1

=2 {—[(72)2 *16/25]d} + 12m (- £ d}") §1e} (V.16)
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where we have set in the last time d;” > d}’.
(V.15),

- 92=[(712)2/5]168my+ % m, 4" 4",

Then using

or

mo~ - [5/161%(12)21§"* - [60/(72))m,, @ §".  (V.17)
The first term is the usual one that relates radiated en-
ergy to change in quadrupole moment (different numbers
depending on “normalization” I). The second, since it
has a term m,,, is an interaction of the radiation with
the background. ¥® This approximate expression is sim-
ilar to those in Refs. 19—21 and represent radiative
tails. Further multipole moments may be defined as
in Ref. 23 so as to write more exact expressions for
m, in terms of them from (V.14). The advantage in the
perturbative approach here used is the mathematical
simplicity., The disadvantage is the usual not-apparent
interpretation, including that of @ and the approxima-
tions used. If @ were related to source densities, Eq.
(V. 17) could be used to calculate the energy radiated
by a massive axially symmetric static object changing
slowly. More exact expressions are needed to disen-
tangle further the nonlinearities, but it is helpful that
even in this simple approximation to O(e) some appear.
Care should be exercised in that there are different
(usually numerical) definitions for @."1%%% Also if in-
stead of Bondi’s m, we used Newman and Unti’s, ** there
is a relation m, (Bondi) =m, (N.U.) - 1/2[5(c}
+ccy) sinfdf so that we may again get an approximate
different expression for radiated energy. For a dis-
cussion of mass and multipole moments in relation to
Bondi’s formalism see Refs. 23 and 24. For a nice in-
variant treatment and generalization of Bondi’s formal-
ism see Ref. 25.

APPENDIX A
Some errors in (BH) have been taken care of here:
Laguo=fleay(Vriet® - Ulre™) + 2Ure* 3,27 ]
+2f, Ure” + B, (Vrie?® — U2 e*)
+(Ae ¥~ sBVr ) 2, (Vr-le - Utyrlel)
+BU(Vrie® — UrPe™) +2(Vrle® - Ur?e™) B,

+2e*%9 (Ae™® - $BVY) + 2Ur%e*3,(BU),
(BH18a)

Lng11 =€, B, (BH18b)
La822=—2fs7e" + Ba,(—7e') - (Ae¥ - BV»1/2) 8,(#* ")
— BU3,(r*e®) +2Ur?e? 3, B — 2¢2e¥ 3 (BU),

(BH18c)
L g33=(fe/7) 3,(— ¥*e " sin’f) — 2g, re™" sinb
+ B, (- re"?"sin’0) + (Ae"** — ;BVr)a,
(= 72e7%7 5in®0) + BUd,(- e *" sin%g),
(BH18d)
Log12 =fl~ ¥e?8,e”"/V)] - f, ve” + e** B, — ¥'e'"(BU),
+Ur*e'’B,, (BH18e)
Lo813=~ g, 7ve”" sinb — gr*e"" sinb(e”/7), + e**B,,,
(BH18f)
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[ n8r3=—gre " sin*09,(e”/ sinb) — f,ve’ - gove™ sind,
(BH18g)

Logor =flle™"/7)2o(e*®) + Urte?™d (e /7)] + £, Ure®

+B3,e* + (Ae™*® - {BVy1)3,e*® + BU3 e**

+e¥9, (Ae™ — 1BVy™) + Ure''BU, + ¢**B,

+ B, (Vr1e??), (BH18h)
L8 = flog(Ure™) = re* 367" - f,ve” +f, Ure”

+ B2,(*Ue%) + (Ae??® - ;BVr1) 2, (Ur’e?)

+ (Vrle® - U22eX)By+ e*f3, (Ac™® — LB V1)

+ Ure?9,(BU) + Ur*e’"B, - ¥e*"(BU),

+ BUy(+*e*U), (BH18i)
and, lastly,
[.8i3=A, —glre " sinby,) +f,Ure” — g, ve™" sinf.
(BH18j)
APPENDIX B
wl=0, ol#0, B=1.

ol =K, (BH40e) and equations preceding (II.6) give
FU =2K,¢ + (¢, + 2¢ coth).
(BH40i), while using (BH24), gives
- Ky(cy +2ccotf)s +AD =0. (B1)

(BH40c) and (BH40d) actually hold for all « since all the
terms, from (BH34) and with g9 =0, are independent of
u. Thus

—f =coKy—f ' coto
and (II. 5), with H=K,, gives
O =K

so that K; =0 or 2¢, + ¢ cotd =0. Ignoring the already
treated former case, and with A® - 1/2=- K,c,, and
using (B.1), ¢=0. (II.4) gives gV =¢,;, g% =gV =0,
and there is also AV =f O =y D -0 AV =1/2,

(BH40a) gives A1) =K,M, at u=0, (BH19h) gives A
=M at =0, and defining A by (BH19c) as before, AV
=— M at all # so that M, =0, using (B35). As before, one
one may get

n =+ KBS, (82)

which means g,,=gq (1 — 0/K;); @ =B=0 give clearly
M, =0 at # =0 anyway: Again there is no inconsistency
nor additional imposed metric conditions, (B36) now
gives Ny=0, (B34) Coy=0, (BH19i) gives U,=0, (B2)
then gives U,=0, all at #=0. One may continue using
(B2) and equations in B and BH to get zero for all func-
tions. This is a trivial subcase, flat space—time.

APPENDIX C

First, (II.4) will still hold as well as the equations
before it. (IV.1) will also hold, and so will (IV. 4) ex-
cept one would have, to start, on the right-hand side of
(V.4) £, fe’"/rsinf and on the left of (IV.1) %, Ae”/
rsinf. The argument below it would give

oS = (v Glu, 0) re™.
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(BH19e) gives ,,f =, H(x, §) ve” so that, since [(,,G/
(wH1,=0, ¥y=0. Then (IV.1) gives ,, 4,=0,

m

(o GU+ (4 A = 0; with n=1 we get ,) AP =0 so that
wf'P=const=G. If (,G=0, then (,,g=0and (,,A=0
and there is no ¢ dependence (treated below). But
(BH19h) gives

(A, +2e%8,=0 so that AV =0,

and since (B22) gives =0, we must have (,,A =0 from
{BH40c), and thus U=0 at «=0. (BH19¢) and (BH19d)

give with B#0, respectively, (IV.5) and (IV.6) with the
former’s right-hand side changed to ¥, — g, f cos6/¥ sind
and both left-hand sides changed V—~ BV, and A~ 4.
(BH19e) also implies (,f=T(u, 6)r, and so, comparing
(IV.5) and (IV.6), we get ¥,=0, T=0. Everything, so

far, is at #=0. The argument below (IV. 6), from “then
(BH19)” on, is then valid. Thus, if there is a ¢ depen-
dence on (f, g) we must have spherical symmetry, and

@A =0

If there is no ¢ dependence anywhere the argument
above does not follow, One proceeds as follows in order
to set B=1or 0,

Taking 3, on (BH40c) and (BH40d) (we will define A®
for all # in such a way) gives K =c; cosf (¢; const), and
previous equations in BH then give £ =¢; sing, AV
=— ¢z cosf. (BH40c) and (BH40d) give (without 3,)

—c¢5(cgsind + ¢ cosf) +m/2 +m”

=¢;5(cq 5inb — ¢ cosf) + m’ cotd +m/2 (c1)
while (BH40i) gives
cs{sinG(IZ—csinG+Zcos9(l})}+n'+m’/2=0 (c2)
with
=—¢5(c sinb)y +m/2 + m”. (Cc3)

If one now expands ¢/sin6 in cosf near 8 =0 (¢/sin%6
must be regular’ there) and m in a Taylor series at #=0
(B must be regular also),

c :d(2)92 +d(4)94 4aee ,

m=mO +m P+
and uses the above two equations for ¢ and m, one gets
csdP =0, m® arbitrary, m P =m =0, 8m™ + 2,
=0,+++. Since d® may be taken different from 0 (by a
supertranslation’ K=1, a = a(d), one can always do so;
also set ¢ #0), we must have ¢; =0. Then one may solve

exactly above to get B==¢;cos6 +¢, and if £3# 0, take
B =cy+ cosb; now, (BH19e) gives

fe"/r=~BU~ [(e***"/7)sind dr,
and with

L=-ve” [(**"/¥)sind dr,
(BH19c¢) and (BH19d) give, respectively,

(C4)
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(Ae?®— BVr1/2)(1/7r+7,)= - Usinb — Ly/ve’ — By,
r

(C5)
and
(Ae*® - BV /2)(1/7Y,) =By, - (Le’/27 sin0) 9, (e~*" sin’f).
(C6)

Checking both to 0(1/%%), we get, respectively,
—c(A® —B/2) + (A" - BM) = (c sinf),,
+c(A%- B/2)+ (A" - BM) = (¢ sind),,

so that ¢(A® - B/2) =0. With ¢ set not equal to 0 by a
supertranslation, A® -~ B/2=—- cosf#=0. This is non-
sense so that ¢; must have been 0. Thus b =c¢, constant.
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This paper is a continuation of a previous paper with a similar title [J. Math. Phys. 17, 1345 (1976)]. In
this paper we develop further properties of time-dependent symmetries of dynamical systems expressible in
the form (a) E'(%,%,x,t) = E'(¥',...,%"; x',.,%"; x',..,x";t) = 0. Such dynamical symmetries are
based upon infinitesimal transformations of the form (b) X' = x' +8x!, §x'=#(x,1)84a, (c) 1=t +31,
8 1= £%x, )8 a, which satisfy the condition (d) $E' =0 whenever E’ =0. It is shown that if (&, £5),
A=1,.,p, is a complete set of solutions of the symmetry equations as determined by (d), then these
solutions generate a p-parameter complete group of symmetry mappings, and the group structure implies
linear dependency relations between first and second derived time-dependent constants of motion as
obtained by a related integral theorem. The complete groups of time-dependent symmetry mappings are
obtained for all conservative systems (n> 1) with spherically symmetric potentials. These groups are
classified into six types according to the associated form of the potential. A similar analysis leads to three
types of Noether symmetries. In the case where (a) takes the form (€) E'(X,x,x) =0, it is shown that if
(&, &% defines a symmetry mapping then in general (K& /51X, X£%/1%), K =1,2,..., will also define
symmetry mappings; similar properties are shown for Noether symmetries. These results when applied to a
large class of time-dependent constant of motion defined in terms of (£, £°) lead to further contants of

motion.

1. INTRODUCTION

With respect to a classical particle dynamical system
a dynamical symmetry is defined as a mapping of the
set of system trajectories into itself,

In a previous paper' (Paper I of this series) we
developed a gauge invariant formulation of time-depen-
dent symmetry mappings and associated constants of
motion for Lagrange’s equations. In this paper we con-
tinue this work by developing further properties of
time -dependent dynamical symmetries, and exemplify~
ing several aspects of the theory.

We shall now consider dynamical systems expressible

in the form?
Ei(¥,%,x,0)=EX X, .., &, ., 87 X, L., 87 1) =0,

1.1)
In Ref. 1 we defined Type I (infinitesimal) mappings
by

¥ =xi+06x!, BSxt=tYx,!)0a, (1.2)

(1.3)

Based upon such mappings the 8 variations 84! and 0!
were defined respectively by*

[=t+06f, 8 =£t,1)0a.

dxt  dx! P
le T ~ e~ o (EL = #PE0)D .
R LIRS LS (1.4)
. d*xt d2xt e vy
ot = _ G (F S 9% 9. 1.
x dre T (g 283 2x°¢ )0a (1.5)
For any function G(¥, %, x,{), 6G is defined by
_3G . 3G .., 3G ., 3G
5G_—67x"" ox e 8% = bx = bt. (1.6)

A Type I mapping will define a symmetry mapping of
the dynamical system (1.1) if
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SEf=0 (whenever E’=0). a.mn

To obtain the explicit conditions on the mapping func-
tions £%(x,!), (=¢° t%), «=0,1,...,n, in order that
(1.7) be satisfied we proceed as follows:

{(a) We expand (1. 7) by means of (1.6) in which 0x?,
8¢, 8x%, and 6% are expressed by (1.2), (1.3), (1.4),
and (1.5), respectively.

(b) In the resulting equation we eliminate the ¥ terms
by means of (1,1) [which we assume to be solvable for
¥*|. Since 6x! and 6%! are linear and homogeneous in
the £%, £%, £%, the equations so obtained will be of the
form

Gilx, x, 0)E* +GH(x, x, 1) E% + GY (X, x, 1)£%,=0. (1.8)

(c) The explicit symmetry equations for the £*(x, ()
are obtained by considering (1. 8) as identically zero in
the x! variables (since otherwise they would impose con-
straints on the dynamical system). The £*(x, () which
satisfy these symmetry equations will be referred to
as symmetry solutions.

By means of {1.2), (1.3) such symmetry solutions
determine the above-mentioned Type I symmetry map-
pings of a dynamical system (1.1).

In Sec. 2 it is shown that if a dynamical system of
the form (2.1) admits a symmetry mapping defined by
[Ei(x, 1), £%(x,1)], then in general it also admits a
symmetry mapping defined by [2%£1/8t%, 3%£°%/a1F],
K=1,2,..., A similar property is shown to hold for
Type I Noether symmetries. These results when applied
to a large class of time-dependent constants of motion
based upon the functions [£%, £°] lead to further constants
of motion.

In Sec. 3 it is shown that if [¢£5(x, 1), £%(x, D],
A=1,2,...,p, is a complete set of solutions of the
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symmetry equations based upon a dynamical system
(1.1), then these solutions generate a p-parameter
(complete) group of symmetry mappings. It is shown
that the group structure implies linear dependency
relations between first and second derived time-depen-
dent constants of motion obtained by use of a related
integral theorem, **

In Sec. 4 we give an example of a class of time-
dependent Lagrangians which satisfy condition [Ref. 1,
(4.12)]. (It was shown in Ref. 1, Sec. 4 that if the
dynamical systems defined by such Lagrangians admit
Type I symmetries,; then a time-dependent constant of
motion C; exists.)

In Secs. 5—9 explicit time-dependent symmetry equa-
tions for conservative systems are derived. Based
upon the solutions of these equations the complete
groups of time-dependent symmetry mappings are ob-
tained for all such systems (n >1) with spherically
symmetric potentials, These groups are classified into
six types according to the form of the potential.

In Sec. 10 a similar procedure is carried out for
Type I Noether symmetries.

2. TIME DERIVATIVES OF SYMMETRY SOLUTIONS

In this section we restrict the dynamical equations
(1.1) to be of the form

Ei(%,x,x)=0, 2.1)

We shall first show that if £%(x, ) is a symmetry
solution of the dynamical system (2.1) so also will be
£%. Since (2.1) does not contain ¢ explicitly, it follows
from the discussion leading to (1. 8) that (1. 8) now takes
the form

Gal¥, ¥)E* +GH(x, X)EG+ Ggi(%, X)£%,=0. (2.2)

To find the explicit conditions that the functions £
define a symmetry solution, we require that (2.2) be
identically zero in the %' variables. We assume that the
resulting equations in the unknown quantities £® so ob-
tained (referred to as the symmetry equations) by this
requirement are satisfied by the solution

£ =f%(x,t). 2.3)

Hence, if we substitute for &% in (2.2) by use of (2. 3),
the resulting equations will be identically zero in the
X% e,

FizGif*+Gyf%+GYf%=0 (in x%), (2.4)
From (2.4) it follows that
AR _
=0 (2.5)
in the %!, From (2.4) and (2.5) it follows that
GL(f3) +GU(f%) s +GEYH(f%) 5, =0 (in %), 2.6)

Hence £% =f5 will also define a symmetry solution.

In a similar manner it follows that in general F5es
S G4s o+ + will also be symmetry solutions.

This result can be stated by the following theorem.

Theovem 2.1:1f a dynamical system which is charac-
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terized by (2.1) admits a symmetry mapping (1.2),
(1.3) defined by [£i(x,#), £(x,¢)], then in general it also
admits symmetry mappings defined by [2%£7/3t¥,
aKEO/atK]; K=1,2,3, ...

We now assume the case where the dynamical equa-
tions (2.1) are expressible in the form of Lagrange’s
equations

A(L)=0, (2.m

based on the Lagrangian L = L(x, x).

A Type I mapping defined by (1.2), (1.3) is called a
Type I Noether mapping if there exist functions [£*(x,?),
¥(x,¢)] such that®

d di
oL +L7i}" 84+ dT =0,

It is clear that the expanded form of the left-hand
side of (2. 8) will be linear and homogeneous in the
quantities £%, &%, and ¥ ,. Hence by an argument simi-
lar to that used in the proof of Theorem 2.1 we obtain
the additional theorem

(2.8)

Theorem 2.2: If a dynamical system based on a
Lagrangian L(¥, x) admits a Type I Noether symmetry
mapping defined by [£*(x,{), ¥(x,¢)], then in general it
also admits a Noether symmetry mapping defined by
(a¥ex/at%, aFp/at%], K=1,2,3, .-+,

We may apply Theorem 2.1 to the case where (2,1)
takes the form of Hamilton’s equations®

EXt,x)=2"~n*8H , =0, A,B=1,...,2n, (2.9)
where
H(x,1)=A(x) +B(¢). (2.10)

In this case (1.7) is again linear and homogeneous in

[£%(x, 1), £%x, )], and hence if these quantities define

a symmetry mapping of the Hamiltonian system so in

general will [3™£4/a¢™, am&°/at™], m=1,2,3, --+, de-
fine a symmetry.’

It is well known in Hamiltonian mechanics that if
H(x,t) is of the form (2.10), then if I(x,¢) is a constant
of motion then 31/3¢ will also be a constant of motion,

A similar result is easily shown to hold for dynamical
systems represented by equations of the form (2.1),°
To prove this, assume I(%, x,¢) is a constant of motion
of such a dynamical system; then

i(ﬂ Y SRR i | iy 021
ar\at)” axtal ¥ T 3%t ¥ T hrat
(ol ., o .. aI\ @ {dl
= — +—=rrx'+—=)=—|=-=)=0.
Y, (ax’ ST +8t> 2t (dt) 0

(2.11)
We state the following theorem,

Theovem 2.3: If a dynamical system of the form (2.1)
admits a constant of motion I(¥, x,#), then 3I(%, x,¢)/3¢
is a constant of motion.

Corollary 2.3: If a dynamical system (2.1) admits a
Type I symmetry mapping (1.2), (1.3) defined by £%(x, ¢)
and an associated constant of motion of the form

1=1¢°, £%, ‘E,aey;’é’ x]

=100, 0 E® +13(%, ) E% +I9 (2, %)£%,, (2.12)
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then the constant of motion 2//8¢ is of the form
31/81 :1[(53)5 (gt,x:),ﬂ’ (E?‘t),ﬂv; ’2’ x],

where by Theorem 2.1 £°% also defines a Type I
symmetry.

(2.13)

As an illustration of a constant of motion of the form
(2.12) we mention the function C, defined by Ref. 1,
(4.6) (with y; =0), where the dynamical system (2.1) is
based on Lagrangian L = L(%, x).

We note that a statement similar to that of Corollary
2.3 holds for the Noether constant of motion C, defined

by [see Ref. 1, (4.8)]

Co=CoE%(x, 1), Ylx, 0); %, x|

oL . oL ..
= 7 E? —(9—““61 —L) £0 + i,

ax

(2.14)

(where [£%, 9] define a Type I Noether mapping) in that
the constant of motion

Cy = Col(£%), (¥ ,); ¥, ],

where again {2.1) is based on the Lagrangian L(%, x).

(2.15)

3. GROUP PROPERTIES OF TYPE | SYMMETRIES

In this section we shall first show that if £%, £% de-
fine any two Type I symmetry mappings of the dynami-
cal equation (1.1), then®

B = Al =y o — E5 sER= D455 — A4ES (3.1)

will also define a symmetry mapping of (1.1), where
for any function M(¥, %, x,!()

A M=8,M/da, (3.2)
with 0 ,M based upon £%.

To prove the above stated property concerning £%,,
we note the commutator expression defined by

(A, AgIM=(2 0, - A A M= A (AgM) - Al(A,M)
(3.3)

gives on expansion (by means of a lengthy but straight-
forward calculation)

[AA: AB]‘W = [(Efqa - x”é‘ia -2 é%B)E/F?,\."j
(£ = 0 89,)2/280 + £357 /257 | M,

(3.4)
From (1.2)})—(1.5) Eq. (3.4) can be written in the form

(A4, AgIM =[(A,,%)0/8% +(a,,%7)0 /%

+{A, 53 /0x% M. (3.5)
It is observed that (3.5) may be rewritten in the form
[B,,0,1M=20,.M, (3.6)

where the operator A,, is defined as in (3.2) in terms
of £%5.

Since &5, % define symmetry mappings, we have from
(1.7) and (3.2) that

AET=0, A E'=0 [whenever E‘(x,x,x,!)=0].

(3.7)
Hence it follows that
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AL(ALE)=0, A A.E")=0 (whenever E'=0). (3.8)
It therefore follows from (3.3) and (3.6)
A,,E'=0 (whenever E'=0). (3.9)

We summarize the above results in the following
theorem.

Theovem 3.1:If £3, & define Type I symmetry map-
pings of the dynamical equations (1.1), then ¢%, defined
by (3.1) will also define a Type I symmetry mapping.

Assume now that the symmetry equations (refer to
Sec. 1) associated with the dynamical equations (1.1)
admit a complete set of solutions £%(x,/), A=1,2,...,
p. By Theorem 3.1, £, defined by (3.1) is also a
solution of the symmetry equations for any choice of
A,B. Hence we must be able to express t3, in the form

Eip=Cintl, (3.10)
where Cj, are constants.
If now we define the operators X, by
X =E%/0x%, (3.11)

then by means of (3.1) we may express (3.10) in the
form

[XA7XB]:C{QBXJ' (3-12)

Hence we can state the following theorem

Theovem 3,2: If the symmetry equations®® of a dy-
namical system (1.1) admit a complete set of solutions
£9, A=1,2,...,p, then these solutions generate a p-
parameter group G, of symmetry mappings (in the n +1
variables v/, /).

Remark 1: If we assume the conditions of Theorem
3.2 are satisfied, then it follows from (3.10) and the
definition of the operator A, , that (3. 6) can be ex-
pressed in the form

(A, DplM=Ch0,M, (3.13)

If we interpret A M(X, x, x,1) as the generators (in the
3n +1 variables ¥, %, x!, /) of the second extension of
the group G,, then (3.13) is a statement of a well-known
group property. "

Remark 2:If in (3.13) we regard M= I(¥, x,{), where
I is a constant of motion of (1.1), then (3.13) can be
written in the form

[AB_[BA:CXBIJ7 (3.14)
where
142 8,0, Lyp=8415 (3.15)

are by the related integral theorem®* the first and
second derived constants of motion (based on I)
respectively.

4. A LAGRANGIAN ILLUSTRATING COROLLARY
4.1 OF PAPER |

In Paper I' it was shown that if a dynamical system
defined by Lagrange’s equations

A(L)=0, L(x,x,1) (4.1)
admits a Type I symmetry, then a sufficient condition
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that the dynamical system admits the constant of motion
C, given by Ref. 1, (4.6), is that there exist functions

A%, %,x,t) such that'?
a/‘af‘l(L) =2, A, A(L). (4.2)
g i=1

In this section we obtain conditions that the class of
Lagrangians defined by
Gi(jév x)# 91(7&’ x)’ i,j:l,z, ceoylly

4.3)

n
L= Zl exp(8,f) g (%, x),
e

will satisfy (4.2) for some 4 ,,.

If we evaluate the left side of (4.1) using (4. 3), we
obtain

A[(L)=2 exp(6,)F, (X, %, x,1), 4.4)
i=1
where
_ BG“ 9Gi; \ .»
-Z[( “a )xk+<tG LS = )%
+§—aG—L+GG H,.,.], (4.5)
861- Bg,
G (%, x,0)=tg; e T3 (4.6)
. 69 ag,
H,.j(x,x,t) tgl ax] +—(§F. (4.7)
Substitution of (4.4) in (4.2) gives
Zexp(e z)[e F,,,+ pt A,,F,,Z] 0. (4.8)

A sufficient condition that (4. 8) be satisfied is obtained
by equating to zero each of the bracketed expressions
in (4.8). This gives the system of linear equations (in
the unknowns A ;).

ZA“FW_TF;& +6,F, (4.9)
For a fixed j and with # assuming the values 1,...,#,

we obtain n equations in the » unknowns A, (i=1,...,n).
This set of » equations will have a solution for these
A, if

(4.10)

It is clear that if (4.10) is satisfied, all the 4,; {i,;
=1,...,n) can be determined.

|Fi| #0 (along a trajectory).

5. TIME-DEPENDENT SYMMETRIES OF
CONSERVATIVE DYNAMICAL SYSTEMS

In this section we derive the explicit time-dependent
symmetry equations for the conservative system defined
by the Lagrangian

L(%,x)=%g, (0% - V(x), (5.1)

where g;; defines the metric of a Riemannian (conﬁgura-
tion) space.

From (5.1) Lagrange’s equations take the form
ALY =g (X +T5,2%" +g7*V )=0,

where I'],(x) is the Christoffel symbol based on the g, ,.
By inspection it is seen that (5.2) may be expressed in

(5.2)
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the equivalent form [see (1.1}]

Ef=%'+T}, %% +g'V ,=0. (5.3)

To obtain the symmetry equations by use of (1.7),
we calculate 6E' from (5.3) and, as outlined in Sec. 1,
use (1.2), (1.4), (1.5) to eliminate the 6x%, 6xi, ox'
terms, respectively. In the resulting equations, (5.3)
is used to eliminate the ¥!terms. This procedure leads
to

(EO l'v - gokm))zk}ém}éi_’_(&ijk

+T 5 W& R+ (80,870 60 +2¢°,

‘g”m Jk—2§° 5! +21"’k51
UV,J"‘E.MG;
+2§,tm+zr;m£Z2)x +‘g,1tt_£.ig\’kv,k +2£?tgijv,j
+£mgijv'jm +g".{n£mV'j:O, (5_4)

The symmetry equations in £%, £° are obtained by re-
quiring that (5.4) be identically zero in the %%, As a
consequence we obtain

Bl +28%, 87V +gVV 8 ="V £, =0, (5.5)

£, g%V o) +28°, gV —£%, 0] +2¢% =0,  (5.6)

£, 0l ~ 0808, =01, =0, (5.7

£,=0, (5.8)
where

L 0=t + &L, +& 0t - I, +6°TE . (5.9)

For our purposes, unless otherwise stated, we now
assume in this and the remaining sections that the con-
figuration space be Euclidean referred to rectangular
coordinates x' (which implies that g, =¢*/=6, and
T'i,=0). As a consequence the symmetry equations
(5.5)—(5. 8) reduce to the form

£l 280,V +V LEF -V £ =0, (5.10)

£0,V,6, +2£°,V  — &0, 8] +2¢1, (5.11)

£l = 048y = 0,80, =0, (5.12)

£, =0. (5.13)
If we define ¢ =¢£°, then (5.12) takes the form

E =0 ;08 +¢ 0L (5.14)

This is recognized as defining a (time-dependent) pro-
jective collineation (in a flat space) with the known
solution’?

£ (x, ) =a,()x'x" + Bit)x) +C(p). (5.15)
From (5.13) we obtain
£%(x, 0) =A {t)x’ +B(¢). (5.16)

Hence by use of (5,15), (5.16) in (5.12) there is ob-
tained® @; =A}, and (5.15) is expressible as

(5.17)

There remains to be considered (5.10) and (5.11).
[Note that (5.16), (5.17) hold for any potential V(x). ]

Use of (5.16), (5.17) in (5.10), (5.11) leads to the re-
spective conditions

E=Alxix' +Bix +C1.
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AYxixt +B"x +CV ~[Afx' +A[x'6] +BE]V ,

+2(A7 + B +(Ax " + B +CHV =0, (5.18)

A,V 8] +24,V  —(A/x +B")6L +2(A1x

+A,x*6L +Bi)=0. (5.19)

If in (5.19) we put i= m and sum, the result can be
solved for A,V ;. If this solution is used in (5.19), we
find

AV =[1/(n+2)](B" +By)6! - B —A]x". (5.20)

Thus the solution to the symmetry equations (5.10)—
(5.13) has been reduced to solving (5.18), (5.20) for the
quantities A,, B, B!, C', V. The forms of £°, ! will
then be given by (5.16), (5.17) respectively.

6. SYMMETRY SOLUTIONS FOR THE CASE
Vix) = V, = CONST

Note that in this case the dynamical equations (5. 3)

reduce to the equations of the geodesics.

When V= V,=const, we have from (5.18), (5.20)
respectively

Al'ixt +BIxi +C =0, (6.1)

(Ajx' =B”)6! +2A47x" +2B1' =0, (6.2)
From (6.2) we obtain

A7 =0, (6.3)

When this result is used in (6.1), (6.2) we find
Ci"=0, B"=0, B!=3B'6!+a} (a/=const). (6.4)
Hence from (6.3), (6.4) we have
A,=0,0+1,, C'=vit +vl, B=yuy®+ut +pu,,

. o (6.5)
B;:(/J-o[ +%“-1)6; +(I;,

where in (6.5) 0, T, v, ¥, Hoy M1y Mg, O} are
arbitrary constants, The solutions for £%, &% can now
be obtained by use of (6.5) in (5.16), (5.17) (see Type I
solution, Sec. 9).

We thus have the theorem:

Theovem 6.1: The most general time-dependent
symmetry mappings of a conservative system with a
constant potential {with a Euclidean configuration space
referred to rectangular coordinates (x')] are determined
by (5.16), (5.17), (6.5).

7. SOLUTIONS OF SYMMETRY EQUATIONS (5.18),
(5.20) WITH AT LEAST ONE A; #0*

In this situation there is no loss of generality in
taking, for example, A, #0.

From (5.20) we find
AV =0 (i#k). (1.1)

Use of j=11in (7.1) gives V , =0 (i#£), and hence V(x)
must be of the separable form

V(x)= 2, V(x"} (V,is a function of x’ only). (7.2)
i=1
Again, from (5.20) with j=1, we find by differentiation
with respect to x!
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V,i=Vix)=A/t)/A,(t)=2a (i=1,...,n; a=const),

,ii T

(1.3)
so that we may write
V=ar®+8,x' +y (B;, y=const), (7.4)
where
?=3 (P (7.5)

Equation (7. 4) gives the most general form of poten-
tial when at least one of the A,+0 in (5.18), (5.20). This
implies (when at least one A4 ,+ 0) that the only spherical-
ly symmetric potential, that is, V= V(r), is given by

V=ar®+b (a, b=const). (7.6)

We continue with the solutions of (5.18), (5.20)
assuming the potential V has the form (7. 6). If then
(7. 6) is substituted in (5.18), (5.20), the following con-
ditions are obtained:

A +2aA,;=0, (1.7
B" +8aB'=0, (7.8)
Ci"+2aC'=0, (7.9)
B!=30B' +aj, a)=const. (7.10)

[Note that the conditions (6.3), (6.4) (for V=V,) corre-
spond to the case a=0.]

The above results are summarized in the theorem
stated below.

Theovem T7.1: If a conservative dynamical system
defined by the Lagrangian (5.1) [in a Euclidean configu-
ration space referred to rectangular coordinates (x*)]
admits a time-dependent symmetry defined by functions
£i £, these functions must have the forms given by
(5.186), (5.17) respectively. If there is in (5.16) at least
one A,#0, then the potential V{(x) must have the form
('7.4). In this case the most general spherically sym-
metric potential is given by (7.6), and for this potential
the conditions on the coefficients in (5.16), (5.17) are
given by (7,7)—(7.10).

Since in a later paper we plan to discuss symmetry
mappings of conservative systems with separable poten-
tials of the general form (7.2), we will postpone further
discussion of the potential (7.4) to this later paper.

8. SOLUTIONS OF SYMMETRY EQUATIONS (5.18),
{5.20) WITH ALL A; = 0, AND WITH SPHERICALLY
SYMMETRIC POTENTIALS

When all A,=0 in (5.16), (5.17), we obtain
(8.1)

Equations (5.18), (5.20) now reduce to the respective
forms

2 =B(t), £ =Bi)x +Ci).

Bi"xi +C!" - WBIx' +2WB'x’ +(Bjx’ +C%)

X[(W'/r)xt + WEl]1=0, (8.2)

(B” +B3")6}=(n+2)B}, (8.3)
where
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W=V'/r. (8.4)
From (8. 3) it follows that

Bi=36!B'+a), al=consts. (8.5)
From (8.5) and (8.2) there is obtained
CY +WCH +x [(W/r)Cix') +4B™

+B'QW +5rW') +(W'/r)(alx?xF)] = 0. (8.6)

As (8.3) is satisfied identically by means of (8.5), Eq.
(8. 6) is the only remaining equation to be considered.

If (8. 6) be differentiated with respect to x* (7#7), the
result implies that'*

W' (xCi=x'C7) =0, (8.7)

The choice W’ =0 requires V to be of the form (7. 6),
and it can be shown that (7.7)—(7.10) will still hold
(with all A,=0). If W’ #0, then (8.7) implies that

Ci=0. (8.8)
With (8. 8) used in (8. 6) we have
B +(4W +yW)B' + QW' /v)(a]x’x*)=0. (8.9)
Equation (8.9) implies
ol +ai=2ab;; (a=const), (8.10)
where
a=aj=ai=--+=al. (8.11)

From (8.4), (8.10), (8.11) used in (8.9) there results
B"” +(V" +3V'/v)B’ +2a(V" = V'/¥)=0, (8.12)
which is the only remaining condition on V(») and B(¢).

Differentiation of (8.12) with respect to » and ¢ leads
to

B"(V" +3V'/r) =0, (8.13)

Now if (V" +3V'/¥)*'=0, (8.12) and (8. 4) will give the
condition «W’'=0. Since we are assuming W’'# 0, this
implies @ =0, The condition (V" +3V’/7) =0, (with
W’#0) implies that
V=ky* +k /¥ +ky, k1?0 (b, k,, b, =consts).
(8.14)

Since now a =0, (8.12) reduces to
B" +8k,B’ =0, (8.15)

from which B can be found. Then &7, £° can be found by
means of (8.1), (8.5), (8.8), and (8.10) with a =0.
(See Type LI of Sec. 9.)

The other possibility of (8.13), B” =0, gives

B=b,t+b, (by, b,=consts), (8.16)
and hence (8. 12) reduces to

(o +2a)V" +(3b, - 20) V' /¥ =0, (8.17)
Solutions of (8.17) are of three types,

V=colnr +¢;, (c#0, by=20), (8.18)

V=co7* +c¢,,

[eo#0, plb,+2a) +2(b,—2a)=0, p(p?-4)+0],
(8.19)
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V(») =arbitrary (a=b,=0). (8.20)

[The restriction p(p® =4)# 0 in (8.19) is to exclude
duplication of previous solutions. ]

The corresponding solutions for ¢, t° may be found in
the general summary given in Sec. 9.

9. SUMMARY OF COMPLETE GROUPS OF TIME-
DEPENDENT SYMMETRIES ADMITTED BY
CONSERVATIVE SYSTEMS WITH SPHERICALLY
SYMMETRIC POTENTIALS

Conservative systems (x >1) are classified into six
types according to the form of their associated spheri-
cally symmetry potentials. For each type the corre-
sponding (£°, £') symmetry solution is given along with
the complete group generated by the solution.

It is found convenient to represent the symbols of
these groups in terms of the following operators:

Py =pg, (9.1)

Qup=x"Pgs (9.2)

SijExipj_iji’ (9.3)

UExipi, U*Exapaa (9-4)
where

p;=3/3x', p,=a/dt, L=t. {9.5)
Note that

U:ZZI:QH, Sij:Qij_jS- (9.6)

A group of p parameters is represented by a set of
symbols indicated by expressions of the form
(X, X;,...,X,]. It will be noted that each complete
symmetry group will contain the rotation, time-trans-
lation (sub)group [S;;, P,]. Each of the groups listed
below is a complete group.
Type I

V=",

Eoz(oit +Tz‘)x1 +“‘0t2 Lt g,

gr= (o8 )x + (ol +iu)x' +aix’ +vit + vl

Complete group =[Q,4 @,, P.), p=®m+1)(n +3), where
Q, =x*U*. This is the general projective group in n +1
variables. (The basis of the group given above is ob-
tained by a suitable change of the original basis.)

Type II(a)
V=ar*+b (a>0),
£°=(a, cosAt +b, sinnt)x’

+{1/2X){c, Sin2X¢ - ¢, cos2¢) +¢,,

£'=(~ Aa; sinMl +Ab, cosrt)x’x! +d, cosrt +e,sinAf
+3(c, COS20t +¢, sin2x8)x! +aly, (A=v2a).
Complete group=(Q,;, D;, Ey, Fy, G, Ly, Ly, Po),
p=(2+1)n +3),
D;=x'[(cosrt)P, — AM(sinat)U],
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E ;= x'[(sin\l)P, +x(cosat)U],
F=(cosxt)P,, G,= (sin\)P,,
L, =3[(cos2A)U +(1/x)(sin2A)P, ],
L,=3[(sin20)U - (1/2)(cos2At)P,].

Type I(b)
V=ar’+b (a <0),
£°=[a; exp(\t) +b,; exp(— al)]x!
+(1/2))(c, exp(2rt) - ¢, expl— 2AL)) +c5,

£'=x[a, exp(At) - b, exp(— A1) ]x'x* +d; exp(rt)
+e,exp(~at) +3[c, exp(2rt) + ¢, exp(- 2a8) Jx
+alx (W=V-2a).

Complete group =[Q,,, H,, [;, J,;, K,, M, M,, P,|,

p=(n+1)n+3),

H zexp(\)x (P, +0U), I,=exp(-r)xi(P,-2rU),

J;=exp(M)P;, K, =exp(-AH)P,,

M, =(1/2)) exp(2A)(Py +2\U),

M, = —(1/21) exp(- 20)(P, - A U).

Type II(a)
V=kor? +k /7" +k, (B #0, k,>0),
£°=(1/p)a, sinpt —a,cosut) +a, (u=y8k, ),

¢t =3(a, cospul +a,sinpt)x +aix’ (ol +ai=0).

Complete group=[S,;, Ny, Ny, Py}, p=[nln-1)/2]+3,
N, =3(cosput)U+ Q1 /u)sinut)P,,
N,=3(sinpt)U — (1/u)(cos ut)P,.

Type Ul(b)
Ve=hkor® +k /v +k, (By#0, ky <0),
£°=1/p)a, exp(p) +a,exp(—ut)] +a, (b=v-8ky),

t'=4[a, exp(ut) — a exp(— pt)]x' +aix’ (al+aj=0).

Complete group = [Sip Ry, Ry, Po]’ pP= [n(n - 1)/2] +3,
R, =3 exp(pt)U +(1/u) exp(pt)P,,
R,=—3exp(= pt)U +(1/u)exp(— ut)P,.

Type III{c)
V=k /7> +k, (k,20),
0= pot® + gt + Yy,
E= (ol +zu)x' +aly’ (o] +2]=0).
Complete group =[S, ,, {({P, +U), tP, +5U, P,],
p=[nln-1)/2]+3,

Type IV
V=a,lnr +a, (a,#0),

£ = byt +b,,
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g‘:boxi+§a§xf, al+ai=b,5,,.
Complete group =(S;;, Py, U*], p=nn-1)/2 +2.

Type V
V=cor? +c, [co#0, p(p*—-4)#0],
£2==2a[(p-2)/(p +2)t +b,,
tl=—al(p-2)/(p +2)|x' +ald, al+aj=2ad,,.
Complete group =[S;;, Py, Y], p=[nln-1)/2]+2,
where

Y=2U+(2 -p)P,.

Type VI
V{r) =arbitrary (but not one of the previous types),
£=a, t=aix’, al+ai=0.

Complete group =[S,;, Pyl, p=[nn-1)/2]+1, As noted
above this group is a subgroup of all the previous
groups.

10. TYPE | NOETHER SYMMETRIES OF
CONSERVATIVE SYSTEMS WITH SPHERICALLY
SYMMETRIC POTENTIALS

In Sec. 2 a Type I (time-dependent) Noether symmetry
was defined by means of (2. 8). In the present section
we first obtain the explicit form of the Type I Noether
symmetry equations for the conservative system defined
by the Lagrangian (5.1).

By use of (1.2), (1.3), (1.4), (1.6), and (5.1) it is
found that (2. 8) expands to the form?®

-%E?jgik"(i—’ejxk +%(ﬁgjk - E?t.gjk)i’jik
+(gij£ft - Vg?j +d’,;‘)x’j - (V,igi + Vg(,)t - Zlb,t):()’ (1o.1)
where the Lie derivative
ﬁgjkzgjk,i£i+gib£fj +gij‘€,ik' (10.2)
Equation (10.1) must hold identically in the ¥%, and
hence this leads to the Noether symmetry equations®®

E?jgik+'g?kgji+£?igkj:0! (10.3)

ﬁgjk— g?tgjkzoy (10.4)

gi:El = VE® 4y =0, (10.5)

VE+VE, ~y =0, (10. 6)
From (10.3) it follows that

£° = £%(4) = B(1). (10.7)

By use of (10.7) Eqgs. (10.4), (10.5), (10. 6) reduce
respectively to

tgi=B' gy, (10.8)
g8+, =0, (10.9)
V£ +VB' =y ,. (10.10)

It is to be noted that (10. 8) defines a time-dependent
homothetic symmetry.
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We now restrict the space to be Euclidean referred
to rectangular coordinates (x?) and assume a spherically
symmetry potential V(r). In this situation (10.8) has
the known solution'®

g =3B'x" +bj(t)r +C'(t) (b} +b]=0), (10.11)
and (10.9) becomes

gh==1 (10.12)
From (10.11), (10.12) there results

3B x bl +CH 4y =0, (10.13)
and (10.13) implies

U,y =¥, =b)"=b} =0, (10.14)

which by the skew symmetry of 5! [see (10.11)] means

b} =const. (10.15)

The solution for i is now found from (10.13),(10,15)
to be of the form

p==37°B" = CVx' +D(¢). (10.186)

There remains (10.10) to be considered. From (10.10),
(10.11), (10.16) we obtain

(V'/r)x'C! +37°B’) + VB’ =D’ = 3¥*B" - xiC?",

(10.17)

from which we determine B(t), Ci(t), D(¢), and V(»),

We omit the details since the calculations are similar to
those of Secs. 5—8. We give the summary of results
below.

It was shown in Ref, 1, Sec. 3, that every Type I
Noether symmetry will be a (general) Type I symmetry
as defined in Sec. 1. Hence for a given dynamical sys-
tem this implies that any complete group of Type I
Noether symmetries will be a (sub)group of the complete
group of general Type I symmetries associated with the
system.

The solution to (10.1%7) result in three cases which
we refer to as Types N-1, N-2, N-3 respectively.

Type N-1 is identical to Type III of Sec. 9. In addi-
tion, the value of § is given by

Y=—457°B" +k,B +k,, k,=const, (10.18)

where %, is a constant appearing in the potential of Type
III and where the function B(¢) satisfies (8.15),

For Type N-2, V(»)=a»* +b, a,b =const,

£2=B(t), t'=3B'x'+alx’ +Ci(t), (10.19)

1 P4l —
a;=consts, o] +al=0,

where B satisfies (7.8), C! satisfies (7.9), and
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$=—-1rB" —x'C'" +bB +c, c=const. (10.20)

There are three subcases corresponding to the value of
the constant a:

(a>0) complete group =(S;;, F;, G;, L1, Ly, Py,
(10.21)

(a <0) complete group :[Sij’ Jyy Ky My, My, P,
(10.22)

(a=0) complete group =[S,,, tU*, P, +3U, tP,, P, P,].
(10.23)

The group (10.21) is a subgroup of Type II(a); the group
(10.22) is a subgroup of Type II(b); the group (10.23) is
a subgroup of Type I.

For Type N-3, V() is an arbitrary function other
than the potentials of Types N-1 and N-2, For Type N-3
the functions £, £° and its complete group are identical
to those given in Type VI. In addition i =const.
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tions (Princeton U, P., Princeton, N,J., 1933), Chap. 2.

121n this section the Einstein summation convention is not used.

3For the familiar time independent case see L, P. Eisenhart,
Non-Riemannian Geometvy (American Mathematical Society,
New York, 1927), Vol. III, p. 127.

14The case n=1 is an exception and will be considered in a
later paper.

151t can be shown that (5.10)—(5.13) are satisfied as a conse-
quence of (10,3)—(10.6). This is in agreement with Theorem
3.2 of Ref, 1.

167, Levine and G.H. Katzin, J. Math. Phys. 14, 1886 (1973).
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An extended Levinson’s theorem*
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We investigate the form Levinson’s theorem takes when the two-body scattering amplitude is not
decomposed into partial waves. It is found that the theorem changes its structure in this case and is not
merely the sum over angular momentum of the well-known partial wave results. The energy dependent
quantity that replaces the partial wave phase shift turns out to be the trace of the two-body time delay
operator. This extended version of the theorem remains valid for scattering by nonspherically symmetric

potentials.

I. INTRODUCTION

We study an extension of Levinson’s theorem for two-
particle scattering. This extension states the theorem
as a moment property of the trace of the two-body time
delay operator. In the form obtained here the theorem
is valid for the entire—nonpartial wave decomposed—
amplitude. The resultant form of the theorem found
here is nof what one would surmise on the basis of
simply summing the well~known partial wave statements
in terms of phase shifts. Our derivation will be
rigorously carried out for the class of local potentials
that belong to L' N L2,

To begin with, we list the known features of time
delay in two-particle potential scattering which we must
employ in this analysis. This outline is too brief to be
a balanced introduction to the theory of time delay con-
cepts in scattering. Such a general discussion is found
in Ref. 1, which also gives a survey of the recent
literature on this topic.

The scattering system studied here is characterized
by an interacting Hamiltonian % and an asymptotic
Hamiltonian %;. In these two Hamiltonians the center-
of-mass motion has been removed, If X is the vector
separation of the two particles, then & and &, act on a
Hilbert space /{ composed of square integrable functions
of X. On /4 one defines the Mgller wave operator by the
strong limit,

Q% = g-1im exp(iht) exp(— kL), (L 1)

t =¥
where { is the real parameter denoting time. Each f in
/{ may correspond to a possible incident wavepacket.
The symbol ¢ ({) will always represent the time depen-
dent noninteracting wavepacket associated with f, Like-
wise ¥(¢) will be the function that is the fully interacting
wavepacket evolving in time according to 2. These two
functions are given by

(1) = exp(= ihyl)f,
P{(f) = exp(— thH QP

(L.2)
(1.3)

The time delay of a scattering process is defined by
the following construction, Let us describe a family of
projection operators that is specified by the equations

PR)g®)=g(x), x<R,

o, (L.4)

x>R,

where g is any function belonging to #. Thus P(R) pro-
jects any function onto a sphere of radius R measured
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from the collision center at X=0, Given an incident
wavepacket f and a specific value of R the time delay is
determined by the expression,

T(R,f)= | _ dtl(p(t), PRYLE) - (6 (1), PR)S )], (L 5)

The inner product is that of //. The second member of
the integrand gives the probability that at time ¢ the
wavepacket ¢ (#) is inside the sphere P(R). The integral
over 7 of this real quantity is just the total time ¢ (#)
spends inside the sphere P(R). The same interpretation
applies to the first inner product involving #(f). Con-
sequently, T(R,f) is the difference of time the two
waves reside in the sphere,

Consider now the description of the scattering prob-
lem in momentum space. The relative two-particle
momentum will be the vector p. The corresponding
kinetic energy of relative motion will be E=p*/24,
where u is the reduced mass of the two particles. The
symbolf) will denote the unit vector direction of p. We
introduce a Hilbert space 4. of L? functions of p)—name-
1y that space determined by the inner product

(g,8").= [ g(by*g’(p)dp.
The theory of time delay allows one to construct a fami-
1y of operators ¢(E, R) acting on /.. This family has
the property®?

TR, f)=[,"dE up [ [ abdp’ f*(pbXbla(E, R)|p)7(ph"),

(L.7)
where p=v2pE. In expression (L 7) {|q(E,R)|p" is
the kernel representation of the operator g(E, R).
Furthermore, for well-behaved potentials, the R —«

limit of T(R, f) exists and is associated with an opera-
tor ¢(E), viz.,

UmTR, )= dEup | | abap'r*(ppXbla(B) B0r(oh").

Raw

(1. 6)

(L. 8)

The operator g(E) is known?® to be simply determined
by the S matrix, The full S matrix that acts on # is
defined by the product of wave operators:

S=aTe™, (1.9)

If one takes the momentum space matrix elements of
Eq. (1.9), one is led to a natural definition of a reduced,
energy dependent S matrix, s(E), that acts on /1’,; The
operator s(E) is specified by its kernel (pIs(E)|p",
which is determined from S by the expression
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®|S|p") =[6(E - E")/ upXb|s(E) |57, (L. 10)

for E=p?/2u. The energy dependent delta function, of
course, indicates the physical conservation of energy in
the scattering process. In terms of s(E) the operator
¢(E) may be expressed®* as,
d
— _ et =

q4(E)=-is'(E) 5 S(E). (I.11)
It is interesting to note here that the structure of Eq,
(I, 11) is such that the unitarity of s(E) implies that
q (E) must be Hermitian,

The feature of time delay that is vital for our analysis
is known as the spectral property, Let #(z)= (k- z)!
and %y (z) = (g — z)™! be the resolvents of # and k, defined
for complex energy z, Then the spectral property is
the relation

2 Im Tr[¥(E +i0) - v, (E +40)] = tr(g(E)]. (1.12)

In this equation Tr is the trace on # and tr is the trace
on #/.. This relation has a simple physical interpreta-
tion. The right-hand side is just the trace of the time
delay operator ¢(E) and is proportional to the total time
delay experienced by an incident plane wave of energy
E. The left-hand side is the change of state density
produced by the interaction v, In fact we shall require a
somewhat more general version of Eq. (I.12),
specifically

Im Tr[#(E +in) - v (E +in)]

1 f” n
—_— - — ? El
] lEi+E+inl2 97 . dE (E_Er)2+n2 tr[Q( )].

(I.13)

The E; appearing here are the negative of the eigenval-
ues of . This equation is given explicitly in Ref. 5,
The spectral property is readily obtained from Eg,

(I 13) by letting the imaginary parameter n go to zero,
The advantage inherent in this version of the spectral
property is that it allows one to estimate how rapidly
Im Tr{»(E +in) — 7, (E +in)] approaches its n=0 value.

Throughout this study we will consistently assume
that the potential belongs to Z!N L?, This means that
v(X) is such that

[ axlo@®)| =B;<«, ([ dx|o@)|})/2=By<=, (A)

This class of potentials is broad enough to include
most cases of physical interest, -However both hard
core potentials and Coulomb potentials are excluded

by (A). We note that the L! restriction of (A) dictates
that the power behavior of v for |X| very large must be
like ~ |x]7%°, where & is an arbitrarily small positive
number. The L? requirement of (A) implies that most
severe local singularities can be ~ [x|=3/%%,

The time delay formalism has been rigorously studied
under assumption (A), In particular Kato® has proved
that the wave operators 2% in Eq, (I 1) exist when (A)
holds, Jauch, Sinha, and Misra® prove the existence of
the limit given in Eq, (I, 8). Equation (I, 13) is found in
Ref. 5. This equation, which is central to our discus-
sion, may also be easily inferred from the results of
Jauch, Sinha, and Misra.’ Another rigorous analysis of
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the time delay formalism above has been recently given
by Martin? for slightly different assumptions on the

potential,

One may question whether or not it is necessary to
treat this problem in a rigorous fashion. For example,
is not Levinson’s theorem valid so long as the potential
falls off more rapidly than the Coulomb force? Two ob-
servations indicate why a careful and detailed analysis
is necessary. First, as indicated at the beginning of
this section, a simple sum of known partial wave re-
sults does not lead to the correct answer for the entire
scattering problem, The form of the answer is sensitive
to the order of integration and limiting processes; thus
each change of order must be justified. A second ob-
servation emphasizes the need to specify precisely the
behavior of the potential. Suppose one considers the
following central potential:

v, ) = (\y/7?) ford”'g(V')z a7, A >0, (1.14)

where x; and ), are real parameters and g(») is an
arbitrary real function, In this case one can prove® that
the momentum derivative of all partial wave phase
shifts is positive for all &, so that

f arLs,k)>0, alll.
0

I.15
s (I.15)
By way of contrast the Levinson’s theorem for partial
wave phase shifts states

s (1.16)
where N, is the number of two-body bound states with
angular momentum /, Thus potentials of the form v,
violate the theorem for every partial wave. Sufficient
conditions for the existence of the partial wave form of
Levinson’s theorem are that the moments

f arL 5,(k) = 6, ()~ 6,(0) = — 7Ny,
[

(I.17)

be finite. ® By this criteria we see that potentials like
vy fall off too slowly in 7 to lead to a reasonable phase
shift behavior. Also in the extended case, the potential
2y would be excluded by condition (A),

M; :j;dVV" |v@)

, 1=1,2,

The proof we shall give of our extended Levinson’s
theorem is based on two elements. One is the spectral
property Eq. (I.13). The second is the analytic behavior
of Tr[r(z) -~ 74(z)] in the complex z plane., Section I of
this paper gives a rigorous proof of the various aspects
of the analytic behavior we need. Section III combines
this analytic behavior with Eq. (I. 13) to complete the
proof, In Sec. IV we give a general discussion of these
results and also describe a second approach to the
problem that is based on the asymptotic completeness
of the wave operators. A gquick, albeit nonrigorous,
understanding of our results may be obtained by just
reading Sec. IV.

II. ANALYTIC PROPERTIES OF Tr [r(z) -ry(z)]

This section is devoted to the study of Tr[r(z) - 74(z)].
We always assume condition (A) is obeyed by the poten-
tial . One very useful consequence of (A) is that it
implies that our potential » is in the Rollnik class that
Simon!’ has extensively studied, viz.,
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_B'<oo. (II,].)

f/;lxdy loX) | lv(y)i
Tx-yi?
Our analysis will make extensive use of the well-
known operators 7;(z), V»y(z), and A(z). These opera-
tors all act on // and depend parametrically on z, They
are conveniently defined by their kernel representations
in coordinate space:

L expliklx—yl)

<x]70(Z)IY>: 2_” IX—y| ) (H' 2)

x| Vry(e) |9 = gm0ty SRELEIL) (I.3)

(x| 4Gy = 4ot 2y SREEID o) 12, g
where k= v2uz, v1/%(x)= {v(x)|!/?sgnfv(x)], and A(z)

=V2,(z)| V11’2, The set of points in the z plane a
distance 5 or greater from positive real axis we will
denote by II;. The symbol IT; will denote the cut z-plane
obtained by letting 6 — 0. For z &Il or II; then & clearly
belongs to the upper-half complex % plane,

We shall use three different norms to describe opera-
tors on /. First, the usual operator norm will be
represented by the symbol || -||. Second, we define the
Schmidt norm of an operator A on /4 by

lalle=(J J axay|a,y ),

where A(X,y) is the kernel generated by A, The class
of all operators on /4 with finite Schmidt norm is called
the Schmidt class. The class is denoted by £4,. Our
third norm is the trace norm defined by

(IL. 5)

llAtli— (@4, |A] 00, (1L 6)

where A = (ATA)1/2. When A has finite ||A[l;, it belongs

to the trace class of operators on //. The trace class is

labeled 3. When A € 44, then the operator has a well-~

defined trace given by the sum
TrA=2J ($;,Ad)). (IL7)

1

Of course, this sum is independent of the basis set

{Qbi}. Our analysis will frequently use the following gen-

eral properties of the trace and the Schmidt operator.

(i) A< A4 if and only if it can be written as the product

A=BC, where B 3, and Cef,, Furthermore, ||All;
< 1Bl Cll .
(ii) If B A,, then B'c 4,.
(iii) ¥ B€ 4, and C € 4,, then TrBC=TrCB.
(iv) If B A4 and A has finite norm ||A]|, then BAc 3,

and AB < A4 and || BAli; < ||AllliB;.
(v) If Ac By, then | TrAl <37 1 (d;, Ad;)| <Al

(vi) I B and C are Schmidt class, then TrBC has the
representation

TrBC= [ [ dxdyB(y,x)Cx,y),

where B(y,X) and C(X,y) are the L? kernels generated
by the operators B and C,

Shatten!! gives proofs of all these statements.
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For later convenience let us collect here some well-
known estimates for norms of the operators occurring
in this problem, We shall show that the operators
V2% (2), 1V % (2), and 7,(z)V are Schmidt class
for all z €Il,. Consider the first operator in the list
above, If we employ the integral form of the Schmidt
norm to compute || V1/%,(z)ll,, we have

lv(x) |l exp(- 2 Imk {x—yi)\/?
[v7n@ o= g ([ faxas )
27

Ix—y!?

B 1/2

= u(m) . (11, 8)

The same expression holds for the norm [} | V| 1/270 @|,.
Similar considerations show that

[ vro(e) = uBy(1/27 Imk)1/2 . (IL. 9)

Now let us examine the operator A(z) given in Eq.
(IL 4). This operator is Schmidt class in the entire
z plane I

nA(Z)Hz
172
——(fdxdy ’?}l‘ylz) xp(—ZImka—yl)>
< M pi/2
<9 B (iL. 10)

where B, is the constant entering the Rollnik bound on

v. Another useful bound pertains to A(z)?, One may

show, using the Riemann— Lebesque lemma, that
lim |A(@z)%,=0.

|Rek |+

(IL, 11)

The convergence is uniform in Imk=> 0. Equation (II., 11)
means that there exists a finite %, such that for all
|Rek!| >k, then ||A(z)4|, <2. The number k, depends
only on v, We will not write out the proof of Eq. (IL. 11)
and the estimate for ||A(2)%|[;. Theorem L 23 of Simon’s
book is very nearly result (I, 11), The difference is that
Simon requires %k to be real. It is a simple modification
of Simon’s proof to extend it to complex % in the upper
half plane and to show that the convergence is uniform
in Imk,

Lemima 1: Let the potential v satisfy (A). For all
positive integers 1, the operators »,(z)[V7,(z)]" are
trace class for z € II,. The function Tr{ry(z)[Vr,(z)]"}
is an analytic function of z in the II; domain, Further-
more, the order of the trace operation and d/dz may be
freely interchanged in II4.

Proof: We first establish »[V#,]" is trace class. Con-
sider =1, This operator may be written as the product
of 74| V112 and V!'/%, each of which in Schmidt class in
II,. Thus employing property (i) of the trace gives

7oVl < ool VY23 (I1. 12)

Estimate (II, 8) tells us the right-hand side is finite,
For n>1 we may write

7ol VoIl s < lro Ve || o Vg 57 (IL, 13)

In obtaining (II, 13) we have used trace property (iv)
together with the general inequality ||Al|l <||All,. Esti-
mates (IL 8) and (IL. 9) then imply that the right-hand
side of (II, 13) is finite,
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Next consider the analyticity of Tr{1"0 &)V @)1
Set #=1. As noted above the operator is the product of
two Schmidt operators 7| V11’2 and V!/%y; in the domain
;. Invoking property (vi) of the trace for the operator
7o V7 gives us

Tr(roVr0)~—<—) ffdxdy = v(x ) T~ xTE exp(2ik|y - x|).

(II, 14)

For values of & restricted by the condition Imk=> §’= 0
the expression

26’ |y - x|)/ |y - x|

bounds the integrand above uniformly in k. This bound
is absolutely integrable with respect to (x,y). Thus the
integral in Eq, (II. 14) defines an analytic function of %
and thus z. This argument may be extended to show
Tri{ry[V#,]"} is analytic for all » and z €1I,.

lv(x)| exp(-

Finally let us examine the differential properties of
Tr{V#ry(z)]". The trace diverges for n=1, but is well
defined for n> 2, Consider the case n=2, If we examine
the integral representation of Tr[V#,(z)]?, the Rollnik
condition (II, 1) guarantees that the integral is uniformly
convergent in I1;, Thus we can differentiate under the
integral to obtain

L el Vry @) = ( >fﬁ x dy 2LLY x)l’—(l-) exp(2ik |y - x]).

dz TRiy-
(11, 15)
One then observes that the Hilbert identity for »4(z),
7o(2() = 7o(22) = (&1 — 23)% (21)74 (23), (L, 16)
implies the operator relation
%"z—(z—) =72 (IL 17)

The kernel form of this last identity is

Pexpit|x-y))= £ faa2plitlx=sl+lo=y)|

(IL.18)

Inserting Eq, (IL 18) into the right-hand side of (IL. 15)
gives

Tr[Vry(2) =2 Triry(2)[ Vv, ()%}

—Tr(—— [Vry(2)F )

These arguments extend to the #> 2 cases. There Eq.
(IL, 19) becomes

a
dz
(I, 19)

4 Tr[VVO (2)]"=nTr{r,(z)

@)[Vry )]k (1. 20)

This completes the demonstration of Lemma 1,
Lemma 2: There exist finite k, and k; such that for
all |zl > (k2+k%)/2p the Born series expansion

Tr[r(z) - 7y(2)] = E

(= D" Tr{ry(2)[ Vry(2)]"} (IL, 21)

is valid, The series is uniformly convergent in z.

Proof: As usual, set z :k2/2u and choose z so that
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it has values Imk > k; = uB,/27. For z so restricted,
the operator Born expansion

7(2) - ry(2)= 2] 24 (IL, 22)

(= 1), (&) [ V7y (3)]"

is valid, It is easy to see that the series (Il 22) is con-
vergent in operator norm for Im~ > k;., A given term in
this series has norm

@) vre@) |7
< @u/E) || vrota) I3

7@ Vry@)]7| <
(1L, 23)

For the restricted values of k, ||V7)(2)l|; is less than
one. The sum of terms (IL 23) with respect to » then
converges absolutely,

Since we know 7(z)— 74(2) is trace class, we can take
the trace of Eq. (II 22) to obtain

w©

Tr[#(z) - v,(z)] = Tr{E (- D)™, (z)[VrO(z)]"} (1L, 24)

for Imk > k;, The series on the right of Eq. (II 24}
suggests we consider the related series
Z,‘l (= 1)* Tr{ry(2)[Vry(2)]. (IL. 25)
n

Introducing the definition of the trace into this expres-
sion gives the double sum

:Mg

12 (= 1), v @) V7 (2)]"0;). (IL, 26)

It is easy to demonstrate that this double series is ab-
solutely convergent. Employing the general trace
identity (v), we have

[7@vry @)l
< fro@| | VVO(Z)HZe

‘_El(d’i,"’o 2)[Vry(2)]"e,)| <

(I, 217)

As in Eq, (IL 23), when Imk >k, the sum over »n of the
terms on the right of Eq. (IL 27) converge uniformly in
k, This shows that the double series in expression

(IL. 26) is absolutely convergent, Thus the order of
summation may be changed. And so, Eq, (IL 24) may be
written in the form given by Eq, (II 21),

Let us consider the validity of Eq, (IL, 21) in a differ-
ent region of z. Suppose |Rek| >k, The trace norm ap-
pearing in Eq. (II, 27) may be estimated by

|76 @) Vo) 4

= |7 (2) | V] 24 ()™ v 2 (2) ||

@ VRGP, ot
<|ln@|v|2)|}]AR) . ] A z)ZH("'Z’/2 n=even,
(11, 28)

Bounds given in Eqs, (II,9), (I, 11), and (IL 12) show
that the sum over » of ||7y(z)[ V7((2)]"l; converge. Again,
the double sum in Eq. (I 26) is absolutely convergent,
and formula (IL, 21) is valid for all | Rek| > &,. In fact
the domain specified by |z| > (2% + %3)/2u lies in the
union of |Rek| >%, and |Imk| > 2;, So Lemma 2 is
proved.

Lemma 3: For all integers n= 2, Tr[Vr,(z)]" satisfies
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lim Tr{Vr(2)]"=

|Rek|~=

for all Imk > 0.

(II. 29)

Proof: We note first that for n= 2
Tr[Vry(2)]"="Tr |V [VVI 2 (2) | V|21V 20 (2).
(11, 30)

For z € Il the operators A(z) and V1/%#(z) are Schmidt
class and | V|!/? is bounded; thus we may use trace
property (iii) to obtain

Tr{Vry(z)[*=Tr{A{)"] . (I, 31)
For n= 4 we have the bounds
|Tr[Vr )| < || A%(2) ]33, n=even,
< |A@) |, ||A%z) [5™P7/%, n=odd.  (1.32)

Applying result (II, 11) gives the statement (II, 29) in the
lemma,

There remains only the cases n=2,3 to prove. Con-
sider n =2, Using the integral representation of the
trace, we have

Tr[Vry (o) ( )/‘/dxdyv(x)v(y exp(szlx yl)

Ix—yI°
(IL, 33)

Because of the condition (I, 1) the nonoscillatory part of
the integrand

?"(x)v(y)lx— yl'1 exp(- 2Imk|x—y|)

is L? over (x,y). Thus we can apply the Riemann—
Lebesgue lemma to conclude that Tr{V¥,(z)]* vanishes
as |Rekl —, A similar argument works for
Tr{Vry(2)]%.

Lemma 4: For all z €11, the value of Tr[r,(z)V#y(z)]

is given by
Tr(r, &) V7(2)] = ( ) /dxv(x)

Proof: For z €1l 7(z)Vr,(2) is the product of two
Schmidt operators, so by trace property (vi),

Tr[ry(z)Vryle}! ( )fﬁyd v(X)eT}};;(Zz;ellx v,

(IL, 35)

(11, 34)

For all Imk > 0 the double integral

/fdyd lo(x

exists since v € L!, Thus, employing the Fubini theorem
on interchange of integration, we can write (I, 35) in
the form of an iterated integral

Tr{vy(2)Vry(z)] ( )fa‘ 3}-‘l%y—n‘/‘alxv(x},

(I1. 36)

Y exp(- ZImklx -yb
Ix—yi2

where we have set n=x-y. The integral is trivial and
gives Eq. (II, 34). So far the equality (I 34) is estab-
lished for z €1, However, the right-hand side of

(IT, 34) has I1; as its natural domain of analyticity. Thus
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(II. 34) represents the analytic extension of
Tr[7,(z)V7y(z)] to the domain II,.

1. LEVINSON'S THEOREM

In this section we combine the analytic properties of
Tr[r(z) - 7,(z)] established in the previous section with the
known features of time delay outlined in the Introduction
to complete our derivation of Levinson’s theorem. Our
proof will require one additional technical assumption
about time delay, We assume the existence of the
following integral

/;de tr[q(E)]ﬂé(ﬁzy/z%;

where 7 is defined by
7= [ dxv(x),

Ideally assumption (B) should be verified directly from
the potential property (A). But it would take us far
afield to establish (B) in this manner. There are strong
physical arguments for believing (B), that will be dis-
cussed in the next section.

) (B)

|7| <By. (IIL. 1)

Consider the function ¢(z) defined by
Q(z) = Trlr(z) - 7y{z) + 7, (2) V7 (@],

We have established that this function is analytic in II4.
Bound states of the Hamiltonian H appear as simple
poles of the resolvent #(z), with residues that are pro-
jection operators onto the bound state eigenfunction
space. Physically interesting potentials will always
have negative bound state energies. So our formalism
will always imply this situation,

(I1L 2)

Suppose zy is some point in [I; and C; some small
circular contour about z;. Then the Cauchy—Coursat
theorem tells one that the integral

S(SCOdz Q{z)=0.

Our version of Levinson’s theorem is based on this
identity, We open up the contour C; as indicated in Fig.
1. Now C, may be replaced by the contour segments
Cr, Cs, and C;, The contours C;, which are P in num-
ber, encircle the P distinct eigenvalues of the Hamil-
tonian 2, Path Cy is symmetric about the real axis,
always a distance § away from the positive real axis
and ending where the real value of z is equal to I', The
curve Cp is a circle centered about the z plane origin,
having a radius equal to (T2 + g2)1/2,

(111, 3)

Because of the behavior of the exact resolvent 7(z)
in the neighborhood of the eigenfunctions of %, one has

z plane

®x.

GG
RATAL
C

A

: r

FIG. 1. The complex energy plane.
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2 gS dz Q(z) = 2niN, (111, 4)

where N is the total number of bound states of # count-
ing degeneracy. Thus the integral (III, 3) becomes

J dz Q(z) =~ 2miN, (111, 5)
Cr+Cg
We will now evaluate the double limit
lim lim f o, % Qe) == 2miN. (ILL 6)
Caw g0

Consider the C; integral first. It may be expanded as

Jo, 4z Q) =2i [T A Im[Q(r+i6)] +i0

xfs:;gde exp(i0)Q[5 exp(if)]. (1L, 7)
Because of the presumption that the Hamiltonian % has
no zero energy eigenstates the second integral gives
zero in the & — 0 limit, Let us study the first integral
on the right-hand side of Eq. (IIL 7). We shall prove

Lemma 5: For potentials such that (A) and (B) are
valid then

r
lim 1lim 2 dxIm@Q(\ +19)
Tw g0 0

:/de[tr[q(E)]%-%(%)a/Z%] .

0

(111, 8)

Proof: Define Dy(T’, 6) and Dz(I" 8) by the expressions

PulE, 0)= f‘“f UG TETE
2(p\" 0
><[tr[q(E)]+w(2> m] (1L, 9)
f | 5
DZ(F,G)ZCO-/O d)\'/; dETr\/_ m
r
1
X'/(; dARe‘m——i—, (111, 10)

where ¢y = (2/7)(1/2)*/%, Equations (I 13), (IL 34)
together with (III. 2) give

r
2 dxImQ(n +16)
'/0‘ m i

r ul 26
=Dy(T, 8) + Dy(I" +/ >y —=2
(T, 9) 2( »0) 0 dx{u IE;+A+2612}

(IIL, 11)

Since E; are the magnitudes of the negative energy
eigenvalues and thus positive, it is obvious that the last
integral vanishes when the double limit is taken. So we
need only consider the contribution from D; and D,,
Consider Dy, Set

2 3/2 5
g(E):tr[q(E)H;(—gf) = (IIL. 12)
then D, is
_ [ (E)
Dy(T, o)_fo dxf dEm (111, 13)
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Since (B) states that g(E) is L! and that [(x — E)? + 82!
is L! in a for all 6> 0, the Fubini theorem allows us to
change the order of integrations,

Dy(T, 5)_f dEf D

The integral over dx is elementary and gives us
® - E
Dy(T, 8)= / dEg—STE-Z (tan"FG—E + tan‘1g>. (IIL, 15)
0

Now the E-dependent integrand is L! for all 6= 0 and
uniformly bounded by |g(E)|. The Lebesgue dominated
convergence theorem permits us to pass the 5 =0 limit
through the integral to obtain,

5, (E)

[(x— E?+ 8] * (I 14)

Dy(T, 0)= f agfE) im <tan-1 —E i tanE )
0 T 50 5
(IIL. 16)
Using
lim tan"!(E/8) =7/2, all E> 0,
80 (I, 17)
. Afp _fn/2  all E<T, .
l‘sl*xgltan [ E)/G]_{— 7/2, all E>T,

we see that tan™ functions give us a step function that
becomes zero when E>I', Thus

r
Dy(T,0)=f, dEg(E) (IIL, 18)
and
lim limD; (T, 6) = f dE g(E), (W1, 19)
[ 60
A parallel analysis leads one to conclude
limlimD, (T, 6) =0, (1L, 20)

r-= §=0
Thus Lemma 5 is proved.
The one remaining integral in relation (IIl. 5) that we

have not yet studied is the Cr term. For this integral
we have the result:

Lemma 6: For potentials satisfying (A), then

hmf sz (z)=0.

==

Proof: Choose I'> (k2 +%3)/21. Lemma 2 states that
the Born series expansion of @(z) is uniformly conver-
gent for z € Cp., Using Eq. (II 21) to expand Q(z), we can
write our integral as

fdz

% (-1
n=2

(III, 21)

fcp dz Q(z) (= D" Trlry (2)[Vry ()]

fCF dz Tr{r,(@)[Vr,(2)]"}. (IIL 22)

Equation (II, 20) allows us to transform the integrand
into an exact differential,

= 11n i
/c sz(z):E(—i—) erzETr[VTo(z)]"

n=2
T

= 3 E el vy 0+ i0)] - Te{ V(T - )T,

(IIL, 23)

Estimates (IL 32) imply that this series is uniformly
convergent in I, Thus the I' — < limit may be passed
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through the sum, Lemma 3 shows us each term in Eq.
(I1I, 8) vanishes in the I = limit, Thus Eq. (Il 21) is
demonstrated.

Combining the conclusions for both Lemmas 5 and 6
together with Eq. (III, 6) gives us:

Theorem: For potentials satisfying condition (A) and
the trace of the time delay satisfying (B), then, the
following relation holds:

/ " ik [tr[q(E)] + %(-;‘—)3/2%] =~ 27N,

0

(III. 24)

The positive integer N is the total number of negative
energy eigenfunctions of the Hamiltonian %, It is pre-
sumed that /2 has no zero energy resonances or bound
states and is free of positive energy bound states.

Under differing circumstances the theorem obtained
here has been discussed previously by Buslaev. 21
Buslaev’s version the function tr[g(E)] is replaced by its
logarithmic S-matrix derivative form given in Eq,
(I.11). In the form found by Buslaev there is no recogni-
tion that the theorem is a moment property that con-
strains the energy integral of the time delay. By way of
contrast, our basic starting point, the spectral property
relation (I, 13), is derived in Ref. 5 using just the def-
inition of the time delay operator, No recognition or
use of the S matrix is needed in obtaining Eq, (I, 13).

From a technical perspective the theorem given above
is established here for a larger class of potentials than
Buslaev’s analysis permits. Buslaev requires that the
potential V(r) be infinitely many times differentiable,
Furthermore, both the potential and all of its deriva-
tives are required to decrease to zero in the limit Ir}
—< more rapidly than any power of irl-t,

IV. ASYMPTOTIC COMPLETENESS AND
LEVINSON’'S THEOREM

In this section we are concerned with two aspects of
our Levinson’s theorem, First, we establish how one
may derive the result starting from the completeness
of the scattering states. Secondly, we give a physical
interpretation and explanation of our result. Our aim
in this section is to provide some insight into the re-
sult obtained above, rather than to supply additional
rigorous proofs. Thus, we will use nonrigorous argu-
ments which we believe convincing, even though these
arguments tend to lose sight of the exact conditions on
the potential for which the analysis is valid.

The derivation given above of Levinson’s theorem is
based on the spectral property of time delay combined
with the analytic features of Tr[7(z) — 74{z)]. However,
in the literature there exists another method of deriva- [

(PuiT(Er, B) | oy by T(E1, BBy — (I T(E, E1) | B){p| T(E", Ex) 1Py* )

tion, Jauch!® established that the usual partial wave
form of Levinson’s theorem can be obtained from
asymptotic completeness and certain properties of the
wave operator, @,

We adopt Jauch’s argument to the case at hand—
namely the full amplitude. The mathematical statement
of asymptotic completeness is

Q(+)TQ(+) :I,
Q(%)Q(»)T:I_ P,

(Iv.1)
(Iv.2)
Here 7 is the identity operator in // and P is the projec-

tion operator onto the subspace spanned by all eigen-
functions of 2. We note that TrP=N,

The wave operator possesses a well-known represen-
tation in terms of the # matrix. Suppose #(z) is the
operator satisfying the Lippmann—Schwinger equation

Hzy=V~ Vry(2)t(z). {Iv. 3)

The wave operator may be expanded!® about the identity,
QW =I-K, (Iv. 4)

where K is determined by the generalized function

{pit@?/2u+i0)Ip) |
p*/2p - p"?/2u -0

If one forms the commutator [K', K], then Egs, (IV.1)
and (IV. 2) imply,

(p|K|ph = (Iv. 5)

(KT K]=P, (IV.6)
Levinson’s theorem is obtained by taking the trace of
Eq. (IV.6).

On aspect of this approach requires care. The kernel
representation of K is a generalized function. As a con-
sequence the trace needs to be computed through a
limiting process. It is convenient to introduce a two
parameter family of operators on /., T(E,E’), defined
by

b |7(E, E") |7 =i (EXER |HE +i0) |[EpHi ("),  (IV.7)
where | Ep) stands for the element |pp) and p = V3LE,
The factor j(E)= (2u*E)!/%. One can easily express the
reduced S matrix, s(E), in terms of 7(E, E}, viz.,

S(E)=e - 2mi7(E, E). (Iv. 8)

Here e is the identity on /..

Construct now the trace of [K', K]. Combining Eqgs.
(IV.7) and (IV. 5) and the fact that dp =7%(E) dE dp, we
have

(Iv.9)

JEXEP|[K", K] E'pYj(E") = - ﬁ& dpy

Carry out the dp integration of both sides of Eq. (IV,9)
and use the adjoint relation

(P|T(E, E)| by =(b|T(EL, E)|H*

The result is

(Iv.10)
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(E~E{-i0)(E,~ E' = i0)

' f dpj(EXED|[ET, K| |E'h)i(E")

B - IE tr{71(Ey, E)T(Ey, E")] - tr[7(E, E)TNE', E})]
‘_/0 . (E= E, - i0)(E; - B - i0) '

{Iv.11)
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Here, as before, tr denotes the trace on//.. The
diagonal element of Eq. (IV.11) is obtained by letting
E’—E, To carry out this limit let us recall a result
established by Jauch. !* Let f(E, E') and g(E, E’) be com-
plex valued functions which are differentiable in their
(real) arguments, Then the following formula is valid:

. E, E\)g(Ey, E') - g(E, EA)f(Ey, E)
},}.{’;/; R T Ei—iO)(El-—E’~i0)

:—m[f(E )L g(5, ) - g (5, B) - £(E, E)] (v.12)

If we apply (IV.12) to Eq.
respect to dE, then the left-hand side of Eq.
Tr[k',K]. Thus employing Eq. (IV.6) gives

(IV, 11) and integrate with
(Iv.12) is

(E,E)].

(Iv.13)

” d d
— t = - Pl |
N= m'/o. dE tr [T (E’E)dE 7(E, E) T(E,E)dE'r

This is Levinson’s theorem expressed in terms of the
scattering amplitudes. It may be restated in terms of
the reduced S matrices, s(E), by utilizing Eq. (IV, 8).
Simple algebra leads to

(E)]

N—_--i—wde{tr[is'(E)d S(E) - dséE)
+tr,:z——[s (E)—s(E)]]}
d
2 tr[g(E)] +i-= tr[s"(E) - E)]}.
/ﬁ‘ { rlg(B)] +i—5 tr[s"(E) - s(

(IvV. 14)

What remains is to understand the behavior of the term
tr[s"(E) - s{E)]. Let us define #(z) by

ty(z)=1(z) - (Iv.15)

Replace (E’ +40) in Eq. (IV.7) by £,(E’ +40) and denote
the resultant two-parameter operator by 7,(E, E’),

'“l"‘

Using Eq. (IV.15) and Eq, ( IV, 8), one finds
A t __4fp ] 4
itE tr[s™(E) - s(E))=- ﬂ(2> N 8ﬂdE Retr[7,(E, E)].
(Iv.16)
Thus Eq, (IV, 14) now reduces to,
= 2/u\/% v

-2 N:f dE[t E +—(— —

77 : rla®]+ 2(5 F

+47 Retr[n(E, E)]| 227, (Iv.17)

This is Levinson’s theorem when the last term is zero,
The fact that the zero energy on-shell ¢-matrix is pro-
portional to the scattering length means that tr[7(E, E)]
behaves like a constxvE for small E. So, we have
tr[7,(0,0)]=0,

All that is left to consider is the high energy limit of
Retr[7,(E, E)]. Under assumption (A) on the potential,
it is well known!! that

[plt(p?/2u +i0) B - | VD) | = 6(p). (Iv.18)

and 5(p)—~0as p— o, Furthermore, the symmetry
properties of the resolvent ¥(z) under the transforma-
tion p —— p imply that the forward scattering amplitude
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f(p)=—4ua¥p|t(p?/21 +i0)|p) (Iv.19)
satisfies
FX(pYy=r(-p). (IV. 20)

Of course, only the forward scattering amplitude is
needed to compute Retr[7,(E, E)]. The symmetry rela-
tion (IV. 20) means Re[ f(p)] is an even function of p,
Thus, at infinity Re{f(p)]=0(p7*"). Now the estimate
(Iv.18) forces n to be a positive integer. Thus the slow-
est behavior possible for Re[ f(p)] at infinity is O(p™%).
This observation combined with the definition (IV, 7) of
7(E, E') implies Retr[7(E, E)]=O(E-1/?), Thus the high
energy surface term in Eq. (IV. 17) vanishes.

The details of this derivation indicate why our the-
orem must have the term 7 present. Consider the high
energy behavior of tr[g(E)]. For sufficiently high en-
ergies we expect that the { matrix will be dominated
by the Born term. If we replace the { matrix by v in the
expression for the S matrix, then the first order con-
tribution to tr[¢(E)] in powers of potential is

2/ 1u\3/2 %
- w<z) VE *
For this reason tr(g(E)] is not integrable at infinity with
respect to E, The Tr{r,(z) V#y(z)] term in the integrand
of the Levinson’s theorem exactly cancels this singular
behavior of tr[g(E)]. With this singularity subtracted
away it is now very reasonable to expect that condition
(B) on this time delay is valid,

trlq(E)]~ (Iv.21)

Since the form of our Levinson’s theorem differs
from the usual partial wave form, it is intructive to
see how the customary result can emerge from the
analysis given, This is most easily understoed by
starting from Eq. (IV,14). When the potential v is
spherically symmetric, then the angular momentum
operator L=XXp commutes with % and h;, so that the
reduced S matrix and the time delay operator may be
represented by

Bls®)|pn=2 LEL s @P-p), (1v. 22)
bla|pr =2 L2 0,12, 5. (V. 23)

Here the S matrix admits the usual phase- shift
parametrization, s,(E)=exp[2i5,(E)]. The correspond-
ing formula for the time delay is g,(E) = 2(d/dE)5,(E).

Let us compute the contribution of a single partial
wave amplitude to Eq, (IV. 14). Each bound state has a
21 +1 degeneracy, so let N, denote the number of bound
states with different energy. Upon substituting Eqs,
(IV. 22) and (IV, 23) into Eq. (IV,14) we have

1 o
=5/ ds{%df 04 (E) - 8745 sin{zez(E)l} ~
(Iv. 24)

The customary phase shift normalization is to set 6,(«)
=0. Thus Eq. (IV.24) becomes

7TN1 = 61 (0) - 27 Sin[ZG,(O)]

and has the solution

(Iv. 25)
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7N, = 5,(0). (IV. 26)

This is the partial wave Levinson’s theorem, For a
single partial wave the terms tr{g (E)} and (d/dE)
xtr[s'(E) - s(E)] are individually integrable, For the
full amplitude case these terms are separately diver-
gent, but when added together their divergences cancel.
The mechanism for changing the behavior of these
terms is the infinite sum over partial waves.

We close this section with some general comments
about the results found here. One interesting aspect of
statement (III, 24) of Levinson’s theorem, is that it
relates two observables of the scattering system, Both
the time delay tr{g(E)] and the number of bound states
N are in principle observable features of the scattering
system. One nonintuitive result of the theorem con-
cerns the behavior of time delay when resonances are
present. Consider the case when at some energy, E,,
there is a very long-lived resonance. Suppose the po-
tential is slightly perturbed so that the lifetime of the
resonance increases but the number of bound states is
unaltered, Then Eq, (IIL 24) tells us that at energies
away from the resonance there must be a correspond-
ing decrease in the time delay since the energy integral
is invariant.

A second advantage of this theorem is that it is more
general than the usual Levinson’s theorem in that it re-
mains valid for scattering from a nonspherically sym-
metric potential. Furthermore, the general approach
given here may obtain Levinson’s theorems for the few-
body scattering problem, We note that the spectral
property of time delay has already been established for
the three-body problem, ®

So far physical applications of this theorem have not
been investigated. However, one application is straight-
forward, The theorem may be used to predict the high
temperature behavior of the second virial coefficient
for a quantum gas. This will be reported on elsewhere.
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The purpose of this paper is to present the spin-frame independent variables in general relativity. The work
is based on the fact that the tetrad Newman-Penrose form of Einstein’s equations can be put into the
Yang-Mills form with the group SL(2,€) as the gauge group. The set of Mandelstam path-dependent

dynamical variables for such a theory forms spin-frame independent variables in general relativity. The
empty-space field equations for spin-frame independent variables have formally the same form as Maxwell’s
equations. In addition, the full set of field equations for spin-frame independent variables have formally the

same form as the equations of nonlinear electrodynamics.

1. INTRODUCTION

In the formulation of the gravitational canonical
formalism or in any effort toward the quantization of
this field the main complication is related to the con-
struction of coordinate independent variables. The
situation in some respects is similar to the one which
we encounter in electrodynamics when we try to formu-
late the canonical formalism and apply it to the quanti-
zation procedure. Due to the gauge invariance of the
electromagnetic field any attempt to construct Poisson
brackets or equal-time commutators for gauge depen-
dent quantities in a covariant form and in full agree-
ment with the equations of motion fails. The well known
solution of the problem is to choose one particular
gauge, to form Feynman diagrams, and at the end to
prove that all physical quantities like the S matrix are
gauge invariant. Due to the renormalization procedure
in quantum electrodynamics the last point was not easy
to prove.® Another possible way of proceeding is to
formulate a gauge independent canonical formalism and
to quantize the field in a gauge independent way. Such
a gauge independent quantization of the electromagnetic
field has been known for a long time and is due to
Mandelstam. >

As a result of the formal similarities between the
gravitational field and the electromagnetic field, the
literature contains several attempts to build a canonical
formalism and to quantize the gravitational field using
the methods of classical and quantum electrodynamics,?
The analogies between the Maxwell and Einstein fields
are brought out in a striking way by the spinor formal-
ism. The source free Maxwell equations and the Bianchi
identities become, respectively,

34€h 4, =0, (1.1)

345G, =0, (1.2)

A careful investigation of the algebraic structure and
of the nonlinearity of the gravitational field indicates a
possible way of gaining a better understanding of gen-
eral relativity in the context of the Yang—Mills field.
This similarity is based on the fact that in gravitation,
the non-Abelian internal gauge group [SU(2) in the
original work of Yang and Mills*] is the non-Abelian
group of coordinate transformation. As a result, in
almost all papers related to the quantization of the
Yang —Mills field we can find a paragraph devoted en-
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tirely to the gravitational field.*™®

In all these papers the difficult problem of quantizing
the Yang—Mills field is attacked by different techniques
and methods. Nevertheless, one common result
emerges: the Feynman diagrams for the Yang—Mills
field (obtained for the first time by Feynman himself
in his pioneer work on this subject).® If we compare the
paragraphs related to the gravitational field we discover
that each author uses different aspects of gravitational
field for the quantization after Yang—Mills. Mandelstam
used the path dependent Riemanian tensor R% 4(x,P),”
and Fradkin and Tyutin used the Chrystoffel symbol I's,
and g, , as basic variables.® In fact, it is very diffi-
cult to compare results due to divergences and to the
different gauges used. This situation is due to one basic
question. How does one relate the gravitational field to
the Yang—~Mills field in a compact and general form ?

Recently, Carmeli® has shown the relationship be-
tween the gravitational dynamical variables and the
Yang—Mills field variables. He used the spinor—tetrad
formalism developed by Newman and Penrose. ** In the
framework of this formalism he was able to show that
the spin coefficients and the Riemann tensor play the
role of the Yang—Mills potentials and the Yang—Mills
fields, respectively. The non-Abelian gauge group is
the group SL(2, €) acting in the spin space. However,
there is one problem. The Yang—Mills field constructed
by Carmeli is not a gauge-independent SL(2, €) invariant
object. In contrast to the electromagnetic field (Yang—~
Mills with Abelian gauge) the field strength is a gauge
dependent object and therefore it cannot be used for any
gauge independent procedures (canonical formalism or
quantization).

The purpose of this paper is to present in the frame-
work of the Newman—Penrose (NP) formalism a set of
spin—frame independent variables for the gravitational
field.

In Sec. II we briefly introduce the Yang-—Mills de-
scription of the gravitational field using the Newman—
Penrose formalism, and we also establish our own
notation. In Sec. III we introduce spin-frame indepen-
dent fields as path-dependent quantities. The empty-
space field equations (1, 2), in terms of these new
fields, coincide formally with the field equations of
Maxwell’s electrodynamics. In Sec. III, we generalize
the result to the full set of field equations (1.2).
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2. THE EMPTY-SPACE FIELD EQUATIONS AND
YANG-MILLS FLIELDS

The connection between tensors 74" and spinors
TABCD... s on1

EFee.
TABCD-- _gABgCh. ..o ... ", (2.1)
The quantities o;‘é satisfy the relation
Zur 95 0CH=Cactip (2.2)

where g,, is the metric tensor and the ¢’s are the Levi-
Civita symbols,

' 0 0
-1 01
In the Newman—Penrose formalism we introduce at
each point of a curved space—time two basic spinors

o* and (*. The spinors 0% and 1* satisfy the normaliza-
tion condition

— ¢AB_
EAB_.E =

(2.3)

ot =1, (2.4)
and the completeness relation
€45 =0alp — L5004 (2.5)

We denote the spin frame by £, where
=0t =14,

The dyadic components of a spinor in a given spin
frame following Newman and Penrose are given by'°

> (2.6)

where the rules of lowering or raising spinor indices
are

TS =g g AN

EA=eABEy, Ep=ft, . 2.7

Having a dyad in the spin—space, we can build a tetrad
in the vector space,

Y .
1" =0450%8, n*=04%8,
(2.8)

The set of four vectors I*, #*, m", m* form a null
tetrad system with the completeness relation

A B = A B
m* =g4z 07, m* =a4,%°".

(2.9)

Following the basic idea of the Yang—Mills’ fields we
introduce a gauge group as follows. At each point of the
curved space—time we introduce £2 to define a spin
frame. A spin frame gauge can be defined as an arbi-
trary way of choosing the orientation of the spin-frame
axes at all space—time points, We then demand that all
physical processes be invariant under the spin-frame
transformation,

E:SE,,

where £ is 2 2X2 complex matrix whose elements are
¢4 and Se SL(2,C). From the definition of the spin
frame, the dynamical variables of the gravitational
field can be introduced.®

g =1"n" +1"n* ~m*m® -=m'm’,

(2.10)

The covariant derivative acting on the spin frame
gives

v, i =Byt (2.11)
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Using matrix notation, this equation can be written as
V,E=B,t. (2.12)

In the same matrix notation the commutator of the
covariant derivatives Vv, v, - v,V acting on ¢ gives

F,,, where
F,,=V,B,-V,B,+(B,,B,]. (2.13)

The tetrad components of B, and F,, are given, respec-
tively, by (compare formula 2.1 and 2. 6)

Bap=tltle4s B, (2.14)

A LB ¢C o Don
Fopea=8a &) £8 £30450¢5 F e

It was shown in Ref. 9 that the B, fields are related to
the Newman—Penrose spin coefficients,

(2.15)

€ —K -Q
By = Bm == 8 ’
T -€ -
bo-P (2.16)
o -p Y =T
By » Bpn= ’
A - vV o~y
and that the F,, fields are related to the Newman-
Penrose tetrad components of the Weyl tensor,
U = by — U,
Foiop= s Fipg= s
d’z - 1//’1 df4 —d)s
2,117
il)z - wl ( )

Flioh=Foig = .
71)3 - wz

We see that B, (the spin coefficients) play the role of
Yang —Mills potentials and that F,, (the Weyl tensor)
plays the role of the Yang —Mills fields with the group
SL{(2, C) as a gauge group. Under a change of spin
frame, £=S5¢’, the potentials B, and the field F,, are
transformed,

B, =5B,S'-§"2,8,
F.,=SF,,S™

(2.18a)
(2.18Db)
As in the Yang—Mills case the simplest Lagrangian

density which is invariant under both general coordinate
transformations and spin-frame transformations is

L=-%(~g)/*Tre(F,, F*"). (2.19)
This Lagrangian leads to the following set of field
equations:

v, F* -[B,, F**]=0. (2.20)

The tetrad projection of these field equations leads to
the Newman—Penrose form of field equation (1.2).°

The form of the field equations (2.20), the definition
of F,,(2.13), and the transformations (2.18) under
gauge changes indicate the Yang—Mills form to the
theory. The important difference is that the gauge group
is the group of all possible changes of the spin—frame,
the group SL(2, ).

3. SPIN-FRAME INDEPENDENT DYNAMICAL
VARIABLES FOR EMPTY-SPACE FIELD EQUATIONS

In contrast to the Abelian gauge in electrodynamics
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given by the group U(1), the field strength F,, given by
Eq. (2.13) is not invariant under SL(2,€) gauge trans-
formations. It means that we cannot build a coordinate
independent canonical formalism for the gravitational
field based on the Weyl tensor, At this point the analogy
between electrodynamics and general relativity breaks
down due to the fact that the gauge group of the theory is
not Abelian. We need to introduce new objects for the
gravitational field which are independent of the particu-
lar spin frame chosen,

One can construct spin-frame independent fields #,,.
Such quantities for the Yang—Mills field with the gauge
group SU{2) are known (see Ref. 12), Let us now extend
this procedure to the field presented in Sec. 2.

Following Mandelstam’s path-~dependent formulation
of quantum electrodynamics we introduce a path depen-
dent matrix, '3

x s dx*
U(x, P) =T exp(- prudx“) = Texp(— fPB“(s)dT ds‘) ’
(3.1)
where the linear integrals are evaluated along a certain

path P: x*(s). The T operation denotes the s ordering
of the B,’s,

T(B,(s,)B,(s,)) =B,(s,)B,(s;) if 5,>s,. (3.2)
The derivatives of the matrix U(x, P) are given by
v, U(P)=-B,UP). (3.3)

Lets define a new gauge-invariant field 7,, as a path-
dependent quantity,

JulP)=U'P)F,, UP), (3.4)

where F,, is given by Eq. (2.13) and U* is the Hermitian
conjugate of U(P),

Under the gauge transformation (2. 18) the gauge-
transformed matrix

U’:Texp(—f:B;dx“) (3.5)
satisfies the following equation:
V,U'=~B,U' =~8B,5"U +(3,8)S7U". (3.6)

It is easy to check that the matrix SU satisfies the same
equation, Because the two matrices SU and U have the
same boundary condition,

SU=|,e=U] =1, (3.7)
it follows that they are the same,
U'=SU=U"=U'S". (3.9)

Now we can prove the gauge invariance of }W(P), Under
the gauge transformation (2.18), the field 7,,(P) trans-
forms as follows:

7 ’u,,(P): U’*F"“,U’: U”SFu,,S"U': U*Fu,,U:]W(P),
(3.9)

where we have used the relations (3.8). So we have
proved that the path-dependent field }u,,(P) defined by
the formula (3.4) is a spin-frame independent object.
In terms of 7,,(P) we can rewrite the field equations
(2.20) and (2.13),

v, 7*(P)=0, (3.10a)
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Vs FurP) +9, F,(P) +V,F,,=0. (3.10b)

This set of equations is equivalent to the vacuum
Bianchi equations {1.2). The field equations (3.10)
obeyed by spin-frame independent fields are linear and
coincide formally with the field equations in Maxwell
electrodynamics.

4. SPIN-FRAME INDEPENDENT VARIABLES FOR
THE FULL FIELD EQUATIONS

The results of Sec. 3 were obtained for the case of
empty -space Einstein equations. This means that in the
decomposition of the Riemann tensor into its irreducible
components we took into account only the Weyl tensor.
Now we want to generalize our previous results such
that the tracefree part of the Ricci tensor and the Riccei
scalar are present. The field,

F,,=v,B, -v,B, +(B,,B,, “.1
leads to the following tetrad components®:
z/)1 —% 2Pz'*"?bu‘A "71)1“]501
Foip = s Frieh= s
by F2A =y Pyt by =iy =y A
¢1o - ¢oo ¢12 - ¢’02
Figop= y Fuei= s (4.2)
d)zo - ¢1o b2z — ¢12
Py~ =2A ot d A P =y,
Fiye= s Fioor= s
1P4 ‘lps _¢3+¢>21 ¢2—¢11_A

where the nine ¢’s describe the tetrad components of
the tracefree part of the Ricci tensor, R is the Ricci
scalar and A =4R.

Using the definition of ¢’s and the field F,, we can
define the following field:

Huu:OuCéouAbciéongaB' (4.3)

The full set of gravitational Newman—Penrose equations
can be obtained from the Lagrangian density'*

[ ==5-g"*Tr{H*(-3F,, +V,B, ~V,B,+[B,,B,))}
(4.4)
In empty space this Lagrangian becomes the Lagrangian

given by the formula (2.19). The Lagrangian density

generates the field equations
v, H*" ~[B,, H*]=0. (4.5)

As in the previous case, let’s define two new spin-
frame invariant fields, 7,, and #/,,, as path dependent
quantities,

}uv(P): U+(P)FuvU(P);

1A% 4

(4.6a)

H,(P)=U"P)H, UP), (4.6Db)

where the definition of the matrix U is given by (3.1).
As in Sec. 3, it is easy to prove that the path-dependent
F..and /,, are both gauge invariant under the SL(2, €)
gauge. In terms of these new fields, the field equations
(4.5) and (4.1) can be written as follows:

v, #*(P)=0, (4.7a)
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V)«}u,u(P) +vu}ku.(P) +vu }VA(P):O, (4- 7b)

and

6/
HUP) = =5
P= 7.3
This set of equations is equivalent to the full Bianchi
equations (1.2). The field equations obeyed by the spin-
frame independent fields (4.7) coincide formally with
the field equations of nonlinear electrodynamics.

(4.7¢)

5. CONCLUDING REMARKS

The hope to obtain nontrivial results in quantum
gravitation is based on the recent successful investiga-~
tion of the Yang—Mills field theory. Apart from the
discovery of the Feynman diagrams for such a theory,
the basic results are due to ‘t Hooft who proved that the
Yang—Mills theory is a renormalizable theory. '® This
fact opened the possibility of investigating higher order
Feynman diagrams without divergences. The basic tool
in the renormalization procedure is the Slawnov—Taylor
identity, which is the generalization of the Ward identity
to non-Abelian theories, '®

As was shown in Sec. 3, the empty-space field equa~
tions (1.2) for the path dependent objects 7,,(P) have
the form of the equations of linear electrodynamics.
Apart from the hard problem of the interpretation, this
theory seems to fit the ‘t Hooft results, The careful
investigation of one loop diagrams and the form of Ward
identity can hopefully shed some light on the renormal-
ization of quantum gravitation. This problem will be
investigated in a further publication. The example of
the full field equations presented in Sec. 4 indicates
further complications. Bianchi’s equation coupled to
matter or to the electromagnetic field for path-depen-
dent quantities has the form of the equations of nonlinear
electrodynamics, There exists in the literature some
conjectures that such theories are not renormalizable. v

The quantization of the gravitational field has still
some fundamental difficulties. Even in the simplest
case of a Yang—Mills theory based on the group SU(2),
there is no proof that the amplitudes or the probabilities
are gauge invariant.

The second problem is that the present quantization
of the gravitational field is rather a theory for spin two
but not for gravity.!™'® For these reasons a better
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understanding of the classical theory may give deeper
insight into its structure and indicate the direction of
future investigations.
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Global operator product expansions for free fields of

arbitrary mass m>0
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A set (more than countably many) of global operator expansions—"on and off the vacuum”—are proved to
hold for free fields of any mass m> 0. Conformal invariance (m = 0) singles out exactly one of them in the
case of the “vacuum expansion.” There does not exist any termwise conformal covariant expansion *off the

vacuum.”

. PRELIMINARY REMARKS

The motivation for studying conformal covariant
(QFT) quantum field theory originates from the wide-
spread belief that conformal covariance may play a
central role in constructing global operator expan-
sions. !~ This program consists of two main parts:

(I) Construction of (composite) field operators with the
correct transformation properties under global con-
formal transformations.

(I) The derivative of global operator expansions by
means of these fields “on and off the vacuum.”

For both parts some progress has been recently
achieved'’~!% respectively.®~? Nevertheless, the (un-
solved) problems one faces in performing this program
in a Minkowski quantum field theory are large and deep
enough that for a deeper understanding a detailed inves-
tigation in the (technically) simplest possible model of
quantum field theory seems to be worthwhile. The
simplest such model is, of course, the free field or
generalized free field. Even in this case the “off vac-
uum” expansion is not yet completely understood. ®

The main problem of Minkowski conformal covariant
QFT is the reconciliation of Einstein causality with
global conformal transformations. Since the structure
of the conformal group in itself is already very compli-
cated, it is of tremendous help to observe that the
causality problem is completely understood if it is
solved for one single element, namely, the so-called
conformal inversions:

x~Rx=—x/x*, x?=(x"?~-x%, (I.1)

Note that any special conformal transformation may be
written as

K(b)=RT(b)R, (I.2)

where T(b) is a translation by b. Hence we will restrict
ourselves to this transformation.

In Sec. II we will very briefly review the generalized
free field theory. Section III is devoted to the construc-
tion of a set of composite operators (Wick products and
their derivatives) for generalized free fields, which is
properly covariant with respect to conformal inversions
(transformations). Finally in Sec. IV we derive by
means of these operators a whole set (more than count-
ably many) of weakly convergent operator product ex-
pansions “on and off the vacuum” for any free field
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theory of arbitrary mass m 2= 0— conformally covariant
(m =0) or not (m > 0).

However, in the “off vacuum” case the coefficients
are not tempered distributions anymore. Hence the
expansion exists only on a restricted subspace of the
Schwartz spacel® Sy (smearing of the fields in configu-
ration space), for instance, the subspace D, of C func-
tions with compact support. '*!7 Also the weakly con-
vergence has to be understood in the restricted sense of
all states from the dense set of functions with compact
support in momentum space.

{l. REVIEW OF GENERALIZED FREE FIELDS

In this section we want briefly collect the main facts
and formulas of generalized free fields, which we need
later on. The details and their derivation may be found
in Ref. 18. Let 9 be the Hilbert space of the complex
numbers §° with the scalar product

(‘I’Oy QO) :ao(l)o

and ¢ "=L*(d"u) the Hilbert space of all equivalence
classes ¥"(py,...,P,) of complex functions of n» four
vector variables, which are symmetric under permuta-
tions and square integrable with respect to the measure

(I1. 1)

A"W(Py, v v s ba) =11 d'i8,(pDL(pD),
i=l (I1. 2)

8,(p2)=06(p")6(p?).
Here u(p?) is some positive tempered measure on the
closed positive real axis. For the free field of mass
m w(p?) is given by:

p(pH=08(p?-m?),

Now the Hilbert space of the theory is the direct sum of
all ¢

(1. 3)

o=69" (I1. 4)
n=0
The elements ¥ of ¥ are sequences
\II:{({)O, ¢1(p1)9 lpz(plypz)) Teey IP"(PU P ,pn)a b ‘} (II- 5)

with the norm

R L A R
Local field operators ¢(f)=[d*¢(x)f(x) are introduced

in the following way: Let /), denote the dense domain in
¥, consisting of all finite linear combinations of vectors
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of form

v, ={0,. cyPn), 0, 0,004} (11.6)

. ’0’ z,b"(p,,. .
n=1 n n+l

with ¢*(py, ..., P, €Sy, being the Schwartz space of all

C~ functions of strong decrease.'®'!" On /), we define

for every fe S, linear operators ¢;(f) (j=0,1) by

(pO(f)‘I,nz{O’ \/,h“_'_— $ f( pnﬂ
n+l
len(ph--"pn), 0;07”"}7 (II- 7)
where $,,; means symmetrization in all # +1 vectors

bp., and
@ (f)¥,={0,0,...,0, v [ d'u(q)
XE@B D~ Pt @), 0, oo s},
@) =[1/@m)?’?] [ d'x exp(- ip +x) f(x).

¢, and @, are just the familiar creation and annihila-
tion operators or the positive respectively negative fre-
quency parts of the Wightman field

@(f) = @o(f) + @y (f).

They have all properties of a Wightman field except
locality or Einstein causality.

(I1. 8)
(I1.9)

(I1.10)

Besides the basic local field ¢(f) and its nonlocal
constituents we introduce what we call in the future
local composite fields: :¢*:(f). They are nothing else
than the Wick products of ¢, for instance,

78 (x)=1i_m{<ﬂ(x)<p(y) — (T, () o(¥)¥y).

In close analogy to the basic fields ¢(f) they may be
represented in form of a sum of / nonlocal constituents

:qu:f(f); (jZO:I,"'yl)
:<p’:(f)\1/:§:(p’:j(f)\lf, ve/,, (1. 11)

where the fields :¢*:;(f) give rise to comparatively
simple transitions in {, namely

/ D=2 tor i< min{(l +n)/2,n}

"Loh; (i1.12)

P
\0 for 7> min{( +n)/2,n}.

to be compared to the basic fields ¢;(f)

/‘0""1 for j=0

(11.13)

Explicitly the operators :¢’:;(f) are defined by

0 (2ﬁ)-3/2u-1) n! 1/
e (n+1-2)

n+l=2j 1
/ / Ndu;) 2 =
Ry<kg< savcty =1 J:

x 2 (E q;— %Pk)

P(ql,nuaj.-ﬁklyn..-pklnl) é=1

(p"j(f)\II":{()’ .
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X an(qi’ ve s gy Piyens 75)&1’ o e ,me-ZJ'):OrO: °°°JL

(I1. 14)

The sum 2, p(...y is over all permutations of the variables
Tiy e v s Qi (=Dr)senn, (= Pe,., ), and p means that this
vector has to be omltted

’pkl_jr v

By a closer inspection of this complicated expression
the property (12) follows at once. It means, for in-
stance, that all :¢*;;(f ) with j > 0 destroy the vacuum:

1@ (f)¥y=0 for allj>0. (I1. 15)
Moreover, for =2 all :¢%:,(f) with j > 1 destroy in ad-
dition the one-particle state:

1@ (F)¥ =0 for2<j<l, =2
and so on.

(I1,15%)

The definitions above, of course, give only Lorentz
scalar composite fields. Besides these we need, how-
ever, tensor fields of arbitrary high rank. They are ob-
tained by forming Wick products of derivatives of the
basic fields.

Let o denote a sequence {ay, @y, a,, a;} of four non-

negative integers, lal=733_4a; and
o alal
D% — : .
SHNEPALIE (IL. 16)
then D*@(f) is defined by
Do (f) = (- D)'* p(D*f). (I 17)

Now the Wick products of these fields are formed in
exactly the same way as in the scalar case

(I1.18)

and the explicit representation of the constituents is
obtained from (II. 14) by putting the corresponding poly-
nomials in the momenta g, and - p,_in between } p(...)
and f
o)

D* P gx+ o xD* Vi (1)¥,
-3/201=1) n! 1/2/ /
{ 0, (2m) <(n +l—-2])‘>
J n+l=2j
Mdp@g,) 2 l‘[ 2
i=t k< eoehyjst 7. Playseacr—pr;_;)
. PR & I G+
x (= ig)® Ve een (=g (ipy )2 e e
. M)
° (1/7121 - (Z/ qs— El De )]
xz:bn(ql;--' 1y, P1, L spkly-- . 7[)k1_j7- --’[)n+1-2.i)!
0,0, 000 (I1. 19)

The symbol (k)* stands for the product

(RO )™ (1)1
Obviously these composite fields share all the proper-
ties (12), (13), and (15) of the scalar ones. In addition
by means of the sum ¥ p(..., occurring in (19) they are
symmetric with respect to any permutation of the
aWeee @V, Hence if {1,,2,,...,1,} denotes any per-

A.H. Volkel 446



mutation of the index set {1,2,...,1}, we have

11 @ 1’11 0" 9): ,(F). (I1. 20)

ral

)i =

This completes the review of generalized free field
theories, and we may attack the problem of conformal
covariance,

111. CONFORMAL INVERSION COVARIANCE

Since the Hilbert space is a direct sum of direct
products of the one particle subspace 1 all unitary
representations of symmetry transformations have the
same structure

n
Ur=ToU!,
n=0 J=1

n=l. (I11. 1)

Hence we need only construct unitary representations
U!in¢ ! and U® on the vacuum.

Before we consider conformal covariance let us first
list the restrictions induced by scale invariance. The
existence of unitary operators

Ud()\)\Ilo = ‘Ifo
@) (D) =12 (Ap,

fixes the measure d'i(p), up to a normalization con-
stant g{d) to be

1 g(d)d'p8,(p?)(pH)** ford>1
d Mp)z{g(nd‘*p 5.(p%) for d=1.

d <1 is forbidden by positivity of the Hilbert space
norm. If we chose the normalization constant g{d) to be

gld) = (27222 (d - 1)"'I'(d)! ford>1,
g(1) = (2n)?

then the Fourier transform of d'u(p) becomes simply

, A>0,dceR (Il1, 2)
)

(L. 3)

ford=1 (IIL. 4)

zz_'flf)g- /diu(p) exp(— ipx) :[— (x_ ie)z]'d. (III. 5)

In order to get an idea, how the conformal inversions
in $! may look, we transform the scalar product into
configuration space:

(', )= [d'x [ dy G @)- (x—y - )] %' (y) (111.6)
with

¢l (x) =[1/(2m)°/?] [ d'p exp(= ipx) o' (p). (IIL. 7)
Performing the formal substitution

R:xbexp=—x/x* (I11. 8)
in (III. 6) and using the distribution identity
[- w-vxie)]?

=[~ (xr2i) ][~ (rr—yr i)'}~ (yrFie)?]? (IL.9)

we readily see that the following mapping UL(R) in $!
may be a suitable candidate for a unitary representation
indL:

(ULR)) (x) =[= (x +14€)? 149! (= x/x2). (III. 10)
In order to prove this, one transforms this relation

back to momentum space by means of
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+ 27— (zp24e)? ] exp(ipzr)

dy drr
d*q6.(¢))4’ (@) " /* expligz) f/ T yﬂ,

- Ygir
Ipzl-(d 2)/22 (Wr)ﬂd-z(y"ﬂ_ﬂy )

x exp{- ilp-y-q-y&* +7)" L
Definition III. 1: Let v be the dense domain in ¢' of all
fast decreasing functions:

s ={¥es!N LA @@ ?/H| [1+ @) @] <+«
for all Ne IN}.

(II1. 11)

Now one can prove along the same lines as in Ref. 11
the following theorem for d > 1. The canonical case d=1
has already been proved in Ref. 11 {Theorem 1),

Theorem III.1; For all d>1 the mappings b ~ ¢! with
Pp) = (TR (p)

—(211)'3/d4q9( g @) P g _/

T
x |pt [0, (T ) gd_2(?_+_”p_>

x expi- i[px - qx(x? +7%)1]}

d’x drr
®EFDE

(I11.12)

define linear isometric and symmetric operators on b
satisfying the group relation U}(R)UL(R)=1. Hence they
possess unique unitary and self-adjoint extensions to

1
0 .

The main steps of the proof are these:

(1) Consider the scalar product (®,, U} (R)¥,) for ¢,

#'e », By means of the reality properties of the Bessel
functions and a variable substitution

(X, T) i (y, P) = (x;?’)[xz +7.2]-1
in (III, 12) one gets at once the symmetry relations
(ULR)D ;¥ ) = (@ ;ULR)Y)),

(@ ULRIULR)Y,) = (ULR)®; ULR)Y,).

(0I.13)

Hence this scalar product defines a symmetric sequi-
linear form ony .

(2) In the second technically much more involved step,
one proves the (weak) group retation for all &;, ¥,
Eb:

(®; Uz R)ULR)E) = (@y; ¥). (I1I. 14)

The last two relations imply the scalar product to de-

fine also an isometric sesquilinear form ony, which in
turn implies via Schwartz’s inequality its boundedness
ont . This proves the theorem.

The details of the last step consist in fooling around
with integrals over Bessel functions and will be
omitted.

Having established the existence of a unitary repre-
sentation in$!, it is now straightforward to derive the
transformation laws of the basic and composite field
operators. Since the consequences are nontrivial, let
us start with the basic fields @ (f). We have only to cal-
culate the right-hand side of the following equation:
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(®; Us(R)@p(f ) UgR)T) = (Us(R)®; @ (f)ULR)T)
for all #= ¥ and ¥</),.

This can immediately be done by means of (II.7), (II.8),
(I0.11), and (IH. 12) using the unitarity and self-ad-
jointness of Uy(R).

The result is

UsR)@e(fIUaR)E = @ (VEf )W (1. 15)
with
(= (x + )2 1%4F (- x/x?) for £=0
(Ve (x) = (II. 16)
= (x — 2 14(— x/x%) for £=1.

Again as in the free field case!! the positive and negative
frequency parts transform differently, i.e., there is no
local transformation law for the local field @(f) itself,
Moreover, since the right-hand side of (I1I. 16) is not
anymore an element of the Schwartz space S, {rom
which we started in Chap. II, the conformally covariant
fields cannot be tempered. For them we have to re-
formulate the whole theory, i.e., construct a new test
function space, which is invariant under the transforma-
tion (III. 16) and Poincaré transformations. Obviously
this new space sg cannot share the polynomial decrease
at infinity of S,. However, since we want to construct
Lorentz tensors of arbitrary high rank by means of
derivatives, it must share the C” properties in S,.
Moreover, it must be a nuclear space in order to be
able to construct the Wick products. In one dimension
such test function spaces exist depending on the scale
parameter d. ! In higher dimensions, to our knowledge,
this problem is yet unsolved. The construction of such
spaces goes, of course, beyond the scope of this paper.
We shall simply assume the existence of such spaces,
and will whenever we restrict ourselves to conformally
covariant theories replace S, by S4.

Finally we want to mention that the different trans-
formation laws for ¢; and ¢, are closely connected to
their support properties in momentum space; ¢, having
support only in the closed forward cone V., and ¢, in the
backward cone V _, Hence we expect an even more com-
plicated transformation law for our composite fields
:(/)’:j since they have also support in spacelike regions
of momentum space [see Eq. (II. 14].

Indeed, if we perform the same calculation as above

for :¢':;, we find

U RY: @' (U ARYY = 19", (VE £ )8 {111, 17)
with

(VEF)x) == (x +e)2 )94 (x — i) Wif (- x/x?)

(1I1. 18)
and
[~ (& + e84 (- i) 1 =
1 for x2<0
|x2| 44 { exp[- ind(l - 2j)] for x*>0Ax">0 (L. 19)

explind( - 2j)  for x2>0A x°<0,

For d not an integer the components :(p’:, of the Wick
products :¢': transform all differently by a phase factor
exp{~ 127 dje(x")0 (x?)}.
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This is exactly the transformation behavior suggested
by Schroer and Swieca on group theoretical arguments
and verified in two-dimensional models. 2 Since the dis-
tribution of the powers (+dj) and (- dj) in (18) and (19)
is unique only mod 1, (III.16) is just a special case of
(I11. 18).

Our final task is to construct traceless Lorentz co-
variant higher rank tensors, which will bring us new
problems. Let us start with the Lorentz vector:

:3* @ X @'t (f). Performing the by now familiar calcu-
lations, we find

UsR):2" ox @'t (£ )U(R)¥
=:9"eX "l (rt - (VI )T
+2d: gt (X - (V)Y

where X* and *¥ are the multiplication operators in S%
by x* respectively by

rHUx) = 2ot x” - 2, (111, 21)
Since a“:tp‘:j(f):l:a“qoxcp"izj(f), it follows from the
symmetry (II, 20) that there exists no other Lorentz

vector by means of which one could remove the second
term in (III, 20).

(I1I. 20)

The situation improves, when we go over to trace-
less tensors of higher rank. First making the most
general ansatz for a traceless second rank tensor,

T4, () =a;:3" "9 x "1(f)
+ay: 0" Q' X ' (f) +ay @' (2% 0%f)
- Traces,
and calculating the transformation under U,(R), we find

Theovew III.2: There exists one and only one sym-
metric, traceless tensor of second rank, which trans-
forms convariantly under Poincaré transformations and
conformal inversions, namely (I =2,3,4,-«+)

AT(d +3)T(d - 2)"Hd - %)

HyHo

cdl+2 ](f):

X100 21D B2 X @2 () = L g 1#2: 932 Bq@ X @' 4(f)]

— @A T 20X @ (f) - 1 100 B X @ ()]
(I11. 22)
Here the 5: are defined by:
-, 3 2
et I1I. 23
2s ax, x, " ( )

The expression (III. 22) gives us a hint how to construct
the higher rank tensors. For the coefficients occurring
in (III. 22) are just those of the well known Gegenbauer
polynomial of degree 2. Hence, by copying the coeffi-
cients from the Gegenbauer polynomials,20 the correct
combinations seem to be

dl+2n,“2n(f)
= 190G, 1/2”"(3 <P><§0 2 (), (l11. 24)
where G.. (a ) are the following symmetric, trace-

less different1a1 monomials of degree 2n, n=1, %, 2,°**,

2’-.-’
-—

Galijy (953
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E (-1u)"r d—2+2n—7n)22,,_2m
oo M1 (20— 2m) 1 T(d - %)
n=2m —
X n o, “fﬂ 9, 2m2mss _ Traces . (I1L. 25)
feyl 7=t s =1
The symbol #‘”r] again means symmetrization with re-
spect to all indices:

$ =)t 2 .
{u,} Plujecony,)

In other words the monomials G...(d_, d,) are con-
structed in such a way that for any lightlike vector &
(£2=0) and two arbitrary Minkowski vectors x, y we
have

Lyeoojt
guiguz tee £u2ncd}1/2 2"(96,3))

= (sy)z"c;’;‘”@—ﬁ)

with C4;!/%(z) being the Gegenbauer polynomial of degree
2n.

Explicitly we obtain from (II. 19)

hiestngy _ “301-1)2 ml 1z
Cidwam i (f)¥,=10,...,0,(2m) <m+2 ol )
m+1=2j 1
f fﬂ dule) 2 =
Ri<reschyy=t J°
X (= "Gy 3 k., k)
P(q -Pk R
1=
i
xf Eq] Epk
s=1 r=1
len(qb'--’ql’pU'-'7ﬁk17'~-;ﬁkl_‘l?--'pn+l-2j)70’0.“}
.26
with « given by (1 )
qitqy forj=2
Ky= q1¢p,,1 forj=1 (1. 27)

p,,1 ipkz for j =0.

One can convince oneself by complete induction using
the recurrence relations for the Gegenbauer polynomi-
als that these operators are covariant under conformal
inversions. A final property of these composite opera-
tors may be obtained by a simple calculation from

(II. 26) and the representation (III. 2) for scale trans-
formations, namely that the scale dimension of them is
dal +2n.

Collecting the results we have

uThe‘?'rem II1. 3: The symmetric, traceless tensors
Calian; #(f) are of scale dimension dl + 2z and transform
under conformal inversions covariantly according to

qeore

Ug(RIC gl " (F)U(R) W

2n
=Calim?" n v (Vi) |v (1L, 28)
§=

with ¥ e /), and r**(x) = 2x"x* — x%"* ,n=1,5,2, -,

IV. OPERATOR PRODUCT EXPANSIONS

For the major part of this section we can forget
everything we have derived about conformal covariant
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fields in Sec. III except the definition of the composite
operators Coylomi"(f), i.e., the formulas (III. 22)—

(Im. 26). They are, of course, independent of conformal
invariance and could also be obtained by pure intuition.
By means of these operators we are going to prove
operator product expansions for free fields of arbi-
trary mass m = 0. Hence conformal invariance will
serve only as a bookkeeping for the composite operators
to be used. Only at the very end we come back to proper
conformal invariant theories., The global operator ex-
pansions rest on the idea that there may exist a com-
plete set of so called composite operators {C::-xn ()},
characterized by their Lorentz-tensor structure, their
scale dimension, and some other degeneracies, such
that at least the matrix elements of the product of two
basic fields may be developed into a series of the same
matrix elements of the composite fields. Hence in our
case we expect (at least formally) something like

(®;0(g E(<I>¢r

7y 8=0

© o 1 1
= (Ty; 01 ()W) @V + 25 2520 2 [ a

m=0 1=07,8=0 j=0

Jo(f)¥) = @s(f)¥)

z [d'x [d'y

XgO) f (KL -2, v - 2)

X (®; Clahgm: #™(2)0). av.1)

Due to the Hilbert space structure (direct sum of direct
products of the one particle space ') all matrix ele-
ments of the first line may be reduced to the following
two:

(29;0(2) 0 () ®0) = (25; 00 (8) 0y (1)F,) ,
or (Iv.2)
(®;0(8)0(f)¥ )—-(@1,{%(8‘)@1(][)4‘(/71 (F)he,).

Hence we need to consider (IV. 1) only for these special
matrix elements, which consideration also brings con-
siderable simplifications on the right-hand side.

From the condition (II. 12)

Dmri-2i g4p j < min{{l +n)/2)n}
Colims 1™(f)

0 for j > min{(l +#)/2)n}

On

we deduce at once that,
“vacuum expansion, ”

in the first case, the so-called

only the operators with
1=2 and j=0 (Iv.3)

and, in the second case, the so-called “off vacuum”

case, only terms with
{=2 and j=1 (Iv.4)

contribute to the sum on the right-hand side of (IV.1):
(8;0(2)@(f)¥) = (¥y;0,(2) 0o (f YT, )(®, ¥)

© 1 1
+25 2 5 [atz[dixdygx)f(9)

m=0 7, s=0 j=0

XK - 25y - 2)(8; Cplip i FMe)E). (V. 5)

Our task now consists of constructing a set of kernels
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Klg fle)= [ dixdly g) f(9)K i x ~ 2, 3 - 2)

such that the z integration can be given a precise mathe-
matical meaning and the sum converges to the left-hand
side for the two special matrix elements (IV.2) with

¥, &t and e /),.

(Iv.6)

Introducing the Fourier transform
Kik,z)= 61;_1)577 fd4u exp(fhu)K(u+z, u—-2z)

(Iv.7)

and calculating all matrix elements explicifly by means
of (II.7), (O.8), and (II1. 26), we end up with the follow-
ing two equations:

(1) “Vacuum expansion’”:
1u(m)fd‘u(p2) ®X(p1, b E(~ D) F (= Py)

fdl (p)d

o= (P tpa—q\z (__P1+P2+‘I>
X/dqg( 5 )f 2

=@m™/? lim f‘/(

N+ n=0

)(b (PuPz)

. Hyean il n

X[d“x exp(igx) Gyly 7y *(p1— Py, D1 +b2)
I\m".z"‘igm Y=py +by), %), (Iv.8)

(2) “Off vacuum expansion”:

fd1u<p1)dz(pz>¢f<p1>

{2~ p)F (o) +2(b2)F (= p)} o' (Po)

= (2m)™/* lim éo(— )"/d1u(p1)/ 1(p9)0' (P19 (o)
Jour g i)
x /d4x exp(iqx) Ga 13 (D1 + by b1 = P2)
XK (= (py = py), ) (Iv.9)

with

Igt:--lon(k,x) +I€EI:']0'1(k,x) +I§£::-Ji,o(k’x)_

Here Gh 1/2 “2m are the polynomials of Gegenbauer type
introduced at the end of the last section.

Now the only difference between the right-hand sides
of (IV.8) and (IV.9) apart from the wavefunction is the
interchange

bi=pi Py <=>p_=p1- Py (Iv.10)
We first solve the less problematic case of the

“vacuum expansion” and afterwards look for the changes

brought about by this replacement for the “off vacuum

expansion.”’

A. “"Vacuum expansion”’

The only thing we have to do, is to construct an infi-
nite set of Kernels K;.!(k,x) such that

(21123 (= 1R (p s p JEEAZMO00(p - )

LA
n=0 1" 4o
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=cos{p_-x), forp‘ef, poc V,, xe M, av.11)
holds in the sense of tempered distributions.

Now for any Lorentz invariant function g(p,; x} with
the property
(.2 <gy(p,,x) for all p,p,e V,A xe M, . 12)

cos(p.x) may be developed into a uniformly convergent

series of Gegenbauer polynomials?*? in the following
way:
(p.x) )
cos(p.x)=cos
(9 =cos (faotp 1)+ 7l

T(A-1/2)2*1/2 & ] l
:WZ—} (-1)"@n+x~3)

X 0ot 1200n (V&0 (Ps, X)) Chz ”2(\/&%——1%—)—), A>— 4.

(1v.13)
Since on the left-hand side of (IV.11) there occur poly-
nomials G, },, closely related to the Gegenbauer poly-
nomials, we may try to reduce our problem to finding
solutions of the equations

{@m 2607, (b, p IR = p,, 2)
T - 32220 + A - 3)
= R 2n+a-1/2(Vg°(p*’x))

(Iv.14)

x-x/z X ~
X C3 ( go(p”x)) for alln e N.

This relation suggests the ansatz

K222 030,0(_ P x) =T =) @n +xr-3)21/2@Qn)/?

U'I ° Utz
X(\[go(Pn x)) -M1/2-2ngx-1/2+2n(‘g[)(pux))

‘B‘;Z."..uz (= p,,x) tv.15)
with 1ii(- p.,x) an arbitrary traceless, symmetric
tensor of the form:

A+2n — .
(-Bu1u y,Z ( p+,x)—xu1 .xll-zﬂ

21 2n~t 13
+ 27 @y (P, x) §$ R T Traces}.

t=1 () j=t s=1
(Iv.16)

Inserting this ansatz into (IV.14) we end up via (III. 25)
with one linear relation between the 2n coefficients

ay®

fZ '"(P-Hp )a%n"(p-n x)

2n=1

+ :E{ FEM by 2,0 )@Y (D4, %) =3 (Dar %, D25 40),
) (v.17)

where the fp" are given Lorentz invariant polynomials,
homogeneous of degree 2n.

This relation would admit at least one solution if the
coefficients would not depend on p2 and (p, -p.) as in the
case of a free field of mass m = 0, in which these two
variables may be reexpressed in terms of p? and m?, In
the general case, however, the situation is different.
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For instance, if =1, then (IV.17) reads
@y (pa, MDA+ 2) P2+ 3p2] - 40+ 3)(poop )Y}
+2ay 1 (p., M Gp ) +2) p2 + 2 2]
-4+ D) p)(p.p.)}
=2g4(p,, %)= 2(px)2 + 2"l — (A +2)xpl.

Now if d'u(p) has a continuous part, there is obviously
no solution for the three functions a}*!(p,,x) A >—73)
and g,(p,, %) independent of p_.

(Iv.18)

This, however, does not mean that there does not
exist a vacuum expansion for our system may not yet be
a complete set of operators. % The situation improves
rapidly if the measure is concentrated on one or more
mass hyperbolids. Take, for instance, the case of one
mass m = 0. Then with

&o(bsy %) = (py2)’ = x°p3) = (p.x)* (Iv.19)
Eq. (IV.18) becomes
2
{aé"(lu,x) +p 42 (-’—C—'E*—)a}'z(pwx)}
x{x = 1)p2 - 4mP(A +3)}=0 (1V. 20)
with the most general solution
x2_ (xp,
_52 -2 ';pg—)'a)lhl(pwx)
ayl(p,,x)= unless d=1Am=0, (tv.21)

arbitrary for d=1A m =0.

The situation remains similar for all higher n € N with
the result that Eq. (IV.17) can always be solved for
ay(p,,x) in terms of the remaining a}'"(p,, x)
(t=1,...,2n~1) due to the fact that apart from an over-
all factor the coefficient of a};” is proportional to (p?)%",
A particular simple solution is

— S 2\s
ag:s‘r-'l(p-n x) = O, aég"({)*, x) = (231—? 1 (%T) ,
' (Iv. 22)

s:1,2,. N, ne N,

With our solutions above every term in (IV.11) is a
polynomial bounded continuous function in p4, p,, and x.
Moreover, since the inequality (IV.19) holds for all

P, P2 € V" and all x < M, the series (IV, 13) respective-
ly (IV.14) converges uniformly and therefore also in
the sense of tempered distributions. Thus we have
gained our first result:

Theovem IV.1 (“Vacuum expansion”): Let ¢(f) be a
free scalar field of mass m = 0. Then for any set of
composite field operators

{Cotamis (f) In e NA j=0,1,2} with A > - 4
defined in (III. 24)~— (1. 26) and any set
{ar™(po,x)neNAt=1,2,...,20-1}

of Lorentz invariant, polynomial bounded functions
there exists a set of kernels {Kff’t*.z.";gw'o[g,f]Cz) Ine N}
such that the operator product expans"ion for

(@, 9(g)o(f)¥,) converges for all < /),.

451 J. Math. Phys., Vol. 18, No. 3, March 1977

B. “'Off vacuum expansion”

As already mentioned, the “off vacuum expansion”
may be obtained from the “vacuum expansion” (at least
formally) by the replacement p. <=>p, in (IV.11)—
(IV.22). However, the new problems are brought about
by the fact that the inequalitites (IV.12), respectively
(IV.19), break down after the above exchange:

(p+x) ?{gO(p-’x)
for (Iv.23)
go(p.,x) = (p.x)* - x*p?.

Zo(p.,x) can even become negative, i.e., the square
root purely imaginary. Hence we have to reinvestigate
the convergence of the Neumann series (IV.13),

Let us introduce the complex variables:

n=Vgo(p-%), z=(p, x)/Ng(p,%). av. 24)
In the center of mass frame of p,z reads
z =x°/VEO)? = x¥sin%0, cosé=xp./|x| |p.|. (Iv.25)

Now the region in the complex plane, for which we need
the expansion (IV.13), is easily obtained and shown in
Fig. 1. Note that go(p.,x) <0 implies x%<0.

Since for every fixed complex 7 the function cosn-+z is
an entire function of z, a theorem of Szegt? saves us
under certain restrictions on the test functions g and f.
It states that if F(z) is analytic on a closed segment
[-1,1] of the real axis, then the expansion of F(z) in a
Jacobi (Gegenbauer) series converges in the interior of
the largest ellipse with foci at +1, in which F(z) is
regular. The expansion diverges outside this ellipse.

Hence the series (IV.13) with p_<==p, and therefore
also the analogon of (IV.11) converges in any bounded
region in x of the Minkowski space IM,. This brings
about the restriction in f, g to the subspace D, (in con-
figuration space) of functions with compact support of
S, in (IV.9). Besides this there is another necessary
restriction in the wavefunctions ¢'(p;) and ¥!(p,).

For gy(p.,x) <0 the kernels K:.:(- p_,x) in (IV.15) con-
tain in contrast to all other cases modified instead of
ordinary Bessel functions. The modified ones grow
exponentially, i.e.,

% {P.x)<0
x50

G R.x)>0 g, IR.x) >0
XO<0 -1 1 x0>0

g, R.xJ<0
x,20

FIG. 1. Domain for the “off vacuum expansion. ”’
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K= po, o)~ exp{l [ (pox)2 - p2a? 112},
which in the rest frame of p, becomes

K= p., %)~ exp{|p. | (|x? cos?6 +x2|)1/2},

(1v.26)

Hence, in order that the individual terms of the “off
vacuum expansion” (IV.9) exist at all, also the wave-
function have to be restricted to the dense subspace D,
of C” functions with compact support.

However, with these two necessary restrictions,
which are deadly for the calculation of the kernels by
termwise conformally covariance, all the results from
the “vacuum expansion” can be taken over with
p.<=>p,.

Theovem IV.2 (“Off Vacuum Expansion™): Let @{(f) be
a free scalar field of mass m >0, Then for any set of
composite field operators {Cylpm 2" (f)Ine NA j=0,1,2}
with A > — 3 defined in (IIl. 24)— (III. 26) and any set
{a"(p.,x)lne NAt =1,...,2n-1} of Lorentz invariant,
polynomial bounded functions there exists for all f,
g< Dy (in configuration space) a set of kernels
{KELZL",‘Z"?L’;“[ g,f)(z) In € N} such that the operator product
expansion for (&, ¢(g)@(f 1) with f, g D, converges for
all &, ¥< /), with compact support.

Finally we want to make some remarks concerning
conformal (inversion) covariant theories, for which the
kernels could at least formally be computed up to a
phase by termwise conformal (inversion) covariance of
the series.’

This covariance first fixes m and A to be m =0 and
A=d=1. Moreover, for the “vacuum expansion” all
functions al**(p,, ¥) are uniquely fixed to be the special
solution given in (IV, 22). This is obvious, since all
three-point functions are uniquely fixed by conformal
(inversion) invariance. Hence conformal (inversion)
covariance singles exactly one out from our set given
in Theorem IV.1,

However, the “off vacuum expansion” must disagree,
since termwise conformal (inversion) covariance leads
to tempered or even better behaved kernels (decreasing
exponentially for x? <0), whereas the proof above leads
to nontempered kernels, which grow exponentially in
certain spacelike directions.

There rises the question whether there exists another
set of conformal (inversion) covariant composite opera-
tors or other solutions with a different gy(p_, x) of
(IV.17)? According to Theorem III, 2 there is one and
only one (inversion) covariant second-rank tensor

‘Wi(f). Moreover, for d=1 and m =0, there is one
and only one solution of Eq. (IV.18) for go(p._,x),
namely

golpo,x) = (p.x)t = pla’.

Hence, for the “off vacuum expansion,* conformal (in-
version) covariance can at most serve for finding a
complete set of composite operators. For the calcula-
tion of the kernels it is completely useless.

A final remark should be made on the consequences
of the restrictions in the momentum space wave func-
tions in Theorem IV. 2. According to these restric-
tions—caused by the asymptotic behavior (IV. 26) of the
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kernels K...(- p.,x)—no localizable states in configura-
tions space are admitted for the “off vacuum expan-
sion.” This in turn kills all duality programs in quan-
tum field theory®* since locality cannot be applied any-
more, Localizable states in configuration space require
wavefunctions in momentum space of the type charac-
terized by Jaffe.?® However, for such wavefunctions our
kernels do not exist.
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Wigner-Eckart theorem for tensor operators of graded Lie
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An invariant functional, analog to the group integral associated with a Lie group, is defined for the graded
Lie algebras. A sufficient condition for the vanishing of the group volume is given. Orthogonality relations
of the matrix elements of the representations are obtained, and the Wigner—Eckart theorem is proved for a

class of graded Lie algebras.

1. INTRODUCTION

In connection with the interest in the supersymme-
tries,' much attention has been recently paid to the
study of the graded Lie algebras (GLA), *~® Pais and
Rittenberg® in a thorough study of the representations of
the GSU(2) [OSp(2/1)] algebra [the graded version of the
SU(2) algebra] have brought up the question of a general
proof of the Wigner —Eckart (WE) theorem. They have
shown its validity in the particular case of superspin
J =% tensor operators of the GSU(2) algebra.

In this paper we will develop a method which allows
a general proof of the WE theorem for the GLA’s satis-
fying the following conditions:

(1) the underlying Lie algebra (LA) is compact,
(2) the reducible representations are fully reducible,
(3) the “group volume” is nonvanishing.

It consists in defining an invariant functional® asso-
ciated with any GLA, which is similar to the group inte-
gral for ordinary LA, in the sense that one integrates
over the usual commuting parameters and over the
anticommuting parameters associated with the genera-
tors of nonzero grading. This we do by using the defini-
tion of the “integrals” over anticommuting variables
given by Berezin’ and the formulas given by Pakhomov®
for the change of coordinates in the mixed integrals
over commuting and anticommuting variables which we
give in Sec. 2.

In Sec. 3 the invariant integral associated with a GLA
is defined, the orthogonality relations for the matrix
elements of the representations of the GLA’S are de-
duced, and a sufficient condition for the vanishing of the
“group volume” is given.

In Sec. 4 for the sake of simplicity we work on the
example of GSU(2). We show how all the Clebsch—
Gordan coefficients can be determined and prove the
WE theorem.

2. PAKHOMOV FORMULAS

Integration over anticommuting variables is defined
according to Berezin® by the rules
Jaé,=0, [a6.6,=5,, (2.1)

and multiple integrals are defined as products of simple
integrals.
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For mixed integrals over commuting &; (i=1,...,%)
and anticommuting 6, (@=1,...,m) variables,
Pakhomov® has given the formulae for the change of
coordinates. If the old and new coordinates (£, 6) and
(¢,m), respectively, are related by an invertible
transformation

€=g(€,n),

(g is an even and % is an odd element in ), then we have
for any integral of an element f(#, 6)

0=n(g,n) (2.2)

(A, 0)aedo= [f(gle,n),hE,m) Je,(E, OdEdn,  (2.3)
where J, (£, 6) is the Jacobian
Dg _Dg
o= BEB 2 |
D¢ Dy

which by using the rules of computing the generalized
determinants® gives

-1 -1
%zi“ Dh +££(Di> Dg s (2.5)

where the determinants appearing in (2.5) are usual
determinants.

3. INVARIANT FUNCTIONAL

The general form of the commutation relations be-
tween generators of a GLA is

[Q;, Qj]:fikj Qk
[Qi} Va]: F‘?a VB
{Vou VB}:AZBQIQ

i=1,...,n, a=1,...,m, where we will consider that
the LA generated by @’s is semisimple and compact.
In any finite dimensional representation of (3.1) we de-
fine a “group” element

G=exp(6,V,)explit @), (3.2)

where 6, is a system of Grassmann anticommuting
variables

{6y, 65}=0 (a=1,...,m). (3.3)

£, are c-numbers and summation over repeated indices
is implied. We will consider as functions on the “group”

(3.1)
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functions f(G) defined on the superspace (£, 6). An in-
variant functional may be defined on these functions
with the help of a function p,(G) if:

[d6 11(G)f(G'G)= [ dG u (G)f(0), (3.4)

where u,(G) stands for invariance to the left and simi-
larly with p,(G) for invariance to the right,

dG=d"td™e, (3.5)
and

G’:exp(navm)exp(igiQi), (3-6)

7o being another system of anticommuting variables.
Using (1.3) the relation (3.4) is equivalent to

-1

D(GG")

UL(G):1 DEH (3.7)

G'=E

and similarly for p,(G), with G and G’ in (3.7) inter-
changed. If the underlying LA of (3.1) is compact we
have from (3.7) and (1.5)

-1
110) = () | 2201)
Y
Aax(n, 8) , AR , 2B,(n,6)
X 2 + 9 £ 3 3.8
\ 6175 ace . 3775 n,8=0 ( )

where a,(8,7), B,(6,n), and R, (£) are defined by
exp(6,V,) exp(n, V,) =exp[a,(6,7)V,]exp[iB,(6,1)Q,],
a,(8,m=6,+n, +-++,
Bl6,m)=68Am +---,
exp(-it;Q;) Vo explig Q) =Rs,(L) Vy,

respectively.

(3.9)
(3.10)

The relation (3. 8) could be further simplified using
the group properties of the composition law (3.9),
Indeed, the inverse of (3.9) can be taken in two ways:
either by interchanging the order of exponentials in
(3.9) and changing the signs of the exponents, or by
changing 6 — —7 in (3.9) and using (3.10) to commute
the @ term to the left. In this way we obtain

By(6,m) = = B(~m, ), (3.11)

R(BL6,m) a(-1,—0)= - a(8,n). (3.12)

Differentiating (3.12) with respect to n and using (3.11)
and the fact that the part linear in 7 of a(6,7) is an even
function of 8, we get

da8,m) | _3an,6) | 3R.{L) o 3Bn,6)
oL, ¢ om,

o1, oo on,

n,£=0

(3.13)

Thus, if the underlying LA of the GLA (3.1) is compact,
the invariant forms to the left and right are equal

IJ'L(G) = “R(G)-

The functional (3.4) is also invariant with respect to
changing G into G in f{G). These properties of the
functional (3.4) are independent of the way (3.2) of
parameirizing the elements, as can be seen by changing
the variables in (3. 4) and using the formulae (1.3).

(3.14)
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We remark that unlike the ordinary Lie groups, in the
case of the GLA the normalization integral (group
volume)

J a6 p(6) (3.15)

may vanish. This is the case whenever for the GLA we
have irreducible representations with the number of
even dimensions equal to the number of odd dimensions
or when the number of even generators in (3.1) equals
the number of odd generators.

To show this let us consider a finite dimensional
irreducible representation of the GLA (3,1). The repre-
sentation vectors are labeled by a(a), where « is the
grade of the vectors which may be 0 or 1 and ¢ is a
complete system of quantum numbers. Let us consider
the matrix elements

T(Gata ), 0(8) = [exp(GV) eXP(iEQ)} ata),b(8)*

Two such matrix elements anticommute whenever they
are both odd, i.e., a +Jis odd. By the standard tech-
nique, taking into consideration the fact that the matrix
elements may anticommute, we get

fdG U‘(G) Ta(a ),:‘:(B)(G) Tc(ﬂ,d(p)(G-l)

(3.16)

(3.17)
= (’ )Bkéc(n,us) Ga(a),d(p)

which is the orthogonality relation for the matrix ele-
ments (3.16), We see that, unlike the ordinary compact
Lie groups, (3.17) is not positively defined.

From (3.17) we get
[ dG w(G)=A(N, -~ N,),

where N,, is the dimension of the even (0dd) subspace
in the irreducibie representation of the algebra (3.1).
In particular a sufficient condition for the vanishing of
(3.18) is N,=N,. This is the case when the number of
®@’s equals the number of V’s because then the adjoint
representation is of this type (provided it is
irreducible).

(3.18)

4. WIGNER-ECKART THEOREM

The WE theorem can be demonstrated for the GLA
for which the CG decomposition theorem of direct prod-
ucts of irreducible representations holds, provided that
(3.18) does not vanish.

In what follows we shall restrict ourselves to the
simple example of the GSU(2) algebra, The commutation
relations are

[Qm’ Qn] = iemanp)

[Qm’ Va]:%(Tm)BaVay (4.1)

{Va’ VB}:%(CT”‘)aBQ;m

where m=1,2,3, «=1,2, ¢c=(9}), and 7™ are the
Pauli matrices.

The functions @, and B, which appear in (3.9) are
a(6,m) =6 +n —5(6cn)€ +3(8cnln
Bal8,m) == (i/4)6cT,n.

From (3.7) we obtain

(4.2)
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u(G) =%(sin®£/£*)1 +36c8), (4.3)

where £=(3 t%)'/% and &, are the exponential parameters
of the SU(2) group.

As shown by Pais and Rittenberg® the GSU(2) algebra
has irreducible representations characterized by an
integer or half-integer quantum number J called super-
spin, the spin content / being J and J —3%. Consequently
a vector of the representation is labeled by JII;.

In the canonical basis the operators V, have the
following matrix elements:

(Vi)113,uu3: (- avVT=2al, 6,042
\/FZ_OZI—_ 1.1 1/26 ]613+a,M3’ (4.4)

The orthogonality relation (2.17) is now
[ acG u(G) T,,S‘Wa(c) T, rr(G™)

= (=)’ 78,7817 01,1 Ou Oy, (4.5)
where we have used
Tn MM3(G) 11 MMy (G)

=(- )4(1+M)(1+M)TI’I MMB(G) T'IIIS,MM;:,(G)‘ (4.6)

The relation (4.5) can be obtained directly by integrating
the left hand side with the form (4. 4) for the matrix ele-
ments of the SU(2) and using the orthogonality relations
for the matrix elements of the SU(2) group
representations,

We can go further and using the CG theorem?

JRJS = |J=d'| @ |J=d| +5 B DT +J (4.7)

deduce relations in which under the integral sign there
appear three matrix elements.

We have
(=)etr w')f dG p(G) T113 MM3(G) T.III"S,M’M's (G) Tf;;my iig(G-l)
= ()it NI TL| jiig) (TMM,J'M'M;| jmms), (4.8)

where (JIL,J'I'I} | jiiy) is the CG coefficient for the vec-
tor | jii,) in the direct product of the representations

J and J'. Formula (4. 8) can be used to determine all
the CG coefficients, as in the case of compact Lie
groups.

The tensor operators are defined as a set of operators
Vi,, which acting on 2 space of a representation T(G)
of the algebra (4.1) have the property
T(G) Vf,i,.s T(G™") = T’,,3 mmg (@) mes (4.9)

For these operators we have the WE theorem for the
matrix elements of V}, :

e’ ' V]z:is ’ JIla)

=(jiigJI, | JTIEYIT 0’ || VP || Ja) (4.10)
where
455 J. Math, Phys., Vol. 18, No. 3, March 1977

Ja'll V|| Ja)

- 2, (= roen2)
T g MM MM

(4.11)

X (jmmg MM, | J'M'M{Y (T M'Mga’ | Vi, | IMMya)

are the reduced matrix elements of the operators Vj“a'

This can be easily shown by putting to the left and to
the right of V§ hi, in (4 10) the product 7(G™*)7(G). Using
(4.9) two of the operators T(G) are exchanged by the
matrix element T“ym,,,B(G). Then one acts to the right
on the state vector with the remaining products of
operators and gets two more matrix elements TY, i, (G)
and Ty, ,(G). Finally integrating over the ‘group”’
and making use of (4. 8) we obtain (4.10).

5. CONCLUSIONS

We have shown that for GLA there exist invariant
forms which can be used to abstract in a simple way
properties of the algebra such as the CG coefficients
and the WE theorem. The invariant form (3.17) is not
positively defined. We gave a sufficient condition for the
vanishing of the “group volume” but it would be interest-
ing to have also a necessary condition.
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We show that every tempered distribution T,eS'(M}) which is the boundary value of a function f,(z)

holomorphic in the field theoretic tube domain 77 can be uniquely continued to a distribution T, on the
universal covering space M7 of the conformally compactified Minkowski space M n It can be shown that
T, is the boundary value of a function £, holomorphic in a certain domain 3 of the complex manifold
€M} = (€CXX,;)", where 3, denotes the affine complex three-dimensional unit sphere.

INTRODUCTION

On the way to construct a globally conformal invari-
ant quantum field theory it has become clear that the
so called conformal superworld A714, which is nothing
else but the universal covering manifold of the com-
pactified Minkowski space M3, can perhaps play the
role of an underlying manifold of space and time on
which such a theory can live. =%,

One can be lead to such a conclusion by several recent
results concerning the structure of this manifold: We
know that the manifold M, admits a global causal struc-
ture which is invariant under the smooth action of the
universal covering group SO(2,4) of the conformal
group SO(2,4)/ Z, = C,,(M,).?° Furthermore, it was
shown in Refs, 6 and 7 that the unitary representations
of this universal covering group are those which appear
in the transformation laws of quantized fields under
the conformal group.

Generalizing this result, Liischer and Mack! proved
that in every weakly conformal invariant Wightman
field theory,® the Hilbert space of physical states
carries an unitary representation of the universal
covering group 86_(2\,-4)., They also could show that
the Wightman functions of such a theory can be analyti-
cally continued to a domain of holomorphy which has as
a real boundary the space Mq.

In answering the question if there exist on 514 fields
as operator valued distributions it is necessary to know
if these analytically continued Wightman functions have
on i, boundary values in the sense of distributions on
the space M,. This is the problem we will be consider-
ing in this paper.

In contrast to the authors of Ref. 1, we do not use
the Euclidean version of a Wightman field theory
which would mean working with Euclidean Green func-
tions, but consider the Wightman distributions and the
Wightman functions themselves. As is well known,
these are tempered distributions and boundary values
of the holomorphic Wightman functions.

We consider therefore the subclass of tempered dis-
tributions on R* which are boundary values of functions
which are holomorphic in the so-called field theoretic
tube domain /7. For this class of distributions one can
show that they can be uniquely extended to distributions
on the compact manifold M?". By embedding M into a
complex compact manifold CM¥ we are able to show
that these extended distributions are boundary values
of functions holomorphic in a certain tube domain 7},
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the real boundary of which is exactly M,

The well-known principle of “recollement des
morceaux” allows us to project these distributions on
MY back to the universal covering manifold MJ via
the canonical mapping #,: M, M. The distributions
we get in this way on 1171{; are then invariant under the
action of the group of deck transformations? on the
manifold M" .

Using then a certain complexification (€ x3,)" of the
manifold M}, we can also show that the distributions we
have constructed on AN/I'; above are boundary values of
holomorphic functions on the complex manifold (€ x3,)".

As a first application of these considerations we get
the result that the Wightman distributions W, (¢,,...,Z,),
which are the boundary values of holomorphic functions
in exactly the tube domain 77, can be uniquely extended
to distributions on the manifold M} which are boundary
values of holomorphic functions on certain domains 77
of the complex manifold (T xF,)".

We treat these problems in the following way: In
Sec. I we very briefly repeat the definitions of the con-
formally compactified Minkowski space M: and its uni-
versal covering space 1171‘“ We construct a topological
isomorphism between the space 5 (M,) and a closed
subspace )*(M2) of the space /) (M}), which is the space
of all C* complex valued functions on M2,

In Sec. II we show how a first class of distributions on
M, can be uniquely extended to distributions on the
manifold M2, The problem of boundary values of holo-
morphic functions on the manifold €M} is also
discussed.

In Sec. HI we show how every distribution on M}
determines a unique distribution on the universal cover-
ing manifold , which is invariant under the group of
deck transformations of the covering ﬂM:M——iui. Fur-
thermore, we show that the distributions on M, which
we get in this way are boundary values of holomorphic
functions on the complex manifold CM,.

In Appendix A we repeat the notion of an equicontin-
uous set, and in Appendices B,C,D, and E we give the
proofs of some lemmas and inequalities which are the
main steps for getting the indicated results.

I. THE RELATION BETWEEN THE SPACE S (M,)
AND THE SPACE 4(M})

Let us briefly recall the definitions of the different
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spaces we are dealing with in this paper. We denote by
M, the four-dimensional pseudo-Euclidean Minkowski
space endowed with the Lorentz metric g

g= i g,-jdx,-gdxj, (1)
i, J=0

where g;;=0for i#jand g,,=- g, =~ gy =—gss = 1.
We denote the points of M, by x= (x°, x, x%, x°)
=(x°,X). The compactification of the space M, we are
interested in is the space M? as described, for instance,
in Ref. 9. This space is diffeomorphic to (S, xS,)/ Z,,
where S, denotes the n-dimensional unit sphere and Z,
the discrete group {1, - 1}. For the following it is con-
venient to look at the manifold M? as a closed subset of
the five-dimensional real projective space IP?, '° If we
introduce for the elements |n]~ IP® the projective coor-
dinates (n°n*,...,n%), the space M? can be described
as follows:

Mi={ln]=1P%:n2 —n? —n%-ni-ni+nZ=0} (2)

Minkowski space M, is then diffeomorphic to the comple-
ment of the intersection of M? with any projective
hyperplane of IP®, especially if we take for this the
hyperplane n* —n®=0. From this it follows immediately
that M, can be densely embedded into M:. If we define
an open set U, C M2 by

Ue:=ilnle MZ:x=n*-n*#0},

and a mapping ¢,: U, —~ M, by

@il @k, n i, k1% k), (3)

then the mapping (3) is a diffeomorphism of U, onto

M, and @7 gives a C* embedding of M, into the manifold
M. For the definition of a basis for a complete atlas

A on M; which makes M? a differentiable manifold see,
for instance, Ref. 10.

The universal covering space of M is denoted by

!VI4 and it is clear that it is diffeomorphic to the space
R xS,. For the elements of M, we write x=(7,n), that
is

~ ~ 4

M4:{x: (r,n): = R,n=(",...,n"): /_/nle} . (4)

i=1

The canonical mapping of 1?14 onto M} is denoted by 7,
and is given by

T, : %~ |(cosT,n, sinT)]. (5)

Let us next consider the function spaces §(M,) and
D (ME). The space 5(M,) is the well-known Schwartz
space of C” functions on M, which vanish at infinity
together with all their derivatives faster than any
power of |xi{!, where |xi=(xZ+x2+x2+x%)'/? together
with the usual topology on it.*!

The space /) (M%) is the space of all C* functions on the
compact manifold M?. The topology on /) (M%) is defined
in the following way'?: Let f,=/) (M%) be a sequence. We
say that f, converges in/) (M?) to 0 iff for every chart
(U, ) of M? and every compact set K< ¢(U)C R* the
sequence f,o ¢"! converges, together with all its deriva-
tives, uniformly on K to 0.

Of special interest for us is the following subspace
(M) of the space /) (M3):
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DxMEy: ={f= (M%) :f vanishes together with all its
derivatives on the intersection of the hyper-
plane x =0 with M1},

We assume /) “(M2) carries the induced topology of
1) (M2). In generalizing a well-known result of Schwartz**
we can prove the following theorem:

Theorem I. The space S (M,) is topologically isomor-
phic to the space )*(s?%).

For the proof of this theorem we need some lemmas
which we will state and prove first,

Lemma 1: Let f,c ) (M?) be a sequence which con-
verges to gc /) (M:). Then the set H={f}U g is uniformly
equicontinuous,

Proof: Because H is a compact subset of ) (M?) it
follows from the theorem of Ascoli (see Appendix A)
that H is equicontinuous, but because M? is compact,
every equicontinuous set HC( (M%) is uniformly
equicontinuous. *3

Lemma 2: Let f, ¢ )*(M?) be a sequence which con-
verges to 0 and let Pbe any C” differential operator on
M. Then the sequence Pf, also converges in )*(M?) to
0.

Proof: Because P is a C* differential operator on M3
it follows'* that there exists for every chart (U, ¢,) of
M;, a C* differential operator P; on ¢,(U,) such that

(Pf)e 93t = Pi(f0 03 (6)

on the open set ¢,(U,) CR* Now P, has the following
general form in the local coordinates x=(x°, 2!, x2, x%)
on ¢,(U,):

Py=2ia,D", (7)
=0

where the q, are locally finite functions from C* (¢,(U,)),
and D7 is the familiar abbreviation

a"
LA—
. if r T v ¥
Ox500x]10x529x73

=5, ®)

Now if K is any compact subset of ¢;(U,), it follows
immediately from the definition of the topology in
D*(M?) that the sequence (Pf,)o ¢;' converges |because
of (8)] uniformly to 0 on K together with all its deriva-
tives. That the functions Pf, are again elements of the
space [)*(M?), is clear from the definition of this space.

The content of Lemma 2 can also be expressed by
saying that every C* differential operator P on M? is
a continuous mapping of /) (M?) onto itself, such that the
subspace /)*(M?) is left invariant. Let us now prove
Theorem I,

Proof of Theovem I: First we define a mapping h:
D*(M3) —~ S (M,) which, as we will show, has the desired
properties. Let ¢, be the diffeomorphism defined in (3)
and let f be any element from )*(3?). The mapping % is
then defined as follows!!:

hif—f:=Fo @t 9)
On the other hand, if fe §(M,), we define a mapping h™

as
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-l.f L F._
Hof=g 0 on MANU,=(CU.,. (10)

We have to show that the function f in (9) is an element

of $(M,). Clearly fis from C*(M,). Next we have to

show that for every m < N, every multiindex »

= (¥, 735 725 73), and for every e> 0 there exists a number

N=N(m, r,€) such that

_ {fo(pK on U,

lxl2m|fo(x)\<6 for all x= M, with |x|> N.

We have shown in Ref. 10 that for all £=0,1,2, 3 the
differential operator (3/2x)* on ¢,(U,) = M, can be con-
tinued to a well-defined C differential operator P on
M?. Therefore, the differential operator D" also defines
a C” differential operator P on M!. Lemma 2 then
shows us that Prfe /)*(M!) and also that the function

- 2 4 m2 42 4 n2ym _
Jor= WA by (11)

is an element of /) *(M?) for every m = N and every multi-
index . Denote by V°(x) the following open set of M?%:

V() :={lnle Mi:dist(n],CU) <6}, (12)

Because any function f=/)*(M?) is uniformly continuous
on M} there exists for >0 a §>0 such that

|Alm, D) = flln, ) | <€ for all in,], [n,]= M2
with dist([n, ], ln,]) <s.
Applying this to the set V°(x), we get
|flnD)|<e for all [n]e Vo),
because f(ln])=0 for nl=CU,.

1t is clear that for all x= M,, the points [n]=¢:*(x)
= U, are contained in the open set V®(k) if ixi> N(5),
where N(8) depends on & and therefore on €. So we get
for all x= M, with Ix1> N(8), and for the function f,
from (11),

fre @) | <e.

But this reads, when we insert definition (3) of ¢, and
use (6),

|x 2" D7f(x)|<e for all |x|> N(5)=N(e).

Let us next show that the functionfdefined in (10) is

an element of J*(M2). For this we have only to show that
fis C* on (U, because it is trivially C* on U,, and that
all derivatives of f vanish on ( U,. The same reasoning
as above shows us that

‘ <773_+?_+’7_§ )mp'f([n]) <e for all [n]e V()N U,,

(13)

with V®(k) as defined above. If we now use the fact that
relation (13) is also true for all C~ differential operators
P? on M?, which are obtained as extensions of the local
differential operators D}, in the different local charts
(¢4, Uy (see for instance Ref. 10), we get from (13)

in the local chart (¢, U,), the following inequality:

lalx JDL(Fo o D(xg) | <e
for all x,= ¢ (V)N U NU,),

where a(x,) is some C* function on ¢ (V*(k)N U, 0 U,).
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Putting f and all its derivatives equal to 0 on U,
therefore defines a C function on M2, This shows that
the mapping % is a one—one mapping. In a second

step we have to show that 4 is even a homeomorphism,
Consider therefore a sequence f,=/)*(M?) which con-
verges to 0. From Lemma 2 we also get that the se-
quence [(nZ + - - - +12)/k%]™Pf, converges to 0 in

D*(M?) for all m<= N and for all C* differential opera-
tors P on MZ. Because of Lemma 1 the set H of func-
tions S ™ =2 + -+ - +n2) /k2]™ P'f,, where P7 is the
differential operator on M; which on ¢ (U,) is just DT,
is a uniformly equicontinuous set, Therefore, there
exists for €>0, a §>0 such that

|[£7m(In])|<e for all [n]le V*(x) and for all n. (14)

Because ( V°(k) is closed and therefore compact we have
¢ (( V*(x)) is compact in ¢ (U,). Therefore, there
exists a number N,= N,(€) such that

lj?nr.mc ®7(x) | <e for all n> N, and for all x~ ¢, (( V®(x)),
(15)

because f'™— 0 in )*(M2),

For x4 ¢,(C V() we have ¢;*(x)= V*(x) and therefore

from (14),

|/7mo 92 (x)| <€ for all n= Nl and for all x& ¢ (C V%k)).

(16)
Inserting now the definition of the function /™ into the
two relations (15) and (16) gives

|x|2™| D7 (f,0 0;)(x)| <€ for all x= M, and for all > N,,
am
which shows that 7, . ¢;* =f, converges to 0 in 5 (M,).
On the other hand, let f,< § (M) be a sequence which

converges to 0 in § (M,), that means (17) is true. From
this we immediately get

| P77 (]| <e for all n> N, and all [« U,

where P! is any C~ differential operator on M: which is
the global extension of any differential operator DY, on
the local chart ¢ (U,). Because f, and all their deriva-
tives vanish on C U, we have even
| PLf.(In])| <€ for all n> N, and for all |n]< M2,
(18)
but (18) written in the local coordinates of ¢ (U,) gives
|DI(f,o 0)x) | <e forall x = ¢ (U,) and for all n> N,.

This concludes the proof of Theorem I.

Il. THE RELATION BETWEEN THE SPACE §'(M,)
AND THE SPACE 0(M?)

Theorem I of the last section allows us to identify the
space S (M,) with the closed subspace J*(M3) /) (M?).
We can therefore also identify the space S’(M,) with
the space )*'(M?) via the mapping i*

(*T)(P: = T(hP)

for T=5"(M,) and f=)*(M2) with af defined in (9).

(19)

In complete analogy to (19) we can define the inverse
mapping #* ' =p"*, Now if Te S'(M,), we get h*T
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=¥ (M%), Because )*(M?) is a closed subspace of

[ (M%), we can extend the definition of A*T via the
Hahn—Banach theorem to the whole space /) (M‘é), We
call the distribution we get in this way on M%, an exten-
sion of T onto the manifold M* and denote it by T. It is
however clear that this extension is not unique because
we can add to T any distribution from /)’(M?%) which has
its support on the space ( U,. The aim of this section
is to find a class of tempered distributions on M, which
have the property that they allow for a unique extension
to a distribution on M?. It turns out that this class con-
tains all distributions which are the boundary values of
holomorphic functions in certain domains which on the
other hand, are also of great interest from the physical
point of view,

Let
To=M,+iV,

={z=x+iy:xe M,y V,

={y=M,:y2-y2>0 and y°>0}}. (20)

Consider further the set
H({TD:={f:T,—~¢C, fholomorphic in 7 }.

Definition: A function f= # (7 ,) is an element of the
space §1,.(7,) iff lim, , 7,f(z) =T is a tempered distribu-
tion on the boundary 97, of the domain 7,. The limit is
understood in the topology of $7(C*).

1t has been shown by Martineau'® that f= §% (7 ) iff
there exist constants C, a, 8= 0 such that

[flz)|sC(1 +|z|?)*dist(z, 3] ) forall z=7,. (21)

Let us next construct a complexification €M of the
real manifold M:. For this we only have to complexify
the space M? as defined in (2) to a space CM? as follows:

emi:={lel: (] QPP 2 - 3 — g5 - E2 - £3 +£2=0}.  (22)

In (22), CIP® denotes the complex compact five-dimen-
sional projective space. It follows therefore that Cir}
is also a compact space, it is even a complex manifold. *¢

On CM? we introduce the following complex structure.
We denote by

ki=gf g, n=gtHet, =gt -0,
(23)
Re=gl g, yi=gRo g,

for any point [£]=[(£°,¢%, ..., %]~ CML. We use for the
space CM? the same letters «,), * -+ as we did in Ref. 10
for M¢, but hope that there is no confusion. Let us
further denote by Z the set Z: ={K,A,E, X,v}. For every
Be Z we introduce the following open subset U, of

CME:

Ug:=1le]= emt: g+0}, (24)
All these definitions are straightforward complex ver-

sions of the respective real cases in M:. With the
above definitions one verifies that
CM= U U,
8=z

To define the complex structure we still have to give
the local homeomorphisms ¢; on the open sets U,. First
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we define the mapping ¢,: U, ~ C* as follows:
@t [E] = (&% n, /0, 8/ K, £/ k). (25)

Then ¢, is a biholomorphic mapping of the set U,_onto
€. Next we introduce certain transformations on €3
which we use to define the other homeomorphisms ¢,.
Let [£]= ©M? be given in the projective coordinates by
[, ..., 9.

Definition: I, : [£]—[£']: =[(- £°, &', £2, £, £*, - £9)],
L [e)—[£7): = (g5, &4, €2, £3, £, £9)],

Iyi=10ly, (26)

L e (g1 =180, &2, 8%, 82, 87, £9)).
It is clear from the relations (24) and (26) that for all
Be= Z we have

E=1 (when we set [, = lw‘é)

and

L(U)=U,. (27)
Then we define the homeomorphisms ¢, : U,~ C* by

Pgr =9, dp (28)

It is easy to see that all the transformations [, 8~ Z,
are elements of the group SO(2,4)/Z, which acts ina
completely analogous way on the manifold CM? as it
acts on M2, 2

The charts (Ug, ¢,), 3= Z, define the basis of an
atlas for the complex manifold €M% The mappings ¢,
then become biholomorphic mappings from U, — €%,
Because ¢':€C*—~ U, gives a biholomorphic embedding of
€* into the manifold CM?, and U,=CM;, the manifold
CM? is a compactification of the space €* on which the
group SO(2,4)/ Z, acts as a group of biholomorphic
transformations.

It is interesting to note that the space CM! is simply
connected. We shall prove this in Appendix C,

Consider now the image of the field theoretic tube
domain 7, under the mapping ¢;! in CM?. It is clear
that

Jat = ‘P;1(74) (29)

is contained in U,, but it is even contained in the inter-
section of all the charts U;, 8= Z, as we want to show
next.

Lemma 3: The open set 7, is contained in N,_ U,
and is invariant under the action of the conformal group
50(2,4)/ Z, on THM2,

Proof: It is known'’ that the domain 7,C €* is invariant
under the action of the group C,(M,) on €. This group
is even a subgroup of the group of automorphisms of the
domain 7 ,. It is also clear, for instance from Ref. 18,
that the action of SO(2, 4)/ Z, on €% gives locally on
U, exactly the action of C,;(M,) on €*. Therefore, 7,
is invariant under the action of SO(2, 4)/Z,. Because
F.C U, and w?,=7%, for all we SO(2,4)/Z,, we get

Fa=17,C LU =U; forall 8= Z,
because of (27). Therefore, 7,C U, for all = Z.

(30)
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By using the explicit definitions (25) and (20) we get
for the set 7,, in terms of the projective coordinates ¢:

Fo=lgle emt: 1t v=(2°, o', 17, %)

with v’ =Im(t’c*), then ve V }. (31)
For the boundary 27,, we get the set
07,=1lt)e CMi:viv; =0, * =0}, (32)

Therefore, the real manifold M? belongs to the boundary

a7,

If we denote by //(7,) the set of all holomorphic func-
tions on the domain 7,, we say that fc //(7,) belongs to
the class S (7,) iff the function f has on the boundary
07, a boundary value in the sense of distributions. To
be more precise, this means the following: For any
point [£]e 37,, and for every chart (U, ¢) of CM? with

[E]e U we have
oot e S l@UnF . (33)

Because the property of having a boundary value in
the sense of distributions is a local property, % we then
get by using the principle of “recollement des
morceaux” that a function 7 with the property (33) has a
boundary value in the senge of distributions on the
boundary 3/,.

To prove the main theorem of this section, namely
that every tempered distribution T on M, which is
the boundary value of a holomorphic function in the tube
domain 7/, can be unigquely continued to a distribution
T on M? which again is the boundary value of a holo-~
morphic function on 7,, we need the following lemma,

Lemma 4: Let Aut(7 ) be the group of automorphisms
of the tube domain 7,. For every fe §..(7,) we have

wfe 5;00(74)
where
wf(z): =fw2) for all we Aut(7,).

Proof: 1t is known that the group Aut(7,) is generated
by the Poincaré transformations, the dilatations, and the
inversion R, which is defined by

Rz==-2/2" with 2=z 21 -22~2}, zc ], (34)

Because the lemma is trivially true for all Poincaré
transformations and dilatations we only have to con-
sider the case where w=R. Because R as defined in
(34) is a biholomorphic mapping of 7,, we have

Rfe H(T,). Then we have to show that there exist con-
stants C, a, 32 0 such that

|RAz)|< C(1 +]z]?) *dist(z, 87 ).

Now a trivial geometrical consideration shows that the
distance of a point z=x +iy= 7, from the boundary
a7 , is given by

dist(z,37 ) =c(y" - |y]), (35)
where c is some constant.
Because fe §9,.(7,), there exist constants
C’,a’, B =0 with
A= O+ {2 6=y D
for all z’' =x'+iy'e [ ,. (36)
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We now have to find some relation between y°’ — |y’ |
and y° -|y| on the one hand, and iz’| and |z| on the
other hand, where z’'=x' +iy’ =Rz. In Appendix B we
will prove the following two inequalities:

¥ =y =460 = [y Pz | (37)
and
|2’ |<6]z|°(y* -y (38)
Using the two relations (37) and (38) we get
[fa) < +|2 [yt 2% dist(z, 8T )2 -
for all ze 7, (39)

with C a constant which is determined in a straightfor-
ward way. Because f(z')=Rf(z) for z' =Rz, the lemma
is proven.

Now we are able to prove the main theorem.

Theovem II: Let f(z)e §,.(7 ). Then the function

- loc

fi=f>9, is an element of S  (7,).

Proof: Because ¢, is a biholomorphic mapping of
U~ ¢ (U)=C* with ¢, (7)=7,, we get that fe /(7).
Now let {£] be any point in 87,. Then there exists a
Be Z such that [£]e U,. Iet us look at @,(U,N 7,). Be-
cause #,C Ny, U, we have ¢ (U;N 7 )= ¢,(7,), but with
(28) and Lemma 3 we get

493(}74):%" 604):(pg(}4):7—4- (40)

Therefore, the image of 7, under the different mappings
@5, Bs Z, is the same, namely the tube domain 7 ,C @*,
Because the different transformations I, are biholomor-
phic transformations on the domain 7,, we also get that

fo @5t =fop olyo 97} (41)

is a holomorphic function on ¢ (7)=7,.

The mapping @, o I;o @' : €*— €* is an element of the
conformal group C,s(M,). Therefore, with the defini-
tion of Lemma 4 we can also write the function f o @z
as wf with w=¢, 0 ;o @' an element of C,(M,).
Lemma 4 gives us then, that fo¢3'=wfe §1,.(T,)
=51.{0 (U0 7,), but this proves the theorem.,

Ag an immediate consequence we get that for every
Te §'(M,) such that T=lim __, U(z), we have a unique
extension to a distribution T from [ ’(M?) which is de-
fined as

T= lim folt).
te1-27,

11. EXTENSION OF DISTRIBUTIONS FROM om?)
TO DISTRIBUTIONS FROM 0{M,)

Let us consider the canonical projection 7, as de-
fined in (5) and let us assume that 47, is given such a
differentiable structure that 7, is a local diffeomor-
phism. Then give a distribution T on the space M.,

Then 7T determines in a unique way a distribution 7 on
M,.1® Namely, consider any point ¥c M,. Then there ex-
ists an open neighborhood U(x) such that 7,7 is a dif-
feomorphism of U onto 7,(U). Denote by T, the restric-
tion of the distribution T to the open set U:=m,(U). The
diffeomorphism_m,,s induces a topological isomorphism
of the space /) (U) onto the space /) (U) in the following
way':
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1ng(F:=re w5 for fe (D). (42)

The mapping 73,5 also then induces a mapping of the
space /)’ (U) onto the space /) ’(U), namely

(ﬂxlllifly)ﬁ :Tnj(ﬂm(}'(}))
=T\ y(Fomhs) for feD (D). (43)

In this way we get for every point x= M, and every
admissible neighborhood U of ¥ (admissible in the
sense that 7,5 is a diffeomorphism), a distribution
Ty: =57 v, Because these distributions trivially
coincide for UN V#¢, U, V admissible neighborhoods
in M,, that means

%5= ;; on UN ‘N/, (44)

we get from the principle of “recollement des
morceaux” a unique distribution T on M, such that for
all admissible open seis U in M, we have

Tyo=m4oT1y, (45)
where U=1,(U).

We_want to show that the above constructed distribu-
tion 7 on M, is invariant under the action of the group
T(M,, M?) of deck transformations of the covering ), :
M,~ M:. From Ref. 2 we know that every element
y e T(M ,, M2) has the property

Tyo¥ =Ty (46)

To show the invariance of T under every yc I’(I%, ME)
we have only to show that for every admissible open set
UC M, we have

0 T)g=Tz, (47
because this implies immediately that y7= T on_the _
whole space M,. Applying (45) we get for every fe /) (U),

D 5D =T v 0D = Ty (f o),
where we have used the relations (42) and (43).

Using (45) we get

Ty h(fov) = 7734117-1<z7)T|u(f o¥)= T y(foy ° Tiiy12)

=T y(femihia)=mngTiv ()= T5(f.
(48)

. Having established the existence of a distribution
T on M, given a distribution 7 on M%, we want to show
that T can be obtained as the boundary value of a holo-
morphic function when 7 is the boundary value of a
function holomorphic in the domain 7,. In order to_
achieve this, we first have_to embed the manifold 2,
into a complex manifold CM,. Because of (4), a natural
choice is the following:

CM =T X3, (49)

where Z, denotes the complex affine three-dimensional
unit sphere that means Z,={z= €*: 22 +-.-+22=1}.

If we remember the definition of the canonical map-
ping 7, in (5) we can immediately extend this mapping
to a mapping

7S : CM, ~ CM: (50)
defined by
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7%z~ (cosz, m, sinz), (51)

where Z= €M, is given by z = (z, m) with z= € and
me %,

It is clear that 7§ defined in this way is not a covering
map because 7§ is not a mapping onto the manifold
CM?:. This can be seen from the fact that for all
[¢]e 78(@M,) we have £2+:2=1, whereas in CM? there
are also points with £ +£2=0.

Let us therefore consider the complex manifold
(£, XZ,)/ Z, which is a submanifold of CM?. This mani-
fold has the property that 7,(2, XZ,)=2Z. This follows
from the fact that =, is diffeomorphic to the tangent
bundle TY(S,) of the real n-dimensional unit sphere. So
we get as a special case that Z, is diffeomorphic to the
two-dimensional cylinder in R3 and therefore =,(Z,)
=2.

The mapping

T3 CXZ,~ (Z,XZ,)/Z, (52)

is a universal covering map. It is, as one can see from
(51), a holomorphic mapping from the complex manifold
€ xZ, onto the complex manifold (Z, XZ,)/ Z, which is
locally even biholomorphic. 2°

Let us next investigate the relation between (Z,xZ,)/ Z,
and the domain 7, in €M;. For this we define the set

No:={ltle €ML: [t (£, x2,)/ Z,). (53)

For [£]e N, we have £2+(2=0 or £, =+it,. We are
interested in the set N;N 7,. Because 7,C U, we can
assume « =1 and therefore

£4-£%=1 or rtxit®=1. (54)
Writing £¢*=n* +ir* we get for (54),

n*F¥¢°=1 and (*=%7°, (55)
and therefore

n*=1£¢° and {*=%9°

Because £2+£2=0 we also have £2+---£2=0, but this
means

Piteeetnd=3+-- 4% and n,, +..-+n,8,=0. (56)

With (25) we get for z=x+iy=9¢([£]), y=(£°, &, &3, &%)
and therefore|y|?=¢2+ ..« + {2,

With (55) this reads

[y[2= (@ =n*? +n2+n2 +nf +nd - &2, (57)
As we will show in Appendix E, we have
ni g s> £ (58)

and therefore from (57) it follows that
[y|2= (1 - +93= 3.

This shows that we have
P NN F)cze Ty lylza 3}

This, on the other hand, implies that the set (Z,
XZ.)/Z,0 7, has the property

¢K((21X23)/sz}4)3{zq7_4:|ylz<%}. (59)
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In the coordinates £, this means
(Zxxza)/zz 0.743{[5](:}4 P ek < '%KK*}.
(60)

Since the mapping 7§ as defined in (51) is a local bi-
holomorphic mapping of €M, onto (£, XZ,)/Z, there
exists for_every point ¥ M,C €M, a neighborhood
U(x) in €M, such that 7§,; is a biholomorphic mapping
of U(X) onto (U} C (T, XZ,)/Z,, which is a neighbor-
hood of the point 7§(¥%) =n,(%) = M2

Let us denote by U:=ng(U)"n 7, the intersection of
75(U) with the tube domain 7,. It is clear that then
73(X)=oU. If there is given a holomorphic function f
on 7,, then f_w is also a holomorphic function on U.
But then also the function f; defined as

fii=fo ﬂfll Vs
where V= Vy =nu§5(U) is the preimage of U in the open
set U, is a holomorphic function on V; and the point x
is an element of the boundary 3 V; of the open set ¥,. In
this way we can construct for every point Xe M, an open
set V;C @M, such that for a given holomorphic function
f:on 74 there exists a function f; which is holomorphic on
Vy and which fulfills the relation (61). Furthermore,
the point X belongs to 2V;. It is easily seen that for any
two ¥V and W such that V1 W # ¢ the functions f;
and fj are identical on VI W,

(61)

Therefore, the two functions are analytic continua-
tions of each other and there exists a holomorphic func-
tion fon VU W such that f;=f# and f,3=fp.

Let us next introduce the union of all the sets i~/; in
CcM,,

(62)

By construction, 7, is an open set of the manifold €M,
and because it is connected it is a domain. It also
follows immediately that there exists for every func-
tion f holomorphic in 7,, a holomorphic function f on
74 such that

fro=Ffemfiy
for all Vc 7, such that 7§, is a biholomorphic map.
1t is also clear from the construction that M, 27/,.

(63)

We can also show that the function f obeying the
relation (63) is invariant under the action of the group
of deck transformations of the covering 73 : CM,

— (2, %2,)/ Z,. I we denote this group by I'® we see
that the group I'® is isomorphic to the group I
=T(M,, M%) and that its action restricted to M, is ex-
actly the same as that of .

If therefore xe M, and V;C 7, is an admissible
neighborhood of ¥, then also y V; is_an admissible neigh-
borhood for y% and we have yX € 3y V; for every y = L%,
To show the invariance of the function f under the action
of the group I'® we have to show that

Fie=0My
for every y = I'® and every admissible open set V. In
(64) the function yf is defined as follows:

@NG): =fiy5) for all je 7, and all y = T'C,

(64)

(65)
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To show the property (64) let 1 be any admissible open
set and let y= V. Then y"'y= y~'V and therefore be-
cause of (63) and property (46), which for y = I'® reads

T T
TyeY =Ty,

we have
JoN) = fon§(y™1F) =Fo 1§(3) =13).
Therefore, we get _}:H‘,": (\/]7‘)l 7, a property which is in

complete analogy to the relation (47) for the distribu-
tion T on M,.

We want to finally show in this section that if the
function f is an element of the set S (Z,), then also
the function f which is holomorphic on 7, has a bound-
ary value T on the manifold M, in the sense of distri-
butions on M, which has the property (45), where T is
the boundary value of the function f on M?,

For this we write the relation (63) as follows:
fir=T805 Ty

where V:nf,(f/)n

(66)

If we now perform the limit Z= V going to the real
boundary of V, the point n5(Z) approaches the real
boundary B of VC 7, which is a subset of the real mani-
fold M:. If therefore W is an open subset contained in

B we know, because f= 4 .(7,), that the right-hand
side of (66) tends to 7,77y, W is the image of a
certain open subset W of the real boundary of the set

V under the mapping 7,. But this is exactly the defini-
tion of the distribution 7 on the open subset WC M, as
given in (45).

Summarizing our results, we have shown that every
tempered distribution 7« §’(M,) which is the boundary
value of a function f holomorphic in the tube domain
74, can be_uniquely extended to a distribution T on the
manifold 3, which is again the boundary value of a func-
tion f holomorphic in 7,, which is invariant under the
action of the group of deck transformations of the
covering 1% :CM,— (Z,XZ,;)/Z,. This also induces in-
variance of the distribution T under the action of the
group of deck transformations of the covering ny,: M,
— M.

1t is straightforward that all that we have done for the
space M, can be immediately written down and with
almost no change for any direct product Mj=M, X~
XM,. The tube domain 7, then becomes the domain

n=7,x-++x], and all steps can be repeated for this
domain,

As a result of this, we then get that the Wightman
distributions W,(¢,, ..., {,)where ¢, =x,,, —x;, which
are tempered distributions in S’ (M})and boundary val-
ues of functions holomorphic in the tube domain /3%,
can be uniquely extended to distributions in [’ (M) which
are on M7 boundary values of functions holomorphic in

the domain 73},
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APPENDIX A: THEOREM OF ASCOLI

In this Appendix we shall repeat some definitions and
the theorem of Ascoli which we applied in Sec. I of
this paper.

Let F be a Banach space with norm || ||y and E a
metric space. We denote by C.(E) the space of all con-
tinuous mappings from E into F. Let H be a subset of
Cr(E).

Definition: H is called equicontinuous on the space E
if for every x< E and for every €> 0 there exists a
5> 0 such that |[f(x) - f(¥)llz <€ for all yc E with
dist(x, y) <6 and for all fec H.

We call H uniformly equicontinuous if there exists
for every e>0 a 5> 0 such that I|f{x) - f{ )l <e for all
x,ye E with dist(x, y) <5 and all fe H.

The theorem of Ascoli gives a simple criterion for #
to be an equicontinuous set.!®

Theovem (Ascoli): Let F be a Banach space, E a
compact metric space, HC ((E), If H is relatively
compact then H is equicontinuous.

APPENDIX B: A LEMMA

Lemma: Let 7, be the field theoretic tube domain and
let f(z) be a holomorphic function on 7,. Assume there
exist constants C’, o', 3’ 2 0 such that |f(z)|<C’(1
+12z1%)* dist(z,27,)®. Then there exist constants
C,a,8> 0 such that

| Rf(2)|< C(1 +|z|?)* dist(z, 37 )™

where Rf(z) =f(Rz).

Proof: Let z=x +iy with yc V,. Then we have
dist(z, 87 ) =c(»° ~lyl), where c is some constant we
are not interested in. Now let 2z’ =Rz=x’ +iy’. Using
the definition of the operator R we get

- ¥ —y7) - 2y(x-y) - y(® = 97) +2x(x - y)

’

R oI LR [Py L 2 =y +4(x -3¢
(B1)
For the component 3%/, this reads
_ 40 -2 Of o
yor = Z00E = 97) +220(x- y) (B2)

(5% = 2P +4(x - y)?

Let us first look at the numerator N of the expression
(B2),

N=— 3202 - 57) + 22°(xy).
This can be written as

N=yy2 + %2 +3°|x|? - 22°K -y, (B3)
For the space part of the vector y’, we get from (B1)

v = - y(F - ) +2x(x . )
T = Ay

Let us again look at the numerator N of expression
(B4), It can be written as

(B4)
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N=yy2+M, (B5)
where M=2xXx%y° - 2X(X-y) - ya2 +yIxi2,
We claim that the following inequality is true:
3022 +3°| x| % = 2x0% .y > | M. (BS)

This is true because this inequality is equivalent to the
following:

(2 -y [ +|x|* - 2|x|2%2) = 0,

which is true because y2>1yl2.

Therefore, we get from (B6) and (B3),

3092 = Iy 1 9% + (3°42 +3°1 X2 = 22°X -y — | M)
E =y +4(x - R ’

» -lyl=
and therefore

(y° =1y 1)y?

yOI-Jyllz E = 2 N Y P L (B7)

Because y?=32-1y12= (3° =1y |)? and (x® - y*)2 +4(x - y)?
<5(z|* we get

¥ = y1> 32|40 - [y ).
To get an upper bound for |z’| we only have to look at
the denominator D of the expressions in (B1),

(B8)

D=(x2)? +(3*) - 22%y% +4(x - y)*. (B9)
Because

(x-y)?=a%y? (B10)
for all z=x +iy with >0 and y*>0, we get for (B9),

D= (P> (" - |y (B11)
From (B11) and (B1) we then get

|2/ |<6|z]°G° - |y]) (B12)

Putting together the inequalities (B8) and (B12) gives
(1 +|z’ lz)w (y°! - |y;|)-s' <c +| z |2)4w+25' (y° - |y|)-33'-8a' ,

where C=28*"! 5% But this proves the lemma,

APPENDIX C: THE MANIFOLD em}

We want to prove that the complex manifold CM? de-
fined in (22) is simply connected. It turns out that
TM; is a special case of a more general class of pro-
jective varieties which all share this property. The
proof I will now give is essentially due to Oka,

Theorem: Let €2 ={z2=(z,,..., 2,,), 2;= C}and
let be € P ={[z]=[(z,, ..., 2,,,)]} be the (n+1)-di-
mensional complex projective space. Let f:C™2—~(C
be a homogeneous polynomial. Let V be the following
subset of CIP™: V:={|z]e CIP"*: f([z]) =0}. Then V
is simply connected.

Proof: Consider the Hopf fibering® 7§23 — ¢ P,
where 7 is the following mapping:

(C1)
) fulfills the

mi2— [z]: [(509 seey Zm-l)],

where z¢ $°™%; that means z=(z,,..., 2
equation

n+l

l2,|2 4+ oo +]2,, |2 =1. (c2)

From the definition (C1) of the mapping 7 it follows that
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all points e¥z e $*%, where 0 < ¢ <27, are mapped
under 7 onto the same point [z]= € ™1, Therefore,
the fiber of the above map is just the one-dimensional
unit sphere S,. It is known that ($**3 C P"*, S, )
defines a fiber bundle. Next consider the set W defined
as

Wi={ze T2 f(z) =0}, (C3)
That means W is the kernel of the polynomial f in
€2, If we then define the set K by

K:=Wn §en3, (C4)
we get a restricted fibering?®

T K=V, (C5)

whose fiber again is S,, because f was homogeneous in
z., If we now write doswn the exact homotopy sequence?*
for the fibering n: K=V, we get

o= () = T (K) —~ m (V) = 7,4 (S)

= Ty (K) =~ Ty (V) - e+,
s =7y () = 1 (K) = m (V) — 7, (S,).

(C6)

It is known from the work of Milnor?® on singular
points on complex hypersurfaces that the space K is
(n~1) connected which means?* that

T(K)=0 forall ksn-1, (okp}

where 7,(K) denotes the kth homotopy group of the space
K. Because S, is path connected we have 7,(S,) =0,

Therefore, we get from (C6) that

0—m(V)—~0 (C8)

is an exact sequence, but from this it immediately
follows that 7, (V) =0, which means V is simply con-
nected if n= 2.

Because €M} is just the space V for n=4, and f is the
homogeneous polynomial f{z) =22 - 2 — ...~ 22 + 22,
we get the desired resulf,

APPEND!IX D: PRINCIPLE OF “RECOLLEMENT
DES MORCEAUX'"?¢

Let M be a differentiable manifold and let {U,, e L}
be an open covering of M. Let us assume that for every
A L there exists a distribution T, on U, with the
property that for every pair A, pu = L the restrictions of
T, and T, to the open set U,N U, are equal. Then there
exists an unique distribution 7 on M such that for every
1= L the restriction of T to U, is exactly the distribu-
tion T,.

APPENDIX E: AN INEQUALITY

Let w=(wy, ..., w,), v="_(v;,...,7,)e R" be two vec-
tors with [wi®=ivi? and w.v=w,v, +--- +w,v,=0. Then
we have uZ < i +.co+ 2 .
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Proof: Assume u?> ¢ +...+12 , then also 12> u?
+<s-+uZ.;, but then also because of the Schwarz inequal-

ity, the following is true:

B> (oo + 2 U +ooe FuR )= (vyw, +oos -

+ vn-l wn-l)z'

But this is a contradiction to w-v=0.

*Work supported by the Deutsche Forschungsgemeinschaft.
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Approximating functions with a given singularity
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In this paper, assuming that one knows one of the singularities s, of the function f{z) and its power series
expansion on a domain £ of the complex plane, we introduce some sequences of Gammel-Baker

generalized Padé approximants with the same type of singularity s;. Two examples are given: One concerns
the convergence acceleration of approximations for functions with a logarithmic singularity; in the other

one, a physical application to optical polarizability is discussed.

1. INTRODUCTION

Let us consider the power series Z),:Of,,z"‘, conver-
gent for every z ¢ Df in the complex plane §. In this pa-
per, we assume that one of the singularities of the func-
tion f(z) with the Taylor expansion 24/, 2™" on 0, is
known and we use this extra information to build se-
quences of Gammel-Baker generalized Padé approxi-
mants with the same type of singularities. We also give
an example of approximating functions able to cope with
two known singularities of f(z).

2. DEFINITION OF THE NEW APPROXIMATING
FUNCTIONS
A. Convolution and approximation

Let us consider the following equality:
1
fQ)=k@)® ge) =5 [ riRge/t)at, )
Tp

where I, is a contour enclosing all the singularities of
the function ¢ “'2({). We now prove that Eq. (1) defines
the complex convolution of the kernel k(f) with the func-
tion g(¢).

Lemma 1: If

@) k()= éknt'"

fortggkz{t; ]t|>o-k=1im Sup(lknl)l/"} , (2)
now
(ii) g(t)= 25 gt
n=0
for te 0, ={t: |¢| >0,=1im sup(|g, |)!/"}, 3)
n—<
then

f)= i Bogot ™

for te D, ={s: |t|>of=lim sup(|k,g,])V/"}. (4)
-

Indeed, from (1), 0, is inside the domain with boundary
T, and including the origin of the z*! plane, we can then
deform the contour of integration in (1) so that it lies in
D, and it is now possible to choose z such that for /¢ r,,
we have z/t<c D,. Under these conditions, we can sub-
stitute the senes {2) and (3) in (1) and this gives
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f(Z)——— fr ¢t (g k.J'") ( ;Z} g,-z"‘t‘> dt

= 2 kng z=n

n=0

and, from the Cauchy criterion, this series is conver-
gent for z € D .

Let g™™(¢) be a Pade approximant of the power series
j_og =7 and let f™™(z) be the following expression:

f"’m<z)=m f L R(t)g ™™z /t) dt . (5)

Lemma 2; f"'"'(z) is a form of Gammel-Baker ap-
proximant! for a product kernel. Making a partial frac-
tion decomposition of g ™"(z/¢t) in (5) gives, for z suffi-
ciently large,

n

frmez)=20 ak

i=1

(Z/B{) (6)

and the result follows by analytic continuation to smaller
z. We give now some examples of (1) and (5) for differ-
ent kernels %(z).

Example 1. kl(t)= (1 - t-l)-l s fl(z) =g(z) »

Fumz)=gnne), 72)
Example 2. Ry()=t(¢t~')", f,( [di (E):'
Frme)=[ Sgmn (2 N )

Example 3. k (t)-‘

f:""<z)=§[%(m)gw(;)]m. (1)

The Padé approximants correspond to the particular
kernel &,(¢). It is easy to build similar examples but
the following ones run in opposite direction since they
require integrations rather than derivatives.

Example 4. k,(t)=log(l - ¢™1)1, f.(z)= fwt' g(t) dt ,

frme)= [ egnmar, (82)
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Example 5. ks(t)=fﬁp log P dp ,
t

-5

f)= [ a* [ gt diag,

Frme)= f pot f t-lgmm(y) didq | (8b)

© pef
Example 6. ke(t)=t"f ;—_Idp, f6(2)=z"f £-WBa(t) dt |
2 z

fen.m(z)=25 J‘”t_(lwﬁ)gn,m(t)dt’ 3>0. (80)

Lemma 3: If k(f) has, at the point £=1, a singularity
of the s type, then every simple pole of g™ ™(t) gives a
singularity of /™ ™(z) of the s type. Indeed, we can also
write (1) in the form (provided that the integral along the
infinite circle is zero)

1) =2(e) @ kC) =5z [ 1gOkE/

and, in the same way, we have

frm2) = t'lg MR NB(z/1) dt

2m
The result then follows from the partial fraction expan-
sionof £™™(¢). The sixprevious examples give a good illus-
tration of Lemma 3. For the properties of the Gammel-
Baker generalized Padé approximants see Ref. 1.

B. New approximating function

Let E::ofnz'" be the power series expansion on [, of
a function f{z) which has a singularity s, at the point z,
of the complex plane and let £(z) be a kernel with the
same type of singularity at the point z=1 and such that
R(z)= 24 k2" for z€ D, Now, if we choose for g(z),
the function with the power series expansion
Z” fitz", then from (1) and (4) we have Az)=k(2)
@g(z) and from (5), the function f™™(z) =(1/2m) fr -1
X k(t)g™™z/t) dt, where g™™(z) is a Padé approx1mant
of g(z), is an approximation of fz) which according to
Lemma 3 has a singularity of s, type at every z, where
z; is a simple pole of g™ ™(z).

Lemma 4. If k(z)=fz), then f»™(z)=fz) for every
integer n,m with n#0. Indeed, for k(z)=f(z), we have
2(2)=(1 -z and as it is known, for this particular
22}, g™™(z)=g(z) V n,m, n#0.

The case where the known singularity of fz) is a pole
of multiplicity m=1,2,... is not difficult and the ex-
amples in (7) show the type of kernel (2) to use. From
now, we consider functions flz) with one essential sin-
gularity and kernels of the type

-1)-1 ,

© s
Bi(f)=t° [ f—ldp, B>0, ky(f)=log(l—t
.

where B is an arbitrary positive real number.

Using (8a), (8c), and the previous definition of g(z),
it is easy to prove that the approximants f™™(z) are
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ﬁ”v'"(z):fol[%éﬂ <—:—>)]mmdt+ 8g0fs, BZ=0, (9)

where the integrand denotes the [z, ] Padé approximant
of the power series expansion of the derivative (3/24)
X [t8z/1)], 8,, being the Kronecker symbol.

Remark: Let us assume that one knows 7 singularities

8,585,...,8,, of Az) and that one can write the power
series f(z) Z},,:Qf 2" as flz) = E:ﬂf,(z with f,(2)
=2, re0fz,i2 "% such that fi(z) has a singularity of the s type,

then the previous results can be applied to every com-
ponent f(z) of fz). We will give an example of such a
possibility with »=2 in Sec. 4.

3. APPLICATION TO CONVERGENCE ACCELERATION
A. Numerical tests

We consider two particular functions with a logarith-
mic singularity and we compute from (9) F}°(z) and

f5Yz). Let us begin with
= 1
2 _ -1} “tn-1)
A2y =221 -z log(l —2™Y) + 271} Zln(n+1)z .
n=

The logarithmic singularity of fz) suggests that we take
B=11in(9), so we have

PSR YD T

3 2
1A2) = ——f— 10g<1 - 5)

o, OO it
a5

Table I allows us to compare the Padé approximants
and the approximants in (9) with flz) for some values of

2™t

We now consider

Az)= (1 - 2% log|(1 —42'_13)/(1 +z27) ]+ 227

~2(n=1)

E;; (Zn - 1)(2n+1) o ’

still with 8=1,
1 1\

1,0 o — ——
f (Z)‘3< 522) ’

it becomes

11 z) o 3. 8/1052°
s 1-3/722

These results (see Table II) are consistent with the
conjecture of the previous section.
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TABLE 1.
z-1 fl,()(z) fll' 0(2) f ll(z) f"'l,t(z) f(Z)
1 0.750 0.829 0.833 0.877 1
-1 0.375 0.383 0.388 0.387 0.386
-2 0.300 0.318 0.333 0.327 0.324
-1 0.600 0.608 0.638 0.612 0.613

B. Numerical approximation of Eq. (9)

The integral in (9) is of the type If= j;,lx'ﬂx) dx (=5
—1) and it requires in most cases a numerical approxi-
mation that we now discuss.

Let us consider the following integral:

I"5f= f;xr(l ~x)fx)dx, r,s>-1.

As it is well known,? an approximation I'f of I"°f of
degree d=2n - 1 (that is exact for the polynomials of
degree d=2n-1) is
n
Idﬂsf:EW f(tr,s) , d=9n-1 , (10)
i=1

where:

1. The abscissas {7, are the real roots in the interval
(0,1) of the Jacobi polynomial H7**(x) of degree n, such
that

S o‘xf(1 — X)SHI S (x)HTrS(x) dx =5,
with®
H»*(x)=N]

- - a + +n
Sy r(l __x) s—dx*n [xr "(1 _x)s ]’

Nps=B 20 11,5 +1)

( s+ 1)(r+5+2) - (r+s+n) >”2
F+D)r+2) - F+r)s+1)(s+2)*°- (s +n)

wfr*rs+1+2n /2
nl :

2. The weights W} (i=1,2,..
fel numbers

,n) are the Christof-

n=1
W,,jv;=1/u=20(}1;v5(t;;;))2, i=1,2,...,n.
For instance, for »=8, s=1, we have

H () ={(B + 1)(B + 2) /2

1/2
Hf'l(x)=<(—ﬁ-+—%¥3—ﬁ) [B+1-(B+3)x],

TABLE 1II.
2l fhiz) %) i) i) fz)
+1 0.416 0.450 0.444 0.464 0.500
i% 0.350 87 0.35200 0.35168 0.352 05 0.35208
467 J. Math, Phys., Vol. 18, No. 3, March 1977

on(s) <LV N i 1)(8 +2) 68 2+ 6]

- 228 +2)(8 +4)+ (B +1)(B+2)},

and this gives

=B +1)(B+3)1, Whi=(B+1)'(B+2)*, (i1a)
1 (B+2)(B+4)+[3(8+2)(B +HI?
L2~ B+1D(B+2)+6(B+2)+6 ’
Bl = (B + 2)({3 +4) - [3(6 + 2)(B +4)]1/2 (11b)
%2 B+1)B+2)+6(83+2)+6 ’
weit={(8 +1)(8 +2)
+(B+1)(B+2[B+1-(B+3)p;F/21, i=1,2.

We hope to publish in the near future a program for com-
puting any ¢7; and W’ (see Ref. 4). In many cases, it
is useful to include in the approximation of /" 5 the val-
ues of the function at the ends of the interval.

Lemma 5. The following expression including f(0) is
of degree d=2n:

135 =W (0) + 2 -—,iﬁ"—;f(ti," %), (12)
i=1 hn
W ! ril, s
Wobs=B(r+1,s +1) - Z t_;;;;_s_ (127)

i=1 1

[B(r,s) denotes the usual beta function. ] Indeed, we
have, assuming fc C~(0,1),

175 = ['%7(1 - x)¥(x) dx= i; Blr+j+1,s + DF9(0)/j1 |

(13)
and from (10),
12’;;-1f E [f(’)(O)/] ]E Wr,s r,s j, (137)
The comparison between (13) and (13') gives
» Wosns)=Br+j+1,s +1), j=0,1,2,...,2z-1,
1
(14)
Now, from (12) it follows that
LR =Wos(0) + Z f (0) ZWﬂx (g, (15)

The right-hand side of (14) being invariant under the
transformation » +#+1, jj- 1, we have the equalities
n
ng’:*,}'s(tgi's)"'lzB(r+j+1,S +1y, §=1,2,...,2n.
(14')

The comparison between (13) and (15), taking into ac-
count (12’), (14’) completes this lemma. The assumption
f€ €%(0,1) was made only in order to simplify the
proof.

Lemma 6: The following approximation including f(1)
is of degree d=2n.
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135 = W'v“‘f(l)u'“:1 3 mf(tI::*‘

(16)

Wnel_pg W{'ns*l '

g (r+1,s+1)_§:_-;,—5;Jr (16")
i=1

The proof is the same as for Lemma 5 either by using a
Taylor series expansion near x =1 or by changing x into
(1 - x) and by interchanging » and s.

Lemma 7: The following approximation including £(0)
and f(1) is of degree d=2n+1:

Lus f=Wo s f0) + W 1A (1)

n W rtl 5S+L .
+ Z t?l s+1(1 n-.l sq-fjf(t” '5*1) 1) (17)
i=1 o1
Wihs e W = By +1,5 +1)
W 1, s+l
- Z ;rus.(l‘——r"—twr?r ) 17

n Wr-::.,swl

W”lf"l B('r+1 S+1)— T:?fm'
n

ok 1)

k=l
The equality of both Taylor expansions (17) and (13) for
j=0, j=11is trivial, taking into account (17’) and (177);
for =2, the coefficient of f /2(0)/j! in (17) is

n r+1 s+l (1o, 561y j=1
WSt g ot

DY

=B{r+2,5 +1) _i Wrestt (-
k=1

o], s+l
~t g

e, s-l-l)j-l
n

1- tgn's‘l
J=2n
—B(’r+ 2 S +1) — EZ} W""’lys*l(tri-l,sﬂ)x
120 k=1
i=2

=B(r+2,5+1)= 2 Blr+1+2,5 +2),
1=0

i=2,3,...,20+1,

where we used relations (14). The result follows then
from the equality.

j-2
Br+2,s+1) =2, Blr+1+2,5+2)=Blr+j+1,s +1),
=0

j=2,3,...,2n+1

is easy to prove, since
fl (1 s
oX™H (1 = x)Sdx

j=2
= fox™i(l - x)dx+ ) [ox™H(1  x) dx

J=2
_ ;Z_(;) folxﬂ—t-rz(l - x)%dx
1 2
= foij(l - x)Sdx + > fox"”*l(l ~ %) dx .
=0

We now come back to {9) which can be written
[aom™z/t)dt. Since, for z™* little enough, the inte-
grand differs from a polynomial to the order n+m+1,
we have to take a quadrature formula of degree d>n +m
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+1 80 as not to change the order of approximation.

As an illustration, let us con51der the approximant
1 *1(z) in Example 1 of Sec. 3 for z7'=1,

112 ¢

157 dt=0.8770. (18)

F1,1 <
I (1)~6
Formula (17) for r=s=0, n=1 (t1 1=%, Wri=1/6,

W, o=Wel,, 1 =1/6) is 1°°f (1/6)f(0)+(1/6)f(1) +(2/3)/(2)
and applied to (18) it becomes f~*(1)=0,9. For n=2, we
have

I12°F=0.0834[ £(0) + f(1)] +0.4166[ £(0.2764) + £(0.7236)]

and we obtain f “'(1)=0.8793,

4. APPLICATION TO OPTICAL POLARIZABILITY

We do not intend here to make a contribution to the
theory of optical polarizability, but only to use this the-
ory in order to show an interesting application of the
new approximants considered in the previous sections.
All the data are borrowed from a paper by Langshoff
and Karplus.®

A. Summary of the problem

The dynamic dipole polarizability of an atomic system
is defined by the Kramers-Heisenberg formula (P
means the Cauchy principal value),

~ * df/de
=P [ 3 de,

df/de =3 7o fnoB(wyo — €) +dg/de, dg/de corresponding to
the continuum part of the spectrum with a threshold at
Ww,. Thus, on the real positive axis, «{z) has poles for
0<w<w, and a cut for w> o,. Let i, be the Cauchy
moments

p'sz -(2k+2) d( Z
o

for w <w,. a(w? has the power series expansion a(w?)
=235 4% and the physics allows us to compute a finite
number of moments i, ; the problem is then to approxi-
mate a(z) with these ones. Of course, the Padé approx-
imants are an interesting tool for solving this problem
and a thorough discussion is given in Ref. 5.

dg/de de
o w(€)252

In order to use the results of the previous sections and
to find approximations with poles and a cut on the posi-
tive real axis we write a(w? = o, (w?) + a{w?) with

al(wZ) :jZ;/ ijJ' ijj y az(wz) :J_Z_(Z - k,—)“’ ijj

and we consider the approximations &™™(w?) = af™(w?)
+&%™(w?), where a?™w? is a usual Padé approximant
of the power series a,(w?) and &3 ™(w? is an approxi-
mation of o,{w?) obtained with the help of (9). Of course,
we have to determine the (z+m +1) parameters %; and
the exponent 8 from (n+m +2) experimental data. As we
shall see, this is not always possible.
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The first literal expressions are

1. n=1, m=0

Bt

5 kgt fl (19)
1,00,,2) — o _
&) =T, Jegge? R ) TR TR e B T DB
with
kOIJ-O_ 2 kgl“"g - B h l_kO _— (191)
i, Ol B, N0 Bl 1ok O
2. n=1, m=1
Bopho 4 (Bufh; — ot w72 w? 1 B(l-Fk 1 k)48, — (1= BB w2
Fh N w?) =w?, oo+ ( 1(.‘0"'310_&:’)2"0“’10)“-’ +w:]; 481 B( otk o+ [( 1053_(02; B W] at
(20)
with
By _ o 4 _ 1-k p, B+1_ 207)
k_zﬂ_z_wm’ Ry wio=fio» -k, &, B+2“*’m- (

The f,, and w,, are respectively the oscillator strengths
and transition frequencies of the real system.

3. n=2, m=1.
Here we put
gy=bky, xy=p;(1-ky), i=0,1,2,3.

= 2,1, 2 _ 8o+ (0,8, +8)w*
&t w)= 1+b,0%+ byt

1 2
. Bxo+[BC %, + (B +1)x Jw?t
1 B¥%g 1% 21
+./0. 3 1+ C,0%+ Cwi? at21)

with
b o 8182808y __ WiotWh
1= 2 - 2,2 ’
8082—81 WieWao
poo18-8 _ 1
- 2T 2,2 »
So82— 81 WioWie
C - (B+1)(B +2)x,x,~B (B +3)x,%,

YT BB+ 2)xgx, — (B +1)A2 ’

C.= (B+1)(B +3)x,x,— (B +2)*x2
27 B (B + 2)xpx, - (B+1)%7

The following conditions determine the four parameters
k.

(a1
8,=—(0,8,+0,8)), 8=-(0,8,+b,8))
while B is a solution of the equation
Cwi+Cwl+1=0. (217)

These results need the following comments:

1. Since the literal expressions of @™ ™(w?) are to be
known (because of the existence of the k; parameters),
the method is practically limited to the approximants of
lower order (m=0,1,2, n=0,1,2) but if the conjecture
of the second paragraph is valid, these approximations
could be better than the approximations with the usual
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Padé approximants of higher order. We are already
sure, provided that the system of k,,8, parameters has
a solution to obtain exactly some (one or two) transition
frequencies and the corresponding strengths of the real
system.

2. Let us assume that the poles of the integrand in
a%»™(w?) are simple, then a necessary condition that the
system of (m +n+2) parameters %,,8 has one and only
one solution, is m=n- 1 for a}™(w? has n poles (iden-
tified with transition frequencies) and this leads to 2n
relations by identifying the corresponding residues with
the oscillator strengths. Taking into account the condi-
tion for obtaining w., we then have 2n+1=m +n+2, that
ism=n-1.

3. Of course, 8 >0, but besides, 8 must be such that
the branching points of &2'™(w?) exist only for w > w,.
B. Polarizability of the atomic hydrogen

The data borrowed from Ref. 5 are

to,=4.5, u,=26.5833, ©,=172.188, p,=1162.09,
w,,=0.3750, f,,=0.4162,

W, =0.4444 , £,,=0.07911, w_=0.5.

The solution of system (19’) is then
k,=0.65769, k£, =0.79171, 3=8.86644,
and this leads to

t7.866

1
0.4162 +3.4143f .t
V] ()'

51,0(,,2Y —
O e (Y 1) ™ 25wl

(22)
The solution of (21’) is
ko=0.746715317 , k,=0.868013921,

k,=0.92880124 , %£,=0.960574952,

and Eq. (21”) has two roots, B, =176.156 821 20 and
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8,=1.906814 694. For B=p,, the equation 1+ C,w?+ C,w*
=0 has a root lower than w., so we must take 8 =8, and
for this choice, we have

C,=-5.635122061 , C,=6.54048832,
Bx,=86.80210316, BC,x,+ (8 +1)x,=-218.4260536.

Finally it becomes

0.4162 0.079 11
{0.3750) — w® ' (0.4444)2_ o2

5[2’1((02) =

flt""“ 86.80 — 218.92w%
*) T TT 563507 + 6.6800°F

dt.

(23)

We now compare &"°(w?) with a*'(w?) which, accord-
ing to Ref. 5, represents exactly a(w? for w<w,,. Com-
puting with the help of (16) for =2, some easy calcula-
tions lead to the approximation

0.4162 0.0306767
1,002 = .
&) = T aTR0 0 +3'4143{ 0.25-w?

0.0724792 0.009 634 4
*0.95 - 0.88958w% '0.25- 0.644 07wC (

(22")

A look at the following table shows that the agreement
is pretty good:

w 0 01 0.2 0.3 0.35 0.3750
abow?) 4.5 4.7840 5.935 10.367 25.731 w0
a®(w? 4.5 4.7842 5,941 10.521 24.349 139.8

On the imaginary axis, y*=-w?, it is also easy to see
that results are very good.
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5. CONCLUSION

To conclude, we discuss the advantages and the draw-
backs of both approximants f™™(z) and f™™(z) for a func-
tion f(z) whose singularity is known.

1. The Padé approximants f™™(z), relative to f™™(z),
are easy to compute but they are only meromorphic
functions and they do not include any information on the
known singularity of f(z).

2. In the opposite direction, the approximants f™™(z)
convey this information which intuitively ought to make
them a better approximation, but they are more difficult
to compute and in most cases they cannot be computed
exactly. Besides, it seems difficult to state some use-
ful convergence criteria.

Thus, the choice between f™™(z) andf-"v ™(z) depends
on whether one wants to pay the price in introducing
extra information in the usual approximations f™™(z).
It seems that it could be interesting to pay this price
for solving some problems in theoretical physics.

Of course, when no singularity of f(z) is known, the
choice of the Padé approximants is the best one.
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In this paper we formulate nonrelativistic quantum electrodynamics in a local and manifestly gauge
invariant manner. This is accomplished by using the electromagnetic field strengths, rather than potentials,
to describe the electromagnetic field and local currents, rather than canonical fields, to describe the matter.
The exponentiated currents and field strengths form a group, whose representations can be studied using
the Gel’fand-Vilenkin formalism. The currents and electromagnetic field strengths can be represented on a
physical Hilbert space having positive norm. (The necessity for an indefinite metric does not arise here.)
Furthermore, the classical equations of motion hold as operator equations on this Hilbert space. In this
formulation, the requirement of gauge invariance is essentially replaced by imposing the Maxwell initial
value equtions, which in turn lead to constraints on systems of Gel’fand-Vilenkin multipliers.

I. INTRODUCTION

In the standard formulation of quantum electrodynam-
ics, one begins by using potentials A(X, #) and ¢(X, ) to
represent the electric and magnetic fields,

E(x, 1) =- —aA—g’;’—t-) -Vo(x, 1), 1.1)
B(x, ) =V XA(X,); (1.2)

then the potentials are quantized. The choice of poten-

tials is not unique. Classically, the same E(X) and B(x)
fields result from any pair of potentials related by the

transformation

ox(x, 1)
ot ’

A'(x, 1) =Ax, 1) + Vx(x, 1),

&'(X, D) =p(x, 1) -
(1.3)

where x can be a rather general function of x and 7.

This fact expresses the gauge invariance of electro-
dynamics, which is a necessary requirement on the
theory since E(x) and B(x) are physical observables
while A(x) and ¢(X) are not.

In quantum theory the situation is more complicated,
as can be illustrated by considering the following two
specific choices for the vector potential. In the Coulomb
gaugeu[(v *A)(x) =0], the commutation relations of A(x)
with A(x) have the nonlocal form?

1
Y lx -yl
(1.4)
Furthermore, A(x) turns out not to be the space com-
ponent of a Lorentz covariant 4-vector field. In the
Lorentz gauge [(V *A)(X) + 2¢(x)/3=0], on the other

hand, the commutation relations among the components
of the free field 4, (x) = (A, ¢) are locall

[Ap, (x, xo), Av(Y’ yO)]

[A,(x,0), A,(y,0)]=i,,8(x—y)- Z’;; 2

d'k .
=-2gu, / @nys explik (= p)]0(e)) 8(K),  (1.5)
and A, (x) is a Lorentz covariant 4-vector, However, the
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operators must be represented on a linear space having
an indefinite metric. It is then necessary to select
states with positive norm to form a Hilbert space.?

This state of affairs is inconvenient for general dis-
cussions of gauge invariance. One must require the
physical observables [E(x), B(x)], acting on the physical
Hilbert space, to be the same in different gauges, but
one cannot in general represent two different vector po-
tentials on the same Hilbert space. Thus, it would be
useful to have a manifestly gauge invariant formulation
of quantum electrodynamics.

Manifestly gauge invariant formulations of quantum
electrodynamics have been discussed previously by a
number of authors. For example, DeWitt? and
Mandelstam® showed how quantum electrodynamics can
be written in a formally gauge invariant way by introduc-
ing path dependent fields. These, however, result in a
nonlocal quantum field theory.?

An alternative approach was outlined by one of the
present authors who showed,? again on a formal level,
that the electrodynamics of charged scalar mesons
could be written in a local and manifestly gauge invari-
ant way if the mesons were described using local cur-
rents. In exploring this idea further here, we shall
consider nonrelativistic particles interacting with an
electromagnetic field, %" because in this case much
more is known about the properties of local currents.

We begin by considering a single species of charged
particle. A system of spinless, nonrelativistic particles
can be described® using the number density of particles
p(x) and the particle flux density J(x). We use E(x) and
B(x), rather than potentials, to describe the electro-
magnetic field. The fields p(x), J(x), E(x), and B(x)
are physical observables and hence gauge invariant.
This set of operators generates a closed but nonlinear
algebra when commuted at equal times. The interaction
appears explicitly in the algebra. The Hamiltonian that
gives the operator form of the classical equations of
motion is formally the same as the free Hamiltonian,
with the matter part of the free Hamiltonian written in
terms of currents. Thus in this model what changes in
passing from the free to the interacting theory is the
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structure of the equal time algebra of observables,
rather than the form of the Hamiltonian. This model
thus provides an even more siriking example than
Haag’s theorem® of the dependence of the equal-time
algebra on the interaction, for in this case the structure
of the algebra itself changes rather than just the repre-
sentation that must be employed.

Since the equal-time algebra of p(x), J(x), E(x), and
B(x) is nonlinear, it is not a Lie algebra. A Lie algebra
results if the variable J(X) is replaced by the total mo-
mentum density of the system,

P(x) =mJ(x) + :(EXB - BXE)(x). (1.6)

The Lie algebra of p(x), P(x), E(x), and B(x), in con-
trast to the nonlinear algebra of p(x), J(x), E(x), and
B(X), does not contain the coupling constant or other
explicit vestige of the interaction, which instead reap-
pears in the Hamiltonian. In order to obtain the correct
commutation relations for this Lie algebra, the initial
value equations

(V°E)(x) =ep(x),

(¥ *B)(x)=0 1.7

must be imposed at a fixed time. The equations of mo-
tion insure that Eqs. (1.7) hold at all subsequent times.
The Lie algebra can be exponentiated to form a group
whose representations can be described in terms of a
measure and a set of multipliers using the Gel’fand—
Vilenkin formalism. 1% When one works with the group
rather than the algebra, the initial value equations (1.7)
get replaced by a set of constraints on the Gel’fand—
Vilenkin multipliers. These constraints on the multi-
pliers are the conditions which replace gauge invariance
when the theory is formulated in a manifestly gauge in-
variant fashion. Finally, we note that this algebra can
be generalized to include a magnetic charge (monopole).

When considering more than one species of charged
particle, one must introduce currents p;(x) and J,(x)
to describe each of the ¢ different species of particle.
These fields, together with E{x) and B(x), generate a
closed nonlinear algebra under equal time commutation.
A Lie algebra can be generated if each variable J;(x)
is replaced by

J; (%) + (e;/myc) p; () [ (dy/47)|x -y |1V XB(y). (1.8)

However, this algebra is nonlocal. The quasilocal
operator

Ax) = [ (dy/4m)|x - y|-'V X B(y)
behaves like the vector potential in Coulomb gauge, in
that A(x) and A(x) commute as in Eq. (1.4) and
JA(x)

ot °

(1.9)

BXx)=VXA(x), E,(x)=- (VeA)x)=0. (1.10)
However, since A(X) is computed from B(x) here, this
quantity is also gauge invariant. Thus, when dealing
with several species of charged particle, one seems to
have the choice of working with gauge invariant local
fields which generate a nonlinear algebra or quasilocal
gauge invariant fields which generate a Lie algebra.
For several species of particles we do not know the

analog, if any, of the variables p(x), P(x), E(x), and
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B(x) which generate a local Lie algebra in the case of
a single type of charged particle.

This paper is organized as follows. In Sec. II we
briefly review the description of systems of nonrela-
tivistic particles using local currents p(x) and J{x). In
Sec. III the representation theory for the {ree electro-
magnetic field is described using the variables E(x) and
B(x).1* In Sec. IV, the results of Secs, II and IIT are
combined to give a manifestly gauge invariant formula-
tion of nonrelativistic quantum electrodynamics. The
Gel’fand—Vilenkin representation theory for this model
is discussed, particularly with regard to the question
of multipliers and gauge invariance. In Sec. V we dis-
cuss possible generalizations of these results to the
case where several species of charged particle are
considered. We end with some concluding remarks in
Sec. VI.

1. NONRELATIVISTIC QUANTUM MECHANICS
AND LOCAL CURRENTS

We employ the number density of particles, p(x), and
the particle flux density, J(x), as variables to describe
a system of identical, spinless nonrelativistic particles.
In this section we briefly summarize the properties of
the local currents which will be used in later sections. !3

Our starting point is the local current algebra gen-
erated by commutation of the operators p(x) and J(x)
at equal times. This is given by® (in this section we take
H=m=1)

[p(x), p(M)] =0,
lo(x), Ju(y)] = - id, [6x—y) p(x)],
[7,x), T, ()] = - i3, [5(x~y)J,x)]

+iayj[6(x— V) . 2.1)

The dynamics is determined by a Hamiltonian which,
for particles interacting via a two-body potential, is
given by®1®

H=5 [ @xK;®)[1/p(x)] K;(x)

+3 [ d'x [ d®y:px)p(y): Vix-y), (2.2)
where K(x) =Vp(X) + 2J(x). The local current is
conserved

20®) _ g o)) =- V- 3(x), (2.3)

at

as follows from Egs. (2.1)—(2.2). In this way of formu-
lating nonrelativistic quantum mechanics, the problem
is to find a representation of the current algebra (2. 1)
in which the Hamiltonian (2. 2) is a well-defined opera-
tor. This question has been studied in Ref. 14.

To discuss the representation theory for the local
currents it is convenient to study the group formed by
exponentiating the currents. To do this, one introduces
the unitary operatorsi:t?

U () = explip(£)]
and (2.4)
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V(8% = explitJ(g)],

where p(f) = [ d®x p(X) £(X) and J(g) = [ d°» J(x) *g(x).
Also, ¢%(x) denotes the flow for time ¢ by the vector
field g. It is defined by the equation
d

20 _ g gitn), (2.5)
with ¢%.0(x) =x and where “o” stands for composition,
ive., go@(x)=g(d(x)). It can then be shown that {/ and
I/ satisfy the group multiplication law:

U(f1)é/(f2)=U(f1 +f2);
V@YU =U(f- )/ (),
V) V(@)= ($;°9,).

The representation theory for this group has been
worked out by Goldin, I using the Gel’fand— Vilenkin
formalism. ! We will introduce the specifics of the
representation theory as needed in the following
sections,

(2.6)

lil. THE FREE ELECTRIC AND MAGNETIC FIELDS

In this section we discuss the representation theory
for the free electric and magnetic fields, using a
formalism which works directly with the operator field
strengths E(x) and B(X), rather than potentials.

A. Representation of the free electromagnetic fields

We take as our starting point the familiar equal-time
commutation relations among the components of the
electromagnetic field! (we again choose ¢ =#=1):

[E{(x), E;(Y)]ZO, (3. 1)
[Bi(x), Bj(Y)]=0, (3.2)
[E,(X), Bj(y)]:ieijkayké(x_Y)' (3- 3)

In this section we shall construct a representation of
the algebra (3. 1)—(3. 3) which accommodates the free
Hamiltonian

H=14 [ &x: (B +B)(x): (3.4)

and which is compatible with the initial value equations

V.EX)=0, V°B(x)=0 (3.5)
and the condition
HQ =0, (3.6)

where § is the vacuum state. It is assumed that  is
a cyclic vector for the representation.

To construct this representation, we begin by writing
the Hamiltonian (3. 4) in the factored form:

H=1[a% [B(x)+i(21r2)"VXf aty 20, f_(y;l ] '
. [B(x) +i@m) X f &y’ %ﬁ] (3.7)

To show that this expression for the Hamiltonian is
equivalent to that given in Eq. (3.4), we multiply out
the two factors in Eq. (3.7). The result is

H=3 [ d {B(x) *B(x) +7(27%)-1
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oon (v %)
o f 2

°<(2112)"fod3y'“—‘—‘7| E(y 2, )}

Evaluation of the commutator gives an (infinite) ¢-num-
ber which takes account of the normal ordering indi-
cated in Eq. (3.4). To evaluate the last term, we intro-
duce the Fourier transform!® of the electric field, £, (k).
Then the last term can be written:

1

(3.8)

(2—3[kxE(k)f] +[EXE(k)]
/&“73 B0 (51, = Fif ) E, ()

= —% f d*x E,(x) *E,(x), (3.9)

where l;:k/lkl and E, (x) denotes the transverse part
of the electric field. Thus the right-hand side of Eq.
(3.7) is equal to

H=3 fd3 {B¥(x) + E(x) + (c-number)}, (3.10)
which is equivalent to Eq. (3.4) in view of the constraint
V +*E =0, which implies that E=E,,

We have chosen the zero of energy so that the vacuum
state 2 has zero energy. Equation (3. 6), together with
the fact that the integrand of Eq. (3.7) is positive at
each point, implies that

[B(x)+i(2n?)-1vx fd3y If(yglz ] Q=0, (3.11)

This condition will lead to a functional equation which
determines the generating functional

L) = (2, expliE()]0), (3.12)

where E(f) = [d®xy E(x) *f(x). To derive this equation, we
need to use the fact that

(2, B(x) expliE ) ]0) = (v X£)(x) L. (3.13)

Equation (3. 13) follows from time reversal invariance
and Eq. (3.3), and is proved in Appendix A. Now, tak-
ing the inner product of Eq. (3.11) with the state
expl- iE(f)], we obtain the following functional differ-
ential equation for L(f):

(VX)) (x) L{E) +i2n0) v x/ d*y|x - y]'2 L{#)=0.

6f(y)
(3.14)

This equation has the solution!®1?

L) =exp{- 1 [ [d®%/ @Y kf ®)(5;, - kik;/BD)F, (&)},
(3.15)

where k= k| andf‘(k) is the Fourier transform of f,(x).
By taking functional derivatives of this expression for
L(f) and using Egqs. (3.3) and (3.11), one can obtain all
the equal time z-point functions involving products of
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E(x) and B(x). Furthermore, it is not difficult to adapt
standard arguments about Gaussian functionals to show
that L(f) is a positive functional in the sense of Bochner
and that it is continuous in the topology of the test func-
tion space (e.g., Schwartz space §). Obviously, L(0)
=1, Thus, by the GNS construction, Eq. (3.15) deter-
mines a representation of the free electromagnetic
field.

Rewmarks: (1) The constraint (Vv *E)(X) =0 has been
incorporated into the Hamiltonian, by replacing E with
E,. Equation (3.11) implies that

(V*B)(x)2=0. (3.186)

Once the Lorentz invariance of the theory is established,
Eq. (3.16) and the Reeh—Schlieder theorem will imply
that

V*B(x)=0, (3.17)

(2) There is a direct and simple correspondance be-
tween the above results and those obtained using the
vector potential in Coulomb gauge, For example, using
the standard expression for the vector potential for the
free field in Coulomb gauge!

a’k
Alx, 1) = f T &, 0 Mlat, )

X exp(— ik *x) + a'(k, }) explik °x)]k, (3.18)

where w= lk! and k *x =wt -k °X, one can show that the
Fourier transform of the quantity [B(x)
+i@2m) VX [Py E(y) Ix~y 1] is

i@r)P 2 2w) 2 Bx g)z e(k, A} afk, A) {3.19)

and the Hamiltonian, Eq. (3.7), is then just

H= [d*rw 25 a'(k,\)alk, ).

B. The dynamics of the free electromagnetic field

We next indicate how to determine the dynamics, in
particular the structure of the time dependent »-point
functions, of the free electromagnetic field. We start
with the equations of motion for the fields:

Ex, ) =ilH, Ex, )] = (VXB)(x, 1), (3.20)

B(x, f) =i[H, B(x, )] = - (VXE)(x, 1). (3.21)
Using them, it is easy to obtain the explicit time
dependence of E and B:

E(k, 1) = cos(wt) B(k) + sin(wt) kX B(k), (3.22)
and

B(k, #) = cos(wt) B(k) - sin(wt) kX EK). (3.23)

To compute the time dependent » point functions, it
is useful to introduce the generating functional

Ly(f, 8) = (@, expi E@) + B(g)]0),
where
E@f)= [ d*xE(x, 1) *1(x, 1)

(3.24)

and

B(g)= [ d'xB(x, 1) *g(x, 1).
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One can construct an explicit expression for Ly(f, g) by
expanding the exponential in Eq. (3.24), using Eqs.
(3.22)—(3,23) to relate the fields at time ? to their value
at £=0, using our previous results to evaluate these
n-point functions and finally resuming the series., The
result is

L@, @) =expl{- § [ [@®%/ @) lw[flk, w) - BxF&K, o)]}
x[6;; — Fyke,/ PN F (K, w) — kX gk, )]}
(3.25)

It is useful to write Eq. (3.25) in a manifestly Lorentz
invariant form, since one can then avoid the straight-
forward but tedious task of demonstrating directly the
Lorentz invariance of Eq. (3.25). To do this, we intro-
duce a second rank tensor 7,, whose components are
formed from the test functions f and g as follows:

0 ~-fi =fu —f3

TLLV: f1 0 83 — &2 . (3.26)
fi-g 0 g
fs & -&m 9

Then one can write
ED)+Bg)=3% [d'xF*(x,0T,,Kx,1),

where F*”(X, ) is the electromagnetic field tensor and
Eq. (3.25) can be written in the form

dgk T XLV b BLo
Li(T):exp —% —w— Tu.p(k} (.U) k g B TaB(k, w)} .
(3.27)

Hence, the representation of the free electromagnetic
fields which we have constructed is Lorentz invariant.

Finally, we note that the commutation relations be-
tween E and B at unequal times! can be computed from
Eqs. (3.1)—(3.3) and (3. 22)—(3. 23). These commuta-
tion relations, together with the generating functional
(3. 25), enable one to compute all the time dependent
n-point functions.

Remarks: (1) The theory has been divided into two
parts; determining the representation of the equal-time
algebra and calculating the dynamics. The representa-
tion defines the Hilbert space on which the fields act at
a fixed time, while the dynamics governs their time
evolution. In order for the dynamics of a given physi-
cal system to be well defined, we must select a rep-
resentation of the equal-time algebra which is compati-
ble with the Hamiltonian. To discuss Lorentz invariance
it is necessary to know both the representation and the
dynamics.

(2) In the free theory which we have discussed, poly-
nomials of E(f) acting on the vacuum are dense. This
is because the operators E(f) form a maximal commut-
ing set of observables. For the theory to be manifestly
Lorentz covariant one would need the Hilbert space to
be defined by polynomials of F*(T,,} acting on the
vacuum. But these states are overcomplete and con-
straints would be needed. This is compatible with the
theorem?® that a local manifestly Lorentz invariant
formulation of quantum electrodynamics using a 4-vec-
tor potential requires an indefinite metric.
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IV. QUANTUM ELECTRODYNAMICS FOR A SINGLE
SPECIES OF CHARGED PARTICLE

In this section we combine the local currents with the
electric and magnetic field operators to describe the
electromagnetic interaction of a system of charged par-
ticles in a manifestly gauge invariant way. We first
consider one species of particle with electric charge e
and mass m. ' The case of more than one species of
particle is discussed in Sec. V.

A. The local current algebra of the operators
p(x}, Jdx), E(x}), and B{x)

We use the canonical fields as a heuristic to motivate
the form of the local current algebra and the Hamiltoni-
an. The number density of particles p(x), the flux den-~
sity of particles J(x), and the electric and magnetic
fields are given by

p(x) =v'(x) P(x), .
J(X) = (2im) [zp"(x) (ﬁv - 2—;— A(x)) H(x)

_ (hv v A(x)) zmx)z/»(x)] ,

0A

E(x) =— VAy(x) - % ETE

B(x) = (VXA)(x).

These quantities are all physical observables and hence
gauge invariant. Note that the mass density is mp(x),
the charge density is ep(x), the electric current density
is eJ(x), and the particles’ momentum density is

md(x). From the commutation relations for the canoni-
cal fields

[vx), p'(y)],=0(x-y),
[Au (x),/.l,,(y)] = cziﬁgupﬁ(x - y)’

one obtains the following equal-time commutation rela-
tions among the operators p, J, E, and B:

1

lotx), 7, (y)] =~ (;;) a% [6x - y)ox)], (4.1)

(J; (%), Jp(y)] =1 (% ) a_ja“ [8(x—y) Ju(y)]

- (E) 2 [6x-y) 7, 0]

0x,

+Z(§er) €10y P(X) B,(X) 5(x - y), (4.2)

c
(5, ), By9)] =M sy 5 5(x- ), (4.3)
Vi
L2, 9012 (22) p(x) 0,0 005~ ), (4.9

with all other commutators vanishing. *¥ Thus, under
equal-time commutation the local currents and the
components of the electromagnetic field form a closed
algebra. However, the algebra is nonlinear owing to
the p(x) B(x) term which appears in Eq. (4.2), and
hence it is not a Lie algebra. Another important prop-
erty of the algebra is that the interaction and the
coupling constant, e, enter explicitly in the commuta-
tion relations (4.2) and (4.4). As a result, the algebra
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(4.1)—(4. 4) for the interacting theory is different from
that of the free theory and hence a different represen-
tation of the local currents and fields is required.
Furthermore, different representations are needed
for different values of the coupling constant.

Remark: If the particles were interacting with ex-
ternal electric and magnetic fields, then E(x) and
B(x) would be e-number fields and the local currents
p(x) and J(X) would form a Lie algebra.

We next consider the Hamiltonian. In terms of the
canonical fields it is given by

H:% fd3x (v+iﬁ—iA(x))w*(x)
-(v-iﬁ—ecA(x)) w(x)+§f dx (B + BY)(x).

By using the local currents, this can be written as

nt 1
H= B [ daxK,-T(X) m K,-(x)
+3z fd“x (E? + BY)(x), (4.5)
where
Kix)=Vo(x) + (2im/7) J(X). (4.5%)

At this point, one can forget about the canonical fields
and take the local currents, their commutation rela-
tions [Eqs. (4.1)—(4.4)] and Eq. {4.5) for the
Hamiltonian as defining the theory,

As one check on the consistency of this description,
one can verify that Eqs. (4.1)—(4.5) lead to the correct
operator form of the classical equations of motion.
These are given by

ap(x)/at = (/M) H, p(X)][ =V *J(x) (4.6)
(current conservation),
(1/c) B(x)/3t =i(1/ch)[H, B(x)] = - (VXE)(x), (4.7)
(1/c) 0E(x)/at =i(1/c%)[H, E(x)]
=-(e/c)I(x) + (VX B)(x)
(the Maxwell’s equations governing time evolution),
(4.8)

mJ, (%) = i(m /M) H, 7,(x)]
=ep(x) E; (x) + (e/c)I(x) X B(x)]; - (#2/m) 26, ,/3x,,

(4.9)
where
0;5(%) = K (x) %x) K;(x) + K[ (x) p_%x_)- K, (x)
- 22%p(x)/3x, ox, (4.10)

(conservation of momentum).

The first two terms on the right-hand side of Eq. (4.9)
comprise the Lorentz force, while the last term de-
scribes convection. The other two Maxwell equations,
V+E=ep and V°B=0, must be imposed as initial value
equations in order for the total momentum operator to
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be identifiable as the generator of translations in space.
This point is discussed in detail in the next subsection.

An interesting aspect of this formulation is that the
Hamiltonian (4.5) is, formally, the sum of the free
Hamiltonian for the particles plus the free Hamiltonian
for the electric and magnetic fields {compare Eqgs. (2.2)
and (3.4)]. The only place where the interaction ap-
pears explicitly is in the equal-time algebra
(4.1)—(4.4).

B. The local Lie algebra of the operators
p(x), P{x), E(x), and B{x)

To discuss the representation theory of the local
currents, it is convenient to make a change of variables
so as to obtain a nuclear Lie algebra. For this purpose

we introduce the total momentum density:
P(x) =mJ(x) + (1/2¢) [Ex) X B(x) — B(x)X E(x)]. (4.11)

Next we determine the equal-time algebra generated by
p(x), P(x), E(x), and B(x). A straightforward but tedious
calculation shows that the commutation relations involv-
ing P(x) are given by:

[p(x), Py(y)] =~ i % [6(x—y)p(x)],

[P, (x), P,(y)]

=ik a—;‘ [6(x - y) P(y)] - i7 5% [6(x~y) P;(x)]

+3 (-Z-) €1 [V *E(®) - ep(x)] B, (x) + V * B(x) E, (x)}
Xb(x-y),
[E,(x), Py(y)]
—in a—fck [£,(x) 5(x— y)] - 70, 5% [E,(y) 6x - )]
+ 410, [V *E(x) - ep(x)] 5(x - y),
(B, (x), P,(y)]

——in 537 (B, (x) 5(x - y)] ~ %6, %; [B,(y) 5(x - y)]

+ %6,V *B(x) 6(x - ¥).
For a consistent physical interpretation, we require
P= [ d°x P(x)
to be the total momentum, i.e., the generator

of space translations. The commutator of P with
any local operator (J{X) must therefore have the form

[0&), P]=- itV (x).

In order for this equation to be consistent with the above
commutation relations, it is necessary to impose the

constraints

(V °E)(x) =ep(x) (4.12)
and

(Vv *B)(x)=0. (4.13)

These constraints can be interpreted as initial value
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equations since it can be shown that if Eqs, (4.12) and
(4. 13) hold at a fixed time #, then they hold for all time,
as a consequence of the equations of motion (4. 6)—
(4.8). The connection between the initial value equations
and the gauge invariance of quantum electrodynamics
when formulated using potentials will be discussed in the
next subsection,

After imposing the initial value equations one obtains
the following nuclear Lie algebra:

lox), Py(Y)]=-¢% 5% [3x~y)p&)], (4.14)
[Pi(x); PJ(Y)]
=i 6_38), [6(x~y) P,(y)] - % a—i} [6(x-y) P,(x)],
(4.15)
(B, (%), B, ()] =i(ch) €0 % 5(x - y), (4. 16)

LE; (x), P,(y)]
——in a—f;; [, 60) 8~ y)] - 7y 51 [Ey(5) 5x- ),
(4.17)
[B;(x), P, ()]
=i % [B, (x) 6(x ~ y)] - i75,, a—zk [B,(y) 5(x~y)],

(4.18)
with all other commutators vanishing.

Rewmark: It can easily be checked that these commu-
tation relations are consistent with the initial value
equations and that they satisfy the Jacobi identity.

We can also describe the dynamics in terms of these
variables. For example, the Hamiltonian is still given
by Eq. (4.5), but with K(x) given by

K(x) =Vp(x) + (2i/A){P(x) - (1/2¢)(EXB - BXE)(x)},
(4.19)

instead of (4.5%). The interaction now appears in the
Hamiltonian, as usual, instead of in the algebra. Note
that the coupling constant e appears only in the initial
value equation (4. 12). If we choose the charge density
ep(X) as our variable instead of the number density p(x),
then the coupling constant would appear only in the
Hamiltonian, Henceforth, we use units in which
l=c=l=m.

C. Gauge invariance

At this point we discuss the relationship between the
formulation of electrodynamics using local currents and
that using potentials, particularly with regard to the
role of gauge invariance. In either case one obtains
Maxwell’s equations, but they come about in different
ways.

In terms of the E and B fields, the dynamics is deter-
mined by two first order equations of motion, Egs.
(4.7) and (4. 8). In addition, two initial value equations,
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(4.12) and (4. 13), must be imposed in order for the
theory to accommodate a representation of the transla-
tion group. Together, Egs. (4.7)—(4.8) and (4.12)—
(4.13) comprise Maxwell’s equations.

Alternatively, one can write Maxwell’s equations in
the form

a“Fuv :jv,
3, *F" =0,

(4.20)
(4.21)

where *F*¥ is the dual of F*¥, Equation (4.21) will be
satisfied identically if F*" is written as the curl of a
4-vector potential A*; F“¥ =9*A" - 0¥A*. However, the
transformation from F"¥ to A" is not unique. To deter-
mine A" uniquely, a constraint, or gauge condition,
must be imposed, 20 The equation of motion (second
order in time for A) is then equivalent to Eq. (4. 20).
Thus, Eq. (4.20) is the dynamical equation when the
theory is expressed in terms of potentials.

To summarize:

(1) When working with E and B, Eqs. (4.7) and (4. 8)
are dynamical, while Eqs. (4.12) and (4.13) are initial
value equations (constraints).

(2) When working with the potentials, Eqgs. (4.8) and
(4.12) are dynamical. Equations (4.7) and (4.13) are
identically satisfied, but gauge invariance is required,

Thus, the condition that the E and B fields satisfy
initial value equations replaces the requirement of gauge
invariance in the formulation of electrodynamics using
potentials. However, the dynamical equations are not
the same in the two formulations. Note that the Coulomb
gauge is an exceptional case. In Coulomb gauge, Eq.
(4.12) is not a dynamical equation as it is in other
gauges, but is instead an initial value equation.

D. The Lie group of the exponentiated currents and fields

Before applying the representation theory we need to
obtain the group formed by exponentiating the commuta-
tion relations (4.14)—(4.18). Since the subalgebra
formed by p(x) and P(x) is the same as the free p(x),
J(x) algebra, we can use the results of Sec. II to handle
this part of the problem. For the exponential of P(X) we
introduce the operator

V(9% = explitP(g)],

where ¢% is the flow corresponding to the vector field
g(x), defined by Eq. (2.5). Then the multiplication law
for the p, P subgroup is given byl

explin(f;)] explio(f,)] = explio(f, +£,)],
V(@) explin(H)]=explio(ro )] [/(8),
V() /(@) =1/ ($; 9.

It is not difficult to obtain the group associated with
the subalgebra formed by E(x) and B(x). The multipli-
cation law is simply
expliE(g)] expliE(h)] = expliE(g + h)],

expliB(g)] exp(iB(h)] = expliB(g + h)],
exp[iE(g)] expliB(h)]

(4.22)
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=expl~¢ f dPx g(x) * (VX h)(x)] expliB(h)] expliE(g)].
(4.23)

Since p(x) commutes with E(x) and B(x), we also have
expliE(g)] explip ()] = explio(f)] expliE(e)],
expliB(g)] explin(r)] = explin(f)] expliB (2))].

Finally, we need to know how to multiply the group
element [/(¢) together with expliE(g)] or expliB(g)].
In Appendix B, we show that these elements multiply
according to the rule

V/(¢) expliE(g)] = expliEW, (8)) ] 1/ (9)
and (4.25)

V/(9) expliB(g)] = expliB(W, (&) 11/($),
where

W, (8)(X) = (Vo,)(x) (g, $)(x).

To summarize, an arbitrary group element can be
written as

T'(f,g, h, ¢) = explip()] explE(g)] expliB(h)] [/(9),
(4.27)

(4.24)

(4. 26)

and the law for multiplying any two such elements is
given by

r(f!) gb h}; ¢1) r(fz, g2’ h21 ¢2)
:exp[ifd:ixwoi(gg)(X) ’(Vxhi)(X)]

XT(fy+f2° 84,8 +Woi(82),h: +W¢1(h2), ®,°04).

(4.28)

Remark: From the multiplication law above it can be
checked that

U(n, 8) = expli8 * | d*xxx P(x)]

is formally [since the function g(x) =x is not in the space
of test functions] a unitary operator for a rotation by an
angle 6 about the # axis. For example,

U(n, 6) expliE(g)] U'(%, 6) = expliE(g,)],

where (gg);(X) =Ry, g;(R'X) and R is the matrix for a
rotation by an angle 6 about the # axis.

E. The Gel‘fand-Vilenkin representation theory

We are now ready to describe the representation of
the local currents p(x) and P(x) and the fields E(x) and
B(x) in terms of a measure and a set of multipliers us-
ing the Gel’fand—Vilenkin representation theory. 1°
Here we shall summarize the results of this theory as
they apply in the present case. (See Ref. 11 for proofs
in the case of the p, J algebra).

We begin by considering the generating functional
L(g)=(®, expliE(g)] ), (4.29)

where £ is a cyclic vector for the representation, which
we will always identify with the ground state of the
Hamiltonian [Eqs. (4.5) and (4.19)]. One can write L(g)
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as the Fourier transform of a positive measure p on
§’, the real continuous dual of the space of test func-
tions. Thus,

L(g)= fj. di(G) expli(G, g)], (4.30)

where (G, g) means the functional G evaluated at g(x).
The measure p can be used to define a Hilbert space

A =LY(S’). The group elements act in the following way
on this Hilbert space. Let ¥(G)< /4. Then:

(1) The element expliE(g)] is represented as multi-
plication by expli(G, g)], i.e.,

(explZE(@)] W(G) = expli(G, g)] ¥(G). (4.31)

(2) The operator p(f) is defined by Eq. (4.12), or
ep(f)=—E(Vf). As a result

(expliep(f)IWNG) = exp [- #(G, V)] ¥(G).
(3) Next we have

(V/(@)F)(G) =X, (G) ¥(*G)dp (¢*G)/du(G)]/2, (4.33)

(4.32)

where ¢* is a map from §’ into §’ defined by

(¢*G, 8) = (G, ¢g)
with

(Bg); (%) = (3,;0,) (X)( g, ° $)(X).
Also, X4(G) is a multiplier for [/(¢) and du(¢*G)/du(G)
is the Radon—Nikodym derivative, For this derivative
to exist, it is necessary that the measure g be quasi-
invariant.

(4) Finally,
(expliB(h)] ¥)(G) = Z,(G) ¥(h*G)[dp (h*G)/du (G) /2,
(4. 35)

(4.34)

where h* is another map from §” into §’, here defined
by

(h*G’ g) = (G + vxh’ g)’
and Z4(G) is a multiplier for B(h).

(4. 36)

The multipliers X, and Zy are complex valued func-
tions of modulus one. For the group multiplication law
(4.28) to be obeyed, the multipliers must satisfy

x°1(G) X¢2(¢1* (G) = ono oi(G)y,

an(G) th(h;‘G)‘—‘Znifhz(G), (4037)

Xe (G) Zy(8*G) = Z3,(G) X, (($h)* G).

While Eqgs. (4.37) follow from the general representa-
tion theory, an additional constraint on the multipliers
follows from the initial value equation (V °B)(x) =0.
To satisfy (V °B)(X) =0, we require

expliB(VA)]=1. (4.38)

From Eq. (4.35) and the relation (V)*G =G, we see
that Eq. (4.38) can be satisfied if and only if

Zgi(G) =1. (4.39)
The multiplier law (4. 37) then requires that
Zy(G) = ZhL(G), (4.40)

where h, is the transverse part of h.
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Thus, in the representation theory of the local cur-
rents the initial value equations, which as we saw in
Sec. IV C replace gauge invariance, have the following
effect. The equation V *E(X) =ep(x) is used to define
p(x). The action of the operator explip(f)] can be ex-
pressed entirely in terms of a multiplier. The equation
V °B=0is equivalent to a constraint on the multipliers,

Remark: The algebra of p, P, E, and B is the same
for either Bose or Fermi particles. Representations of
the algebra corresponding to systems of bosons or
fermions are distinguished by the choice of the multipli-
ers X. 1#*! In the next subsection we show that the
multipliers Zy are related to magnetic charge.

F. Magnetic charge

In this subsection we show how magnetic charges can
be incorporated into the current algebra formulation.
We suppose each particle has a magnetic charge (mono-
pole) ¢ in addition to an electric charge e and mass .
The current algebra is given by Eqs. (4.1)—~(4.4) with
the following modifications:

[J4(%), Ju(y)] = ( 7z ) 2 [5x=y) Ju(y)]

m) 3y,
-t (f;) 5—% [3(x - y) 7, (x)]
+i (;;Z;) €ix; PX)[eB;(x) - gE;(x)] 6(x - y)
(4.41)
and
(7, ), B9 =ilig/m) (%) 5,,5(x - y). (4. 42)

The Hamiltonian is still given by Eq. (4.5), but the
equations of motion are modified as follows:

(1/c) 9B(x)/2t=i(1/ch)H, B(x)]
=~ (¢/c) I(x) - VX E(x) (4.43)
and
mdy(X) =i(m/B)H, Jy(x)]
=ep(x) E,(x) +gp(x) B,(x) + (1/2¢)[I% (eB ~ gE)
- (eB - qE)XJ],(x) - (1% /m) 2,6,;.
(4.44)
We may again note that the interaction appears explicit-
ly in the current algebra, rather than in the Hamiltonian,

The Lie algebra formed by p(x), P(x), E(x), and
B(x) is the same as before, Egs. (4.14)—(4.18). How-
ever, in order to interpret P as the total momentum,
i.e., the generator of space translations, we must now
impose the initial value equations

(V2 E)(X) =ep(x)
and (4.45)
(V > B)(x) =gp(x).

The Lie algebra again contains no explicit dependence
on the interaction, which reappears in the Hamiltonian.
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The coupling constants ¢ and g appear explicitly only
in the initial value equations (4. 45).

The representation theory follows along the lines
indicated in the previous section, except that, to
satisfy the initial value equation, we now require

expliB(Vf)] = expl~ igo(f)]
= expli(g/e) E(Vf)].
This imposes a constraint on the multiplier Zy, namely,

Zy(G) = expli(g/e)(G, )] Z, (G), (4.47)

(4. 46)

where h, and h, are, respectively, the longitudinal and
transverse parts of h.

Remarks: (1) The charge quantization condition for
e and ¢ must result from the requirement of rotational
invariance, as it does in the usual formulation of the
magnetic monopole in nonrelativistic quantum mechan-
ics. 2? This is similar to the way in which translation
invariance imposes constraints (the initial value equa-
tions) on the electric and magnetic fields.

(2) Since we are dealing with a single species of par-
ticle, the algebra with magnetic charge can be obtained
formally from the algebra with only an electric charge
by performing a duality rotation on E, B, e, and ¢.* If
this transformation could be unitarily implemented,
then we could obtain a solution to the multiplier equa-
tions with the magnetic charge constraint, Eq. (4.47),
from a solution with the constraint Eq. (4.40), corre-
sponding to no magnetic charge, which has at least
one solution (x, =1, Zy=1). However, Strocchi® has
shown in the relativistic field theory framework used in
Ref. 2 (the potential is local and a Lorentz 4-vector)
that the duality rotation is not unitarily implementable.
Furthermore, the existence of magnetic charges con-
flicts with the possibility of formulating the theory in
terms of local Wightman fields (unless there are two
kinds of photons). This raises the question of whether,
in our formulation of nonrelativistic quantum electro-
dynamics, the multiplier equations for the magnetic
charge case have any solution. This should not be con-
fused with the question of the consistency of the descrip-
tion of magnetic monopoles in nonrelativistic quantum
mechanics. That theory is consistent; however, the
electromagnetic fields are not quantized.

V. QUANTUM ELECTRODYNAMICS FOR SEVERAL
SPECIES OF CHARGED PARTICLE

To deal with several species of particles (having
mass m; and charge e;) we need to introduce the parti-
cle number density p!(X) and the particle flux density
Ji(x) for each of the i species of particle. The currents
p'(x) and J¥(x) together with the fields E and B generate
an equal-time algebra as follows. The currents asso-
ciated with different species of particle commute. For
a given species, the commutation relations for the cur-
rents are the same as we have obtained for a single
species, Egs. (4.1) and (4.2), but with the appropriate
mass and charge. The commutation relations between
E and B are still given by Eq. (4.3). The commutation
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relation between J¢ and E is given by Eq. (4.4), but
with e;, m,, and p(x) appearing on the right-hand side.

The Hamiltonian, given by
3
H=25(/m;) [ a*x 25 K} x)M1/0 ) K} (%)
=1

+3% [ &% (E? + BY)(x), (5.1)

with
Ki(x) =Vp!(x) + (2im,/7) T (x),

leads to the appropriate equations of motion: Maxwell’s
equations (4. 7) and (4. 8) but with eJ(X) replaced by

% ;e;J4(x), and current conservation (4. 6) and the force
equation (4. 9) for each species of particle. The interac-
tion appears explicitly in the equal-time algebra, and
the Hamiltonian is the sum of the (formally) free
Hamiltonians for each species of particles and the
Hamiltonian for the electromagnetic field,

(5.2)

The nonlinearity in the equal-time algebra can be
eliminated by replacing each current J*(x) by

Tie) = THx) + (e,/myc) p* (%) A(x), (5.3)
where the quasilocal field A(x) is given by
A(x) =@t [ d’|x-y|"' VXB(y). (5.4)

Then o' (x) and J *(x) satisfy the same commutation rela-
tions as do p(x) and J(®) for a single species of particle
without electromagnetic interaction, Eq. (2.1). How-
ever, the commutation relation of J*(x) with E(x) is
nonlocal:

ifle; ‘() a?
damy 3,09,

[Fix), B, ()] = (- x-y|" (5.5

The quantity A(x) has the same properties as the vec-
tor potential in Coulomb gauge, namely,

1 0A(x)

(V+A)(x)=0, - ot

(VXA)(x) =B(x), - =E.(x),

and has the commutation relations given by Eq. (1.5).
Thus, one has the choice of using a local but nonlinear
algebra or a linear but nonlocal algebra.

Remark: The interaction of a magnetic charge g,
associated with each species of particle can be intro-
duced in the same manner as in Sec. IVF, When one
does this, one is lead by formal calculations to a result
that appears to violate the Jacobi identity, namely,

[A@), [72@E), J2M)]] +ooet oo

= [ d®x p'(x) p* (x) £(x) * (g X h)(X)(e4q; — e3q4). (5.6)
A similar situation arises in the usual quantum mechan-
ical description of electric and magnetic charges using
a singular vector potential.?® In that case the problem
can be resolved by carefully considering the domain on
which the (unbounded) operators can be applied. We
believe similar considerations would apply in the
present case.

VI. CONCLUDING REMARKS

We have presented a formulation of nonrelativistic
guantum electrodynamics using local currents and the
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electromagnetic field. The formulation is local and
gauge invariant, We expect that a similar formulation
of relativistic quantum electrodynamics is possible,
and in fact previous work® on the electrodynamics of
charged scalar mesons supports this view.

At this point we briefly discuss the relationship
between this approach and one which uses a local
Lorentz covariant potential. The potential A, (x) is de-
fined on a Hilbert space 4. An indefinite metric must
be introduced to obtain a unitary representation of the
Poincaré group. Subspaces /' and A" are defined on
which the metric is positive and zero respectively. The
physical Hilbert space is given by the quotient space
Honys ='/H". Maxwell’s equations then hold between
matrix elements of states in /py. It is our belief that
by formulating the theory using the E and B fields and
local currents, we are describing /7, directly.
Furthermore, the eguations of motion, including
Maxwell’s, are to be interpreted as operator equations.
As far as we can tell, these results do not violate any
known theorem requiring the use of an indefinite
metric, 26-28

The local currents are fields which carry zero
charge. Hence, an irreducible representation of the
equal-time algebra describes a fixed charge sector.
We believe the formal expression for the Hamiltonian,
Eq. (4.5), can be given a well-defined meaning in more
than one irreducible representation of the algebra and
that these inequivalent representations correspond to
different charge sectors. In Appendix C we give a sim-
ple example to illustrate how this can work. The condi-
tion that the ground state be translation invariant will
select out the zero charge sector. For the charge
sectors, the Hamiltonian will not have a unique ground
state. A reducible representation of the equal-time alge-
bra may then be needed to obtain a representation of
the translation group.

When using a covariant potential there arises the
question of which operators are physical. There are
several possible definitions of “physical” operators. »?
In the present formulation, the local currents and the
electromagnetic fields appear to be the natural candi-
dates for a complete set of observable fields,

9
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APPENDIX A: DERIVATION OF EQ. (3.13)
In this appendix we prove that
(2, B(x) expliE()]R) = 3(V XD (X)(2, expliED]Q).
(A1)
First, we need to show that
expliE(M)] Bx) = [B(x) - vV X{(x)] expliE(E)].

This may be proved by using the relationship

(A2)
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exp(4) Bexp(- A)= i ;111‘— (adA)" B,

n=1

(A3)
where (adA)B=[A4, B], and the commutation relation
(8.3).

We need to assume there is an antiunitary time rever-
sal operator T having the properties that

TE{X) T* = E(x),

TB(x) T* = - B(X), (A4)
T =%.
Time reversal invariance then implies that
(@, B(x) expli E@)] Q) = - (B(x) exp[- iED)] 2, ©2)
=~ (2, exp[{E()] B(x)%2). (A5)

Finally, substituting Eq. (A2) into Eq. (A5), we obtain
Eq. (Al).

APPENDIX B: DERIVATION OF EQ. (4.25)

In this appendix we prove that

[/ (¢) expliE(g)] = expliE(W, ()] /(8), (B1)
where
W, (8)(X) = (V) (X} g, 0 9)(x). (B2)
We start by considering the quantity:
V(¢ = explitP(h)], (B3)

where ¢% is the flow for time ¢ by the vector field h(x),
defined by Eq. (2.5). By using Eqs. (A3) and (4.17) it
can be shown that

explitP(h)] E(g) expl- itP(h)] = E(explt W] g), (B4)
where
(Wg);(x) = (h °V) g;(x) + (3;h) ° g(x). (B5)

It then follows that
explitP(h)] expliE(g)] = expliE(exp(tW)g)] expliP(h)].

(B6)
We next introduce the function
S(x, t) = exp(tW) g(x), (BT)
which evidently satisfies the differential equation
dS(x, !
S—(dli—) ~ WS, £), (B8)

with the boundary condition
S, 0) =g(x).

Since Eq. (B8) has a unique solution, we can prove that
S(x, 1) = [V($D,) ) gz 0 $1)(%) (B9)

by showing that the right-hand side of Eq. (B9) satisfies
Eq. {B8). Using the chain rule and Eq. {2.5), we can
obtain from Eq. (B9) that

Bk ) _a, (@000 g + BV) g5l @hx).  (B10)
Then, from Egs. (B5) and (B9) we obtain
(WS)q (X, ) =1, (X)2,8,[($D)a(x)]( g5 ° D (X)
R. Menikoff and D.H. Sharp 480



+3,L (@0 (h ) (@), ()13, 25) ° $}(x)]
+ (00 k) (%) 3, (D) 5(X)( g5 ° B2 ().
(B11)
At this point we need to prove the following:
Lemma: hy(x) 3;(9%), () = (r, ° ) (x).

Proof: The flow ¢%(x) represents the position of a
particle which starts at point X and moves in the velocity
field h(x) for a time £, As a result, it is easy to see that
Eq. (2.5) and its associated boundary condition implies
that

%) = ¢ (x)).
Taking the derivative of (B12) with respect to €, one
obtains

d .n

de tre

(B12)

0= (2 #1007 (BP0, (513)

Setting e =0 and using Eq. (2.5), we obtain the lemma.

After some manipulation and using the lemma, Eq.
(B11) can be reduced to Eq. (B10). Combining Egs.
(B6) and (B9), we obtain Eq. (B1) when [/(¢) is given
by Eq. (B3). We then extend this result to all [/(¢).

APPENDIX C: THE HARMONIC OSCILLATOR
HAMILTONIAN EXPRESSED IN TERMS OF
BILINEARS

Formally, the local currents can be defined as bi-
linear expressions in the canonical fields. A one-dimen-
sional prototype of this situation is provided by the har-
monic oscillator in which x and and p are analogpus to
the canonical fields and the bilinears S=%* and S=xp
+ px are analogous to the local currents. We use this
example to illustrate how the formal expression for the
Hamiltonian in terms of bilinears can be defined as an
operator in two different ways.

The canonical operators x and p = (1/i)(d/dx) are de-
fined on the Hilbert space # =L?(— ®, «), The harmonic
oscillator Hamiltonian

H=3(p+a%) -3 (c1)
has a discrete spectrum
Hwn:nd)n’

where n=0,1,2,+°+. The eigenfunctions with even »
are symmetric functions

Yan (%) = Py~ x),
while those with odd » are antisymmetric
d)Zn-d (x) == lPZno‘l ('_ x)'

The operators S and S satisfy the equal-time algebra

[s, S]=4ss. (c2)
The harmonic ogcillator can be written formally in
terms of S and S as

H=%(S - )(1/S)(S +1) + 1S - const. (C3)

This expression can be given a well-defined meaning
in two ways in an irreducible representation of the §,S
algebra, as follows.
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The Hilbert space // can be decomposed into an even
and odd parity subspace;

H=H.0H.,
where

He=fve/; vt =v(- 2)},
and

H.={eH; &) ===}

The operators S and S leave each subspace invariant,
and, restricted to each subspace, form an irreducible
representation of the equal-time algebra. Since each
subspace is isomorphic to the Hilbert space /4’
=L%(0 =), these representations are unitarily equiva-
lent. //* can be spanned by either {¢,,} or {$yn.1},
n=0,1,2,°+*, and each ¥, is an eigenfunction of the

harmonic oscillator Hamiltonian. As a result, we can
define two different Hamiltonians on //’;

(1) HO defined by HO%,‘ = 27111)2"
and
(2) H, defined by Hdy,u = 2ny,.1.

The formal expression for the Hamiltonian in terms of
S and S, Eq. {C3), can be given a well-defined meaning
corresponding to either Hy or Hy, by expressing it in the
factored form

Hy=41$ - i(25 - )]"(1/9)[S - i(25 - 1)] (c4)
and

Hy=34[$ - i(25 - 3)I'/9)[S - i(25 - 3)]. (c5)

Alternatively, these representations of the S, S alge-
bra could have been determined without reference to the
underlying canonical operators x and p through the use
of a generating functional

L{a)= (2, expliaS])

and the ground state conditions which follow from the
Hamiltonians (C4) and (C5):

[S= (25~ 1)]Q,=0,
(S~ (25~ 3)]%, =0.

(C6)
(o))

Remark: In /' the operator x is self-adjoint, but p
is not. Thus the canonical operators do not necessarily
exist in an irreducible representation of the bilinear
algebra, even though the bilinears and the algebra they
satisfy were abstracted from the canonical theory.

In the simple one-dimensional case considered here
the representations of S and S are unitarily equivalent
but the Hamiltonian can be defined in two ways. For the
local currents we believe the formal expression for the
Hamiltonian can be given a well-defined meaning in the
inequivalent representations which correspond to differ-
ent charge sectors.

Finally, we note that a similar problem is encounter-
ed in distinguishing bosons from fermions when local
currents are used in the formulation of nonrelativistic
quanfum mechanics. In this case the local current
algebra and the formal expression for the Hamiltonian
are the same, but unitarily inequivalent representations
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of the current algebra are associated with different par-
ticle statistics, 1 and the Hamiltonian must be de-
fined differently in each of the different representations,
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Foster and Ray have pointed out that since tachyons are particles having energy and momentum, they
should hence contribute to the gravitational field through the energy-momentum tensor. Following them,

a spacelike metric for the tachyon dust model has been proposed, and the problem of condensation of
tachyons, after a slight perturbation of the model, has been examined. The tetrad technique has been

frequently used for the purpose.

1. INTRODUCTION
A. Background

Around the turn of the century shortly before Einstein
had published his revolutionary paper on the special
theory of relativity, Sommerfeld® examined the problem
of accelerating particles to velocities greater than that
of light c(=3x10' cm/sec) and concluded that at such
velocities particles would behave in a patently absurd
fashion as they would be accelerated upon loss of energy
But at that time physicists were not prepared to accept
this absurd notion. Instead, Einstein’s theory remedied
this state of affairs, by using the mass-variation equa-
tion, m=m,/ (1 —v?/c?)/?, which shows that m increases
infinitely as v approaches ¢. Thus the velocity of light
was a barrier.

This argument was too strong to assail. Yet in the
sixties Bilaniuk, Deshpande, and Sudarshan® reexamined
the problem studied by Sommerfeld and proposed the
possibility of the existence of particles moving faster
than light. They called these, meta particles.? Some
other physicists, notably Terletskii? and Feinberg, 5
also reiterated the same conclusion. In 1967, Feinberg
suggested that these superluminal particles be called
tachyons. 3

Later on, Foster and Ray® argued that since tachyons
have energy and momentum, they should contribute to
the gravitational field through the energy —momentum
tensor T,,. Gott” has also given the parallel argument
that since tachyons have appeared in the context of the
special theory of relativity hence they should also appear
in the general theory of relativity.

Following these arguments, in the present paper, we
have proposed a tachyon dust metric different from that
proposed by Foster and Ray. ® When this metric is used
in the Einstein’s field equations, using an energy —mo-
mentum tensor for dust, solutions exist for spacelike
4-velocities. Like Foster and Ray, ® we also interpret
it as a solution for tachyon dust.

In Sec. 2, Part A, we choose the surface x*=const
as a hypersurface, such that spacelike geodesics along
(x', 2%, t)=const will be orthogonal to it. Thus we have
chosen a coordinate system in which coordinates x*,
x%, and / will be constant for each tachyon, i.e., we
assume the motion of a tachyon along the x® axis only
and its velocity vanishing along the x*, x2, and ¢ axes.
Since the meta universe (universe filled with tachyons)
will be a spacelike universe, hence on the basis of
orthogonality of x®=const and (x', 2, {)=const, we
assume a spacelike metric
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ds? = e* {(dx")? + (dx®)2} + e¥(dx®)? - e*(dt)?,

where g =u(x3,¢) and v=v(s3 ).

On substituting the metric tensor of this metric into
Einstein’s field equations, we obtain a tachyon dust
metric in the form

_ R¥(x%)
=+

R%(x®)

2
ds 1+

{(dx) + (dx2Y2} + (dx3)? -

(dty3.

In Sec. 2, Part B, we have obtained the momentum
flux® of the tachyon dust as

p=8C?/2T7?,
where 7 is a spacelike quantity.

In Sec. 3, we have derived the spacelike counter-
part of Chaudhuri’s equation® which represents the
Einstein’s field equations in a simple form. Here we
have used a projection tensor H;, to project a quantity
from x®=const to (x!, x*, {)=const. This tensor has
been defined as H,;; =g,; — u,u; in the notation section.

In Sec. 4, we have considered the small perturbations
of the proposed spacelike metric by the tetrad technique
given by Ellis and Stewart® and Ellis. 191! We have
frequently used the method of perturbations proposed by
Johri. In the last section, we have made an attempt to
interpret the results. Here we have given the idea of
condensation of tachyons regardless of whether or not
we actually find tachyons existing. In the whole paper,
we have treated tachyons as real particles rather than
as hypothetical particles.

B. Notation

In this paper, space—time is represented as a four-
dimensional Riemannian space with metric tensor g,
of signature (+, +, +, —,). Covariant differentiation is
indicated by a semicolon (;) and covariant differentiation
along the lines (x!, %%, {)=const by a prime to the
variable, i.e., prime denotes 3/ x*. Round brackets
around the indices indicate symmetrization and square
brackets antisymmetrization. Here, we have taken
81G=c?= 1.

The Einstein’s field equations for dust-filled cosmo-
logical models are

(1.1)

where u* are the spacelike 4-velocities for the tachyon
fluid so that u®u,=1. The acceleration of the fluid is

(1.2)

Rab - %Rgab + Agab = Tab = PU Uy,

- s
Uy =y 00,
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where the dot denotes 3/9¢.
The velocity gradient may be further split up as
Uy =W+ 04+ 50H,; —du,,

i :
where 8 =u;; is the expansion scalar, o,,=u,,,

. 1 - '
+uu;y— 36H;; is the trace-free shear tensor, and
Wy; =y, T Uy, is the vorticity tensor.

Here H;, is a tensor which projects a quantity from »*
=const to {x!, 2, {)=_const defined by

ity (1-3)
ie., Hu'=0, Hi=3,

Hyj=gi-u

Here g;, and u; have their previous meaning.
The Ricci rotation coefficients are defined by
Cpe=e,*Vie.=ele,,. el
so that

Tupe +Tupe=0.

cba

Here ¢, are four orthonormal vectors, hereafter, called
tetrads of vectors which are, in general, not always
remaining the same.

The Lie derivative of ¢, with respect to ¢, is
(€ss ) =Vis€0s Yop=Y{a1+
It follows that v{, and I';, are linearly dependent,
Yar=Tap = e,
Tope= %(yabc + Y oab = Ybea)*

Now the Einstein field equation (1.1) can be written
down in the tetrad form as

Ryy=28,T%, - 3,T¢, - T3, T4, + T%,TS, (1.4)

== (A - %D)HM - (A + %p)ubud-

The antisymmetry property of the curvature tensor is
equivalent to the Jacobi identity

A ¥ier +Viacrsie =0. (1.5)

The tetrads are chosen so that the spacelike vector
e, is the tachyon fluid flow vector u®, therefore

a __ sa — /3
u* =063, u,=35;.

In a cosmological model filled with pressure-free
tachyon fluid, the lines of flow are spacelike geodesics
and the contracted Bianchi identities are

p' +pf=0, (1.6)
where § =6, +80,+8,.

Suppose the perturbation of the model results in the
formation of momentum flux p + 6p, so that the ratio of
increase in momentum flux to the model is K =8p/p and
the relative expansion in this region is — 66.

Perturbation of (1. 6) gives

2,(6p) +85p + pb0 =0. (1.7)
Therefore
op\ _ 25(00) _op
a (2P V= 2t By 50, 1.8
3(p> o TP (1-8)
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This gives the ratio of growth of K with respect to x®
in the condensation.
2. THEORY
A. Tachyon dust metric
Suppose a space—time has the metric
ds® = e*{(dx*V + (dx®)?} + e’ (dx®) - e (dx?)2,
where p=pu(x?, ), v=v(x® #), and x*=1.

Now by Dingle’s formula, !* we have Einstein’s field
equation (1.1) as

(2.1)

SR +p” +1/2e" =A, (2.2a)
Fpy@/e* +i/e* -3 (u P =p+A, (2.2b)
W +p" + 103 e =A, (2.2¢)
u'y -0 =0. (2.2d)

Here (1 =du/dt and p’=9ou/0x",

Integrating Eq. (2. 2d) partially with respect to {, we
have

log u’=%v+log (2R'/R),
where R depends on x® only, or

u’'=(2R'/R)ett/2»,
Integrating again, we have

p=x()+2[(R'/R)e"/2 dx®,

Now putting v=0, we have

p=x()+2 [(R'/R)dx*=x(t) + 2 logR. (2.3)
Equating Eqs. (2.2a) and (2. 2¢),

HuP+p” /2t =3P +u" + H(LF/e"],
which gives

L =31 (2.4)

Equations (2. 3) and (2. 4) give the partial differential
equation

X=3%%,
which possesses the solution
x = - 2log(t +2a)B.
Therefore by Eq. (2.3),
u=log[R(x)/B(t + 2a)F.

Since «, B are arbitrary constants, hence a coordinate
system can be assumed such that 2a=1=8,

Thus the metric (2. 1) reduces to
R%(x?)

as? =T {(@F + (@2} + (de') -

R%(y3)

(1+1)? (2.5)

(dty.

B. Momentum flux of the tachyon dust

Let us consider the metric (2.5) as the metric of the
background model. The nonvanishing tetrad components
corresponding to the components of the fundamental
tensor in the line element (2.5) are given by

(€0 =(8") 0= (e,40=1/R.
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The components of v, are given as
(6,).o0=-7s,=R’/R=0, (say)
and the other components of v§, vanish.

The tetrad field equations (1.4) for a pressure-free
tachyon fluid are

Del +91(91 +92 +94)=A ——p/Z,
Do, +0,(6,+60,+0,)=A-p/2,

D, +6,+8,)+ (03 +02+02)=-A-p/2, 9
Do, +6,6,+6,+8,)=~A+p/2.

Here D= 9/3x%= 2°.

Substituting 8, =6,=9,=8, in (2. 6), we have
5Df,+902=A - 3p, @.7)
D@, +303=—A+p/2,

which are easily integrable (for A=0) giving
R%/4=Cx*+A, (2.8)

where C and A are integration constants.
This yields the momentum flux for the tachyon dust as
p=8C?/2M?, (2.9)
where 7 =Cx° +A.

Here 7 is interpreted as the proper path for tachyons. It
plays the same role as proper time for tardyons
(particles moving slower than light), because proper
time becomes imaginary** for tachyons. In the present
paper, we will call n a proper distance which is a
spacelike quantity. Instead, we find that the space—time
is singular on the hypersurface n=0.

3. SPACELIKE COUNTERPART OF
RAYCHAUDHURI'S EQUATION

In general relativity, arbitrary vector fields obey
Ricci identity, hence

Ugsa5c = Yazesa = Rapealt s 3.1
Now multiplying (3.1) by «¢, we get

Ugsaze U = Ugpopa U =Rgpeq u u?,
or

(thg5) = thgse + thgq g + Rgpoq uu = 0. (3.2)

The three velocities in x® =const can be given by the
tensor defined!* as

Vg =HSH g (3.3)
Equations (3. 2) and (3. 3) give
HH(v,,) - wjug - H;Hg“;;a + 0,404 +Racbducud =0,
(3.4)

Splitting up the tensor v, into symmetric and antisym-

metric parts we have
vab = oab + wab’

(3.5)

where 6,,=8 4,y and w,, =w,,,, i.e., Viasy=0(apy and
Vtas1 = Wigsy»

Splitting 6,, we have
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eab =0g + §9Hab’
where 02=0, 0,y =0y Onuu’ =0, and § =uf,.
Thus
1
b:wab+aab+§9Hab' (3- 6)

Uy

Here 6,, is the expansion tensor, w,, is the vorticity
tensor which describes the rotation, and o, is the
shear tensor which gives distortion.

Now multiplying (3. 4) by g°® we have
gPHH (v,,) - g% ugny — g HeH Yl + 8040 Vs
+ g% Ryt =0,

or

EPHEHY 06 + 56H g + W) = g% uguy — g HIH Y g
+8°(05q + %BHad +w,,)(of + %(?Hg +uf)
+g%R it =0,

or

gPHHY 0l + 56" Hy + wly) — g%upuy — g HiH
+ (0% + 36HS + wi) + R uu =0,

This equation gives

1

0’ —ulf +2(0% + £ 6% — 3 w*u,) + R uu’ =0, (3.7

From Einstein’s field equation (1. 1) we can compute

Rcd:(Tcd—%Tgod)+Agcd’ (3'8)
Now Eq. (3.'7) with the help of (3. 8) reduces to
0" — uld+2(0% + £ 0% — 3w w,g) + T uul — 5Tg uul
+ Ag uu* =0. (3.9)

In general, the energy—momentum tensor T, is given
as

Tcd:eucud+(qcud+uch)+pHcd+Trcd, (3.10)

where ¢, is the energy flux relative to #* (which repre-
sent processes such as diffusion and heat conduction),
P is the isotropic pressure, 7, is the anisotropic
matter pressure (due to processes such as viscosity,
and y is the total relativistic energy of matter mea-
sured by #* given by the rotation g =p(1 +¢), where ¢
is the specific internal momentum flux of the tachyon
fluid.

From (3. 10)
T=E+3p(sinceu"ua=+1). (3.11)
Now Egs. (3.9) and (3.11) after some adjustments give
6 + 362 +2(0* — w?) + (g - 3p) + A=0, (3.12)

This is the spacelike counterpart of Raychaudhuri’s
equation® which gives the field equations in the simplest
form.

4. PERTURBATIONS OF MOMENTUM FLUX IN
THE PROPOSED TACHYON DUST MODEL

Since dust is characterized as pressure-free fluid,
hence p=0. Moreover, for simplicity, we take o, w,
and the cosmical constant A also vanishing. Hence in
this case Eq. (3.12) reduces to
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8’ +362+3p=0. (4.1)
After a slight perturbation, Eq. (4.1) reduces to
D?0 +20,D6 + 3Dp=0, (4.2)
where D has its previous meaning,
Now with the help of (1. 8), (4.2) reduces to
D?K + 26, ,DK — 3pK =0,
or
D?K + (2R’/R)DK — 3pK =0.
From Eq. (2.7) it becomes

8C 4C2
9(Cx3+A) DK - 27(Cx3+ Ay

Now substituting Cx*+A =7, Eq. (4. 3) reduces to

K 8 K 4
o 9n om 2T

DK + K=0.

(4. 3)

K=0, (4.4)

which has the solution
K:a1n11/36+azn-7/36, (4.5)
where a, and o, are integration constants.

Thus the differential equation (4. 4) gives two solutions

K, =a,n"/%, (4.86)
and

K,=a,7"/3%. (4.7
5. DISCUSSION

The momentum flux p(=8C2?/279?) shows that the
momentum flux of the meta universe at a certain time
will decrease with the increase of the proper distance.
Since there will be homogeneity in time, this process
will continue forever. Further, the first solution (4. 6)
of the perturbation equation of momentum flux shows
that the K (=35p/p) will increase algebraically as n''/36

while the second solution (4. 7) shows its decrease as
n—7/36.

Let us suppose that like big-bang singularity (for
tardyons) there exists an undiscovered singular point
from which tachyons are emitting by some unknown
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process, and being superluminal particles they move
away from the point source, Therefore, it is obvious
that the momentum flux of the meta universe formed

by them will go on decreasing as being a process for-
ever. Let us further assume that there exists a region
at some distance from the point source of tachyons
assumed above, such that its momentum flux is p + 6p
against p. Now the solution (4. 6) shows that the momen-
tum flux of this particular region will go on increasing
as its proper distance from the point source will
increase, and thus condensation will occur in this region.
The interpretation of solution (4.7) is too tedious to
further interpret.
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Statistical theory of effective electrical, thermal, and
magnetic properties of random heterogeneous materials. VII.
Comparison of different approaches

Motoo Hori
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A general analysis is given for the theoretical evaluation of the effective permittivity of random
heterogeneous materials that are statistical homogeneous. The perturbative and variational formulations
presented in Papers I-VI in this series of work are reconstructed from a slightly different point of view
and compared with recent approaches developed by other authors. Perturbation expansions for the effective
permittivity are derived through electric field, electric displacement, Lorentz field, and T matrix. The
validity of various approximate solutions involving the effective-medium approximation and the cumulant
expansion method is discussed with the aid of a diagrammatic representation of the perturbation series. It
is confirmed that, at the present stage, the cumulant theory is the best approximation for a three-
dimensional system, while the effective-medium theory is the best for a two-dimensional system. The

meaning and applicability of variational approaches are also reviewed.

1. INTRODUCTION

In earlier papers, =5 henceforth referred to as I-VI,
a systematic study was made on the effective permitiv-
ity of inhomogeneous continuum media where local
permittivity varies randomly from point to point. Vari-
ous theoretical methods including the perturbation ex-
pansion, the variational approach, the effective-medium
(EM) approximation, and the percolation theory were
used to analyze the overall properties of two-dimension-
al (2D) and three-dimensional (3D) disordered materials
that are statistically homogeneous. Although our formu-
lations were carried out in the language of the dielectric
constant, all the results obtained also hold for other
physical constants such as magnetic permeability,
electrical and thermal conductivity, and diffusion
constant,

The statistical theory of heterogeneous materials
traces back to Brown"*® and has attracted frequent
attention thereafter. Even in recent years more than
a few researchers have attempted perturbation or varia-
tional approaches®'®* more or less different from ours.
The purpose of the present paper is to compare our
formulations with other existing theories and to check
the validity of the approximate methods. With this aim
in mind, we shall modify the previous treatments so as
to facilitate the comparison and discuss their applicabil-
ity from a unified point of view, The physical meaning
in connection with the problem of electron localization
in disordered systems are clarified in another publica-
tion, '* which also presents a summary of the results of
this article.

In Sec. 2 we explain basic concepts and notations used
in the present formalism. Sections 3, 4, and 5 give
perturbation expansions in terms of the electric field,
the electric displacement, and the Lorentz field, re-
spectively, while Sec. 6 is devoted to the so-called T
matrix expansions. Finally, in Sec. 7, we review
derivations of upper and lower bounds on the effective
permittivity by means of variational principles.

It should be noted that our discussion is restricted
{o continuum mixtures. There is an alternative approach
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based on a lattice model, say a random network of
resistors. Kirkpatrick®®?! applied the EM approxima-
tion to bond percolation on a 2D square and 3D cubic
lattice, and Watson and Leath? performed a similar
treatment for the site model. Stinchcombe?®2* and
Essam et al.?° investigated conduction in a disordered
Bethe lattice (Cayley tree) that can be dealt with exactly.
More recently, Blackman?®® developed a perturbation
theory of conductivity in square bond networks, which
proved to have much in common with our results. As
suggested by Kirkpatrick?® and Blackman,? in general,
the continuum model shows a direct correspondence to
the bond model rather than to the site model. A detailed
study of this problem will appear elsewhere.

2. DEFINITIONS AND FUNDAMENTAL EQUATIONS

We consider a 3D (or 2D) heterogeneous material
with spatially fluctuating permittivity ¢,,(r) whose vol-
ume V (or area S) is eventually brought to infinity,
Assume that the medium is statistically homogeneous
and postulate an ergodic hypothesis that the ensemble
average can be replaced by the spatial average. For a
multiphase material, then, the ensemble average of
€;,(r) is expressed as

i8N =20¢€0 ;Vas 2.1)
[+4
where €, ;; and v, are the permittivity and the volume
fraction of the ath phase, respectively,

The electric displacement D,(r) is related to the
electric field E;(r) by

D, (r)=¢, ,E,(r). (2.2)

The effective permittivity of a statistically homogeneous
material is defined as

Dy(r) = [ dr,ei*(r ,}E, (r,)). 2.3)

Here the integral is extended over the whole space V
or S and r;, denotes the relative position r, — r,. For
simplicity we shall confine ourselves to a random sys-
tem subjected to a constant-average electric field. In
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this case Eq. (2.3) reduces to
(D,(ri))ze;“,(Ej(rI», e’i“jzf dr,esii(ry,). (2.4)

The problem is to determine the effective permittivity
€¥; or €31 from the statistical information about the
random field {e;(r)}.

Let us separate the permittivity tensor e;,(r) into

constant and fluctuating parts as
€;,(r) =€, +0€, ,(r) =¢€5b;; + e, 4(r); (2.5)

then the equation governing the electrostatic potential

&(r) becomes
ol 0 (o 28)

o ox? 0x;

(2.86)

Introducing a Green’s function g(r) that satisfies

2.7

we obtain

&(r,) = d,(r,) + ﬁrz g(rlz)

<o 5.

where @,(r,) depends only on €}, and the boundary condi-
tions. The explicit forms of the free-space Green’s
function g(r) in the 3D and 2D cases are, respectively,

2 i

(2.8)

1
glr)= dmeyr 3 2.9)
1 1
g(r)= 5—log - (2.10)
0

Differentiation of Eq. (2.8) with respect to X1,
yields

E{(rl) =<E,'(r1)>

oglr,,) 0
+ /dr2 xSy ——[6€ (1) E, (1)), (2.11)
which is equivalent to Eq. (2.8)inI or Eq. (2.6) in V.
After integrating by parts we have
E;(r))=E}(r)) + | dr,G,(r,,)0e ;,(r,)E,(r,). (2.12)

Here Ef(r)) is independent of the random variable Be;,(r))
and

2%g(r;,)

. 2.13
axl,iaxz,,. ( )

Gij(rlz) ==
For a 3D material, the Green’s function tensor G,,(r) is
given by

1
Gusi == g0 + P s

(2.14)

X x
(3 iz g
Y2 712

The letter / indicates that the integration around a
singular point r;, =0 is taken in the sense of the princi-
pal value. Similarly, the 2D Green’s function tensor
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has the form

1

1
Gi,(rm)—— es,,z'>(r12)+/9 TrerZ,

(2.15)

X X
X(Z X125 12,1_5“ .
Y12 712

Our previous formulation developed in I-V started
the iteration process with Eq. (2.11), but Dederichs
and Zeller®™!* founded their approach on Eq. (2.12).
As a matter of fact, the latter makes closer contact
with the standard methods of the Green’s function
theory in quantum mechanics. In operator notation we
may write Eq. (2.12) shortly as

E=E°+G&E. (2.16)
The product AB of the two operators A and B means
[AB(r,, r,)];;= [ dr,A;,(r, 1A, (r;,1,). (2.17)

In particular, the permittivity operator 6e is defined by

B ;;(r,, ) = e, (r,)5(r}), (2.18)
while the unit operator implies
lij(rl’rz)zégjé(rlz)- (2019)

By the use of a T matrix, Eq. (2.16) is transformed

into

E=E°+GTE’, T =0&¢+8eGT. (2.20)
Averaging Egs. (2.16) and (2.20) we find

(T) = 8e* + Be*G(T), (2.21)

with §e* —¢* —¢°,

We can derive similar expressions for the electric
d1sp1acement D. Let y,;,(r) be the inverse matrix of
;;(r) and define y¥; by

(B, (r) =(,(x)D,(r)) =y 1D (x)- (2.22)
If we put
GYij(r):)/ij(r)_'yOGij’ Dg(r):'}’oE?(r)y (2.23)
it follows from Eq. (2.12) that
Dy(r))=DY(r)) + | dr,T,;;(r ;)87 ;,(r)D,(r,), (2.24)
where
YO ( 12) - 6”6(1‘12) —€ G,J(r12) (2. 25)
It is easily seen that for a 3D material
2 1
L) =- ané(rm) -P Ty,
x(g"xzzﬁm 5.>, (2.26)
Y2 71z H
while for a 2D material
1 1
rij(rlz)—-— méijé(rm) - p m
x (2 %z Xizg 5 ), (2.27)
Yz Y12 H

Thus, the operator equation corresponding to Eq. 2.16)
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is

D=D°+I6yD. (2.28)

For convenience we are concerned mainly with an
inhomogeneous material having isotropic permittivity
e(r) at point r, It is straightforward to extend the treat-
ments to locally anisotropic materials such as random
polycrystals. For such systems we refer the reader,
for example, to Molyneux®+?® and Dederichs and
Zeller.® ! When the medium is statistically homoge -
neous and locally isotropic, the n-point moment of
5e(r) becomes

(Be(r,)8e(r,) « « = Be(r,)) ={5e(0)de(r,,) « - - Be(ry,))

:<(6€)n>h(r123 Tozpocey rn-l,n)v (za 29)

As the n-point cumulant or semi-invariant we have

(e (r,)Be(r,) « o - Be(r, )y = (BN F(T 1y Tagy o o« s Tyt

(2.30)

fr15, Tagy 0.0, Ty ) being called the normalized n-point
correlation function. In Appendix A it is shown that the
correlation function f(r,,, rp, ..., 1, ) [not

R(¥y5y Togy v ooy T,y )] fOr @ two-phase mixture is inde-
pendent of the phase permittivities.

Hereafter we shall restrict ourselves to the behavior
of a symmetric cell material. The cell model was first
proposed by Miller? % and discussed in detail by Brown'®
and in VI. The most reasonable definition of a sym-
metric cell material is as follows:

(i) The space is completely covered by nonoverlapping
cells within which the material property is constant;

(ii) cells are distributed in a manner such that the
material is statistically homogeneous;

(iii) the material property of a cell is statistically
independent of that of any other cell;

{iv) the material property of a cell is statistically
independent of the geometrical distribution (shape and
arrangement) of cells.

Clearly, the assumptions made by Dederichs and
Zeller® ! are equivalent to the above four postulates.
Furthermore, a completely random material may be
regarded as a limiting case of a symmetric cell material
in which cells have spherical shape and infinitesimal
size, Note that the completely random material is not
only statistically homogeneous but also statistically
isotropic.

For a symmetric cell material we obtain

ety =20e,(r)=00e% (r), 2 (r)=1, (2.31)

where £,(r) is an indicator in the sense that £ ,(r)=1
or 0 according as r lies inside or outside the cell «,
The permittivity e® of the ath cell is independent of
£4(r) as well as of € for B#a. It turns out that

<E£ a(rl)ﬁa(rz> =P(r,r,), (2.32)

<ZE(,(I‘1)E a(rZ)E a(r3)> :P(ru r,,r,), (2.33)
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<Zga<r1>s,a<rz>ga<r3>sm(r4>> =P(r,, T, Tsy Ty, (2.34)
<E§aa(roza<r2>ss(r3>sﬁ<r4>> =P(r,, 1,15, 1), (2.35)

<EZ£ o(E)ER(T)EG(E)E o (r))) =P(r,, ryry, 1), (2.36)

o#f

<E?ga(rl)gﬂ(rz)ga(rs)gﬂ(r4)> =P(r,,r,;1,,1,), (2.37)
a#p

and so on, Here, for instance, P(r,,r,,r,,r,) designates
the probability that the four points r ,r,,r,,r, are in

the same cell, and P(r,, r,;r,,r,) signifies the probabil -
ity that two pairs of points, (r;,r,) and (rs, r,), are in
two different cells. It has been stated in IIT that for a
completely random material

P(r,, ;) =6, , (2.38)
P(r,,r,,r,)= 8,00,y (2.39)
P(r,,r,,r,,r,) :6,126,2361_34, (2. 40)
P(r,, ryr,,1,) =0, 6, (1-5, ), (2.41)
P(r,, 145, Tg) =8, 0, (1-0,), (2.42)
P(r,,r5r,,T,) =6, 5, (1-5,.). (2.43)

3. PERTURBATION EXPANSIONS IN TERMS OF
THE ELECTRIC FIELD

We will first seek perturbation series for 8€* in
terms of the electric field E. Successive substitution of
Eq. (2.16) in itself leads to

E= Y, (Goey'E", (3.1)
whence
()= 2 (Gey)E®, 3.2)
8e*(E)=(5¢E) = i(be(Gbe)ﬂ)E". (3.3)
Eliminating E° from these equations we find
E=|1+G(8¢ - (5¢)) + G(8eGOe — BeG(de)
— (3€GBe) + (B)G(Be)) + * = ° (E)
= iE‘m, (3.4)
dex = (B¢ + [(6eGBe) — (5e)G{e)]
+ [(66GoeGBE) — (BeGBEIG(Be)
— (Be)G{BeGbE) + (5e)G{Be)G(BEY] + - - -
= f)ae‘"’. (3.5)

1]
=

n

For example, the second-order term appearing in
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Eq. (3.5) is explicitly
8e(y = [ dr, G, (r,,)l(0e(r)be(r,))

— (be(r,)){Be(r,) ). (3.6)
Especially when ¢, =¢{), we set ¢’ =8¢ and €' * = 5e*;
then Eq. (3.5) simplifies
€' = (' Ge’) + (€ Ge'Ge’) + [(/ Ge' Ge' Ge')
~(€GeNGE'GEN] + - -, (8.7

which is nothing but Eq. (2.28) of 1.

Now we shall replace the many-point moments by the
corresponding cumulants; that is,

(be(r,)) = (Be(r,)),, (3.8)
(Be(r,)Be(r,)) = (Be(r,)de(r,)),

+(oe(r ) (Be(r,)),s (3.9
(Be(r,)oe(r,)Be(r,))

= (Be(r,)0e (r,)0e(ry))_ + (8e(r )oe(x,)),
X (Be(ry)), + (B (r,)Be(r,)) (Be (r,)),

+(0e(r,)8e (1)) (8¢ (r,)), + (5e(r,))e(Be (r,)) (Be (r3)),,

(3.10)
and so on. Insertion of these equations into Eq. (3.5)
yields

be (L) = (Be(r,)) (3.11)

o?

6e{2 = | dr, G, (r ,)Be(r,)oe(r,)) (3.12)

83 = [ dr, | dr,G,(r,,))G,,(r,)
X [(3€ (r, ) (r,)8€ (1)), + (Be (r,)0e(ry)) (3e(x,)), ],
=0e{h 1) + 5632, (3.13)
6eiP = [ dr, [ dry [ dr, G, (r,)G,,(r55)G,(rs,)
x [ (Be(r,)Be (r,)be (r)5e(ry)),
+(0e(r)5e(r,)Be(r,)), (Be (r3)),
+ (8e(r,)e (r)Be(r,)) (Be(r,)),
+(Be(r,)de(r,)), (Oe (r,)de(r;),
+ (Be(r,)8e(r,)) (Be(r,)Be(ry)),
+(Be(r)6e(r,)), (8¢ (r,)) (Be(ry)) ]

6
= 256%'"'), (3,14)

m=1

Higher-order terms can be derived in like manner.

A convenient way of representing various contribu-
tions to 8€* is to employ cumulant diagrams explained
in IV and V. Cumulant diagrams consist of cross ver-
tices, dashed vertical lines (interaction lines), and solid
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horizontal lines (propagators). Diagrams of this type
are constructed in accordance with the following rules:

(i) Represent the points r,,r,, - by means of nodes
on the horizontal base line;

(i1) assign the Green’s function G(ri'm) to a propaga-
tor connecting the points r; and r

iﬂ;
(iii) allot the s-point cumulant (8e(r;)de(r;)° ), to a
cross vertex from which s interaction lines emanate;

(iv) take the operator product of all the Green’s
functions and cumulants described above.

The prescription for drawing third-order diagrams is
illustrated in Fig. 1 and a diagram equation correspond-
ing to Eq. (3.5) is presented in Fig. 2. By careful
inspection of these diagrams we observe that the effec-
tive permittivity 5e* is nothing but the sum of all possi-
ble proper diagrams, which is usually called the mass
operator or the proper self-energy part.

In order to calculate the leading terms of Eq. (3.5),
we need only to utilize the results given in I-V. In
fact, the second-order term de{2’ is rewritten by partial
integration as

5 — fdr 3g(r,,) 80 (r,)de(r,)).

axy,; 9x,, ;

0g(ry,) of(rys)
driz axlzgi a9512”‘ ’

which implies Eq. (2.30) of I or (2.23) of V. Thus it
follows that for any statistically isotropic material

s 14060
d €

= - ((6e)), (3. 15)

(3.186)

and for a symmetric cell material composed of uniform-
ly oriented ellipsoids or ellipses

8¢y =~ L; {(6€)°) /¢,

where d is the dimensionality of the medium and L, is
the depolarization or demagnetization tensor of cells.
Similarly we get

(3.1M

Bef ) = L, L, {(6€)) /€5, (3.18)
Be{3® = L“((ée)z)c(ée)c/eg , (3.19)
which reduce for a spherical-cell material fo
56‘%”:%«5:0)3} , (3. 20)
st = 1 {00, 00), (3.21)

2
e0
Referring to the calculations in III and V we are able

to determine fourth-order terms for completely random
materials as

4
Helal) — _ ls «5:3) >g’ (3.22)
0
3
5e42) — _ 1_56(3,056(1): - %S@%@@fﬁ: , (3.23)
€0 €0
3
Se® — _ 1—66(3'”66(”2 - % M@Qc R (3.24)
€ €0
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FIG. 1. Prescription for drawing third-order diagrams. The
diagram (a) represents 6 +1) = $eGoebe), and the diagram
{b) represents de ¥ = $eGGe) Goe),.

1 1 {(6e)?)?
@) — _ 2505 2) — _ <
be e 5e ¥ 0¢ Foa (3.25)
2\2

- %S@_:;L in 1D or 2D,

e 5 0 (3.26)
0 in 3D,

be4r®) = (— :—) e e Wt = 3-———“—-9«56)?3 Ce.  @.2m

Q 0

Diagram equations expressing 6¢“* and 5¢® are de-
picted in Fig, 3. In general, nested diagrams are fac-
torizable into lower-order one-vertex diagrams, where-
as crossed diagrams are not reducible to one-vertex
diagrams.

Contributions from single-site diagrams including
one-vertex and nested diagrams are counted by the
following simple recipes:

(i) Assign the sth-order cumulant {(5¢)%), to s dashed
interaction lines originating from the same cross
vertex;

{ii) allot —1/¢, to each propagator;
(iii) allot 1/d to each independent propagator;
(iv) take the product of all factors thus calculated,

o ; x, A
A I A IS RN AN
l , AN 1’ 1 S 2 M A " “ ! ‘;

(n (2) 3.1 (3.2) (4.1)

X A X X X
\ Y\ SN YA
+ ,,/:; “‘\\ + :,’f |‘ N + /' ’x\\\ + p ;(l x‘
AR TN LN AR A
(4,2) (4,3) (4.4) (4,5)
/K\
A N
’ 1 1 \
(4.6)

FIG. 2. Diagrammatic representation of Eq. (3.5).
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’ A 1 \ ,
’ \ = | e —_— ! \ X *
(a) 4 /”\ \ - x 1I N ,I \\
[ [ ‘ \ \
[ v N ! N " Y
[ SN —
% 2 ¥ X X
,/ \\ 1 : : '/ \
(b) Jx ¥ =|-= X ;. X i+ X / \
P RN EO ! t ’ Y
, H ; \ [l .L ’ \
S G EE -+ —

FIG. 3. Process for factorizing nested diagram into lower-
order one-vertex diagrams. The diagram equations (a) and (b)
correspond to Eqgs. (3.25) and (3.27), respectively.

From a slightly different point of view, single-site
diagrams can be summed by means of renormalized
propagators as shown in Fig. 4. As for crossed dia-
grams, on the other hand, we are not successful in
evaluating all contributions rigorously, but some of
them are determined in conformity with the following
additional rule:

(v) For a 3D material, associate zero with crossed
diagrams which are contained as addends in Fig, 5(a).
Also in the 1D and 2D cases, contributions from these
diagrams can easily be computed, although they do not
vanish as in a 3D case. Vanishing crossed diagrams in
1D or 2D are illustrated in Fig, 6 where closed-circle
vertices indicate moments of §¢ rather than its
cumulant.

Let us derive several approximate solutions for 6e*.
First we pick up only one-vertex cumulant diagrams;
namely,

. {Be)®), |, Be)®,  (oe)), . ...
8e* = (be), - Z + G~ @D oo, (3.28)
whence

_ Q) €% €
e* =), - E‘f + _J(deo)z - —1(d60)3 +

=f1(eze’“0>/(ze’“0)dz (3.29)

0

(see IV). The non-self-consistent cumulant solution e}
and the self-consistent cumulant solution €% are given

x ¥ X %,

(@) ; LI VA R AN e "S
L a0 Ll PN
* X} x\ ’ N

o §=Te A A A
1 :o SN AR TN

S S & I

FIG. 4. Sum of all possible single-gsite diagrams in the wide
senge. (a) Direct expression up to third order. (b) Indirect
expression in terms of renormalized propagators, (c) Defini-
tion of a renormalized propagator.

(¢) = =
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() = N E SN N

/x“,x\‘ , )/- ~

IS O S

A R S AR

— > [/ S S T .Y

a
H A LN 4‘
(b) = v+ l"‘ + S+ S+

] e\ [ A RN
a4

(C) = =

FIG. 5. Crossed diagrams whose contribution is zero for the
3D case. (a) Sum of vanishing crossed diagrams. (b) Definition
of a wavy interaction line. (¢c) Definition of a double line

propagator.

by
€= f {eze/4en/ (g8 /14N gz, (3.30)
eg=/" (ezt/aecy/ (2°1458) dz, (3.31)

where we have put ¢, =) and ¢, =¢%, respectively.
Diagrammatic representation of 5e} and 6¢¥ is shown in
Fig. 7. We should notice that the self-consistent cumu-
lant approximation takes care of all single-site cumu-
lant diagrams.

Next we use moment averages instead of cumulant
averages in Eq. (3.28); then

<(6€)2 4 88e)%) _ ((8e)®)
de, (dﬁo)z T {de,)”

66+ds> <e+e(¢;eol)e>

=(8e) -

(3.32)

(b)

AN
]
bom—-
+
+
Y
+
+

© == -

FIG. 6. Crossed diagrams whose contribution is zero for the
1D or 2D case. (a) Sum of vanishing crossed diagrams. Each
difference in square brackets contributes zero. The solid line
connecting the two closed-circle vertices indicates that the two
points should be taken as the same {see IV for details).

(b) Definition of a wavy interaction line. (¢) Definition of a
double line propagator.
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* I* '*‘ ll‘ ",
@  sep = 1o+ N NN+
] LA [N NN
Py —J —t e . W
x ¥ )I‘ t?‘ ’1“
(SEC = = : + :l' ‘\ + ’I:\‘ + //l’ “|\\\
+ = == (==
+
by )
S
€c

FIG. 7. Diagram equations expressing Sef and eg. (a) Non-
self-consistent cumulant solution &eg. (b) Self-consistent cu-
mulant solution bec.

When €,={(e) this series reduces to
<(d +1) <5> (3.33)
€+ (d—1)e) :

which coincides with Krdner’s approximation. 3! Fur-
thermore, substitution of e,=¢%y into Eq. (3. 32) yields

€—€Xy
<€~———+ @-1)x =0. (3.34)
As argued in IV, V, and Ref. 19, the solution of Eq.
(3. 34) is equivalent to the self-contained single-site
approximation® or the EM approximation. 3% Actually,
it is readily seen that the self-contained single-site

% ? l,\ Il" 5,
(a) SEK = ! +" |‘+ 1’:‘\ + ,’:“l“\ +
1 iy A S N
[ o
SEL, = =
+
= 1 - § = $E€ - S€gy
b
(b} < = E_EEM
= = — + i + 4& +
.
L EEM

FIG. 8. Diagram equations expressing def and Sefy,.
(a) Kroner’s approximation dey. (b) Self-contained single-site
approximation Se¥y.
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solution

(6e(Be — Beky)) | (De(be = Bety)®)
detu (73

Be %y = (B€) —

(e (e = e
- (de¥yy)®

satisfies Eq. (3. 34) irrespective of e;=¢ — 8¢, Diagram
equations for e¢% and e}, are given in Fig. 8.

(8.35)

4. PERTURBATION EXPANSIONS IN TERMS OF
THE ELECTRIC DISPLACEMENT

In this section we expand the electric displacement
D instead of E, Starting from Eg. (2.28) we have

=[1+T 6y~ (6)) + L (6yT'sy - 5yI(5y)

~ (@yT8y) +&MTBY)) +- - - KD)

= iD(n)’

n=0

v* = (8y) + [(6yT6y) - (5y)I(6v)] + [(6yT8yToy)

4.1)

— By T8y)T(3Y) - (5¥)T6Ydy)
+ 8y {8y )Ty)] +
=(8y), + (dyIsy), +[BdyToyIsy),

+(6yI(8y) Tov) ] +

= Zé‘y‘"). (4.2)
n=1

The prescriptions (i)—(iv) for constructing diagrams
described in Sec. 3 apply equally well to the present
case.

The second-order term §y‘® is calculated as

1(3):f ar, Fu(rlz)<57(r1)57’(rz)>

9
N L
12 i
g(r12)) af( 12)]
X {242 4,3
( Yo 0% 15, ; 4.3
Accordingly, for a statistically isotropic system
2
By @ = - (1 - l) <.(____Q§y) ) 4.4
d Yo
and for an ellipsoidal (elliptic) cell material
Sy =~ (6,;-L; )«i’)—)&n (4.5)
Likewise, formulas corresponding to Eqs. (3.21)—
(3.28) are:
2 3
oy = (1_ 1) e, (4.6)
d Ye
2
5.)/(3,,2)= (1 _ :'_1) <(67)3§<57>g , @.7)
o
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By D) = _ ( _ ‘13)3 @__.;’3;)_& , 4.8)
oy B =gy =~ (1 - %)2 @l%g@lt ; (4.9)
oy Gt — _ ( _ %)2 Lﬁzgﬁi (4.10)
. <1 - 2) «5:)2)2 in 1D or 2D,
by 050 0 (4.11)
_ S?T);ﬁ in 3D,
by ) — _ <1_ ¢1‘1> @%&ﬁ; (4.12)

the proof of these equations is shown in Appendix A.

We note that the process of factorizing single -site
diagrams as in Fig. 3 also holds for 6y. More generally,
the expedients (i)—-(iv) for counting contributions from
single-site diagrams and the procedure for renormaliz-
ing propagators stated in Fig. 4 are available with
appropriate changes such as & — by, €,—~v,, and 1/d
—~1-1/d. However, crossed diagrams as expressed
by Fig. 5 do not vanish even in a 3D case, so that
recipe (v) is invalid. In a 1D or 2D case, crossed
moment diagrams comprised in Fig., 6 are found to
contribute zero to 5y* as well as to 6¢*.

As the non-self-consistent and self-consistent cumu-
lant solutions we get

yE= J ! <.yz(d-1)1/d(?))/(z(d-l))’/d(r)> dz (4.13)
Jo ’ *
Yé:f ! (yz (d~1)7/d‘r*>/ (Z(d-1)1/41c> dz. (4.14)
0
Besides, Krdner’s approximation provides
2d-1)y- (7>>

= 4.15
(M 419

while the self-contained single-site approximation leads
us to

Y=YEm  \_g
(d - 1)}’ +'YEM
Out of the four approximations v}, y%, v¥%, v¥%x men-
tioned above, v}, alone satisfies the relationship

(4.18)

EumyEn=1, (4.17)

which should be true for the exact solution. Equation
(4.17) means that e}, and vy}, are of the same degree
of approximation, owing to the self-containedness con-
dition that correction terms due to exclusion effects
are self-contained within the approximation under
consideration, 3

Finally we compare merits and demerits of the
approximate effective permittivities e, 1/y¥, €%,
1/v¥, ek, 1/v%, €tu=1/v%y. For a 1D material, 1/y*,
1/vE, 1/v%, and e%y=1/y%, produce an exact result,

e*=1/(1/e)=1/4)

=1/y¥=1/y§=1/vi=1/y¥ =¢cky, (4.18)
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whereas ¥, ef, and e} are not correct in fourth or
higher order. In the 2D problem, it was pointed out in

V that %, =1/v%, is not only the best possible single-
site approximation to the effective permittivity e*=1/y*,
but also it includes contributions from important crossed
diagrams. In fact, both e}, and y %), prove to be strictly
valid up to the fourth order. In a 3D case, crossed
cumulant diagrams comprised in Fig. 5 vanish for &,
so that e} is considered to be the best approximation

at the present stage. As an estimate of y*, however,

we need to employ 1/¢¥ instead of y%, because the
counting rule (v) does not apply to 5y*. Recall that e}

is exact up to the fourth order but y¥ is not true in the
fourth order.

Another merit of ek, =1/y%, for a 2D material is that
it is compatible with the so-called “phase interchange”
theorem. 3" Let us specify by e*(,,¢,) the effective
permittivity of a 2D binary mixture with phase permit-
tivities ¢, and ¢,. The phase interchange theorem
asserts that

(4.19)

where e*(g,,€,) is the effective permittivity when the
constituting phases are exchanged. We have not changed
interphase geometry, but only changed phase proper-
ties. In the 3D case, this theorem can no longer be
applied, though an inequality

e*(e), €)% (€5, €,) = €46,

€Xe,, 6,)%(6,,6,) 2 €46, (4.20)

holds instead of the above equality.!” When the consti-
tuents with €, and €, occupy fractions of the total volume
v, and v,, respectively, the 2D EM solution takes on the
form

= e, —€)(w, —vy) + [(612" €:)° (v, - v,)° +461€2]1/2 . (4.21)
Therefore, it is easy to demonstrate that Eq. (4.19) is
actually satisfied by e%y, =1/y%y but not by ¥, 1/y%,

€k, 1/v%, €%, 1/y¥%. This also ensures the accuracy of
the EM approximation in 2D.

5. PERTURBATION EXPANSIONS IN TERMS OF
THE LORENTZ FIELD

Next we shall develop another type of perturbation
formulation taking account of the fact that the Green’s
function G has a singular point r,,=0. Let us introduce
a kind of Lorentz field such that

_ 8e(r) +d£°E(r): e(r) +(d-1)

[¢]

F(r)= &, &, E(r) (5.1)

and define
_ dbe(r) dle(r) —¢,]

KO = S T de, — @) T (= 1), ° 5.2)
By virtue of Eq. (2.14) or (2. 15) the basic integral
equation (2.12) is converted into

Fi(ry=E}xr) + [ dr A, (v )k (r,)F(r,), (5.3)
or

F=E°+ A«F, (5.4)
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with
Ayyry,)

1
= 251‘1'5 (r) +€0Gij(r12)

1 X s Xeo s
P 2my3, ( Y12 "2 ”) m ’

1 xlz i x12 i 3

— 12,8 T 12,0 5. 3D.
P 4173, (3 Yiz 72 Ou) n

Equation (5.3) or (5.4) is essentially equivalent to

that employed by Brown,”-® Finkel’berg, *>*% or

Davies, *

Analogously to Eq. (2.4), the effective constant «j;
is defined by

Kk (®)F () =k F{F () (5.86)
which, for a statistically isotropic medium, gives
_odde* dle* —ep)
K*‘ée*+d£0_6*+(d-1)eu' (5.7
Formal interation of Eq. (5.4) shows
K* = () + [ Ak) — ROAG) ] + [k Ak ey — (e Aoy Adk)
= GOk Ake) + RO ARIAG)] + - - -
= (i) + K AkY, + [ A )+ kA ) M)+ <
= ik(”), (5.8)

In the completely random case, leading terms of «*
up to fourth order are expressed as follows:

1
K@ = fdrz(’d‘éi(i)é(rm) +€oGi(i)(r12)> (ke (r, Dk (r2)),

:(K2>c<:'i - /dr12 alﬁgff:‘f)] :}{1(:1(2:)) =0, (5.9)
K@D =0, (5.10)
(32 — 1 (1 - 1)(,{2) &, (5.11)

d a MWDo
K@D =0, (5.12)
K02 = 43— (5.13)
K4 =0, (5.14)
0 in 1D or 2D,
(45) — (5.15)
%{%—i in 3D,
K48 = _ (1—1 (1 - :—i) (1 - Z)<K2>°<K>2°’ (5.16)

whose detailed derivation is presented in Appendix C.
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Equations (5.11) and (5.16) suggest that the decom-
position law as shown in Fig. 3(b) is not available to «.
Unfortunately, therefore, contributions from nested
diagrams cannot be evaluated by using the rules
(i)—(iv) elucidated in Sec. 3. However, it is easily
seen that every single-site diagram vanishes when
),={ky=0. Choosing e,=¢* we obtain

k% ={k),=0, (5.17)

k¥ ={K)=0; (5.18)

in other words, the self-consistent cumulant solution
k% proves to agree with the EM solution x§y. Because
of the self-containedness of the approximation involved,
kEy might be expected to provide the same result as
that of e¥y or y%y. Actually, the combination of Eq.
(5. 2) reproduces Eq. (3.34) or (4.16). Moreover, it
follows from Eq. (5.15) that crossed diagrams illus-
trated in Fig. 5 contribute zero as far as the value of
k* for a 2D material is concerned, This implies that
kE=xr¥yand so efy and vy give very accurate esti-
mates, thus confirming that the self-contained single-
site theory for ¢* and y* serves as a better approxima-
tion than the cumulant expansion method in 2D systems.

Unless we set e,=¢*, on the other hand, we arrive at
worse approximations than ¥ or «%,. In this case,
Egs. (5.17) and (5.18) must be replaced by

Kk* =), =) #0, (5.19)

which corresponds to Egs. (3.28) and (3.32). The ex-
pression (5.19), together with Eq. (5.7), gives

€—¢€, €—€

X -6,
e*+(d—1)eo—<e+d leo>c <€+(d_1)€0>, (5.20)

€= <e - 1)60)/<e T (dl— l)eo>°

If we interpret ¢, as the permittivity of a particular
phase of the material under investigation, say the
permittivity of a matrix of a suspension, Eq. (5.21) re-
duces to the famous Maxwell—Wagner formula®:4 in
the classical theory of dilute suspensions. Of course,
this formula was originally proposed as an approximate
solution in the dilute limit, but Eq. (5.21) was found

by Hashin and Shtrikman*’ to give an upper or lower
bound for the effective permittivity of a multiphase
medium, when ¢, is the maximum or minimum of the
phase permittivities, Meanwhile, the result for e¢,= (),
that is,

€p= <e s 1)<€>>/ <e + (dl— 1>@>

agrees with the optical potential approximation dis-
cussed in the subsequent sections.

or

(5.21)

(5.22)

6. 7 MATRIX EXPANSIONS

Although T matrices have been widely used in the
quantum mechanics of disordered systems, it seems
that there have appeared only two attempts to handle
classical mixtures by means of T matrix expansions;
one is an approach to the continuum problem made by
Dederichs and Zeller®!! and the other is an analysis
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of the network problem due to Kirkpatrick® (see also
Blackman??). The aim of this section is to clarify the
meaning of the T-matrix expansion in our formulation
and to demonstrate the relationship to the expansions
derived in previous sections. By repeated application
of Egs. (2.20) and (2.21) we have

T = 8¢ + 5eGbe + 5eGoeGde + < - »

=5e(1 - Ge¢)! 6.1)
(T)={(8¢) + (5eGBe) + (5eG5eGBe) + + +
= 6e* + 5e*Gde* + 5e*Goe*Gde* + - - -
= (5e(1 — Gbe)™') =be* (1 — GBe*)™!, 6.2)
or inversely,
8e* = (T) — (TYG(T) + (TYG{T)G{T) — - - -
=(T)(1 + &(TH™ (6.3)

It is interesting to note that the self-consistency condi-
tion 8e* =0 is equivalent to the statement {T)=0.

In analogy with the 7' matrix for the whole system,
we define a T matrix £, for a single cell o as

t,=06¢, +0e Gt =be (1 - GSe, ), 6.4)

where 8¢ =3 ,8¢,. Then, the familiar T matrix expan-
sion in the multiple scattering theory becomes

T= Zt +22t Gty +222.20t,Gt,Gt, + -

a#Bty

(6.5)

each sum being taken so that no two successive sub-
scripts are equal. From Eqs. (6.3) and (6.5) we find
(T)= Z(t >+EL<t oOtg) + 222025t GtGt,) + - -
a#BEY
(6 .6)

and

Be* =23 (t,) - (2? (ta)G{t) - DX <taGtB>)

aBy o B£Y

(EZZ (GG, - DT 5 (£ )GE,GL,)

—EEZ(taGtB>G<ty>+222(taGtﬂGt,>) -

a#By a#B#y

6.7)

In full notation t, is expressed as

ta, ij(ru ry)= 5e*d, ;k (P )8(r ;) +8e% o (r))

X [ dryGo,(r)ty i (Ts, ). (6.8)
Integration of Eq. (6.8) with respect to r, gives
to,ii(t)= [ dryt, (v, T,)
=0e% (1 )5, + 8% (1))
X [ dr,Gu(r )ty (x,).

In Appendix D we establish that for ellipsoidal or
elliptic cells

ta t.l( 1)

(6.9)

Fa, 155 olr)), (6,10)
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~ 5€a -1
to,:;=0¢ (6 + Ly~ ) . (6.11)
0

If the medium is completely random, the result is
simplified to

0‘ lJ(rlyr ta ”( )5(1‘12)
=t~a6,~,-£a(r1)6(rm), (6.12)
with
~ se®
t, = b€ /(1+a€0) (6.13)

Comparing Eq. (6.13) with Eq. (5.2) we conclude that
the factor f, in the T matrix substantially represents
the quantity « in the cell o,

In the completely random case the expansion series
(6.7) is transformed into

e =2 - DG + (z (€,GE,GE,)

~ LA GEGE) + 220G aGt'BGta)> -
a#f a#f
(6.14)

which is readily verified by means of Eq. (6.12). Here

the bar indicates an average over the phases of a single
cell according to their frequency. This average is taken
only over the material properties of cells; for instance,

E ,:](rl’ <Zla>6ijg a(rl)é(rIQ)' (6‘15)
As an explicit form of Eq.
Se* =y — (&) | dr,G,)(r),)d

(6.14) we can write

ri2
+<<BB J [ aryar, Gi(r12)Gy(5)(T25)0 1,0,

‘<Z>SJ j dr,drs Gy, (015)Gy (5 (Py)0

T3

X( 1‘12)+<T2 <t>j J dr dl‘ Gw(rlz)

X Gpiy (T2l (1 —6,12))—---, (6.16)

making use of such relations as Eqs. (2.32)—(2.43).
We remark that the 7 matrix expansion (6. 14) is valid
even for ellipsoidal or elliptic cell materials if every
term is integrated over r, (refer also to Ref. 9).

The first approximation to 8¢* in Eq. (6.14) will be

8e* =2,(,), oe*=(D), (6.17)
yielding
(d+1) —€,
e*—¢ <E Y1) > (6.18)

This is just Krdner’s approximation (3.33) in the case
of €,={). As the next step we make the approximation

66* :Z <Ea> - Z <t-aGt_a> + Z; (t-aGEuGEm> -

=&, +GE)Y. (6.19)
The above assumption is equivalent to
_ DO _ )
=B+ et <z>/(1_——) (6.20)
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which implies Eq. (5.21). The approximation (6.19)
when e, =(¢) is called the optical potential approxima-
tion®!! and gives an identical result with Eq. (5.22).

Lastly let us choose ¢,=¢* so that 6e* =0. Then
Egs. (6.17) and (6.19) become

2.&,)=0, (6.21)
&0 +Gt) =0, (6.22)
both of which lead to

we have thus obtained Eq. (3.34) again. As a matter of
fact, many terms entering in Eq. (6.14) vanish under
the condition t—a=0. In particular, all terms up to the
third order contribute nothing, while there is only one
possible nonzero term in the fourth order. That is to
say,

e = (F22 [ [ | dr,dr,de, G, (r)Gplry,)

XGh(i)(r34)5r136r24(1 _61-12) LR (6.24)

Analogously to the calculations in earlier sections, it is
shown that this leading term amounts to zero in 1D or

2D and to (?7)2/2763 in 3D. For a cell material consisting
of ellipsoids or ellipses, nevertheless, it must be
noticed that third-order terms 35 o4, Gf ,Gt,) cannot be
discarded, because the integral of £, rather than f,

itself is equal to zero. In addition, we may point out

that the arguments based on T matrix expansions

are applicable to the reciprocal permittivity &y* as

well as the permittivity de*,

7. VARIATIONAL TREATMENTS

We now turn to a discussion of variational methods.
Variational principles have been repeatedly employed
to obtain upper and lower bounds for the effective prop-
erties of inhomogeneous materials. Since different
approaches including our work in II have recently been
made, %'1:1416,18,28 we shall mention here the main re-
sults and add a few comments.

The statistical variational principles usually adopted

are as follows? 1!
j de(E (eNeFE (1) < f dr E4(n)e(r)E4(r)), (.1
f dr (D (v} E (1) < fdr (DHr)y (r)DA(r)), (7.2)

where the superscript A refers to a trial function. In-
stead of a boundary condition we impose the require-
ment that any trial function must have the same aver-
age as the true function., Denote by XY the spatial
average of the inner product of the two vectors X and
Y; in a 3D case, for example,

1

XY= % drX (0)Y (r). (7.3)

Then, the inequalities (7.1) and (7,2) are expressed as
(E)-€*(E) < (E* -€E4), (7.4)
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(D) -y*D) < (D*.yD4), (7.5)

Dederichs and Zeller®:!! have introduced random
operators P and Q such that

EA=P(E), P=1+G8P, (7.6)

DA=Q(D), Q=1+TI5Q. (7.7

In order that these equations actually give trial func-
tions, it is sufficient that

®Py=0, (5Q)=0. (7.8)
Substituting Eq. (7.6) into Eq. (7.4) we find
(EY-e*(E) < (E) - (P%eP)E). (7.9)

Here the dagger indicates an adjoint operator; namely,
(7.10)

Since the inequality (7.9) holds for any (E), we may
write symbolically

e* < (P'eP),

P?ij(ru r,) =P (1, 1,).

(7.11)

which means that every eigenvalue of e¢* is smaller
than or equal to the corresponding eigenvalue of
(P'eP). Similarly,

< @QYQ). (7.12)

The above two inequalities enable us to derive upper
and lower bound on €* (=y*1); the breadth of gap
between the bounds depends on the choice of §P and

5Q.
(i) The simplest assumption we can make is
5P = 0, 5Q =0,

As shown in II, this leads to Wiener’s elementary
bounds

(7.13)

EN<ex< @), O syr<@). (7.14)
(ii) Next we choose
8P =¢'=e - (), 8Q=y" =7~ (7.15)
or equivalently, we suppose
E*=(E)+E® =(E) + Ge'(E), (7.16)
D*=(D) +D® =(D) + Iy'(D), (7.17)

where E? and D™’ have been defined in Eqs. (3.4) and

(4.1). In Appendix E it is proved that
-G%G=G'=G, -y I'=I"=T. (7.18)
Therefore, insertion of Eqs. (7.15) into Eq. (7.11) and

(7.12) yields
€* <) +{'Ge") + ' Ge'Ge”), (7.19)
Y@+ @' TY ) + o' Ty'Ty').

The right-hand sides are just the perturbation expan-
sions of €* and ¥* up to the third order.

(7.20)

(iii) In place of Eqs. (7.16) and (7.17) we utilize
the trial functions

N
oo Wy _
+EWY— EE("),

n=0

E*=(E)+E® +. (7.21)
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N
DA=(D)+DW +:..+DW =3 D, (7.22)
n=0
which, for N=2, imply
8P =¢’ +€’Ge’ - €'Ge’), (7.23)
5Q=y"+y'Ty' - /'Iv'). (7.24)
In the same way as we did in (ii), we obtain
€* <) +e' D) oo g BN (7.25)
YA OR S AR S 2 (7.26)

here, for instance, ¢’ is taken to be the value of

8¢ when €,=(). Consequently, it is concluded that a
finite perturbation series of €* or y* terminated at odd
order provides an upper bound (for details see II and
Ref. 9). Needless to say, a lower bound for €* is de-
rived from the expansion series of y* =¢*~* up to the
(2N +1)th order.

(iv) The previous bounds can be improved by the in-
clusion of a set of adjustable constants {3} and {u,}
such that

=(E) +ED +... 4 EW (7.27)

(7.28)

The multiplicative constants are to be chosen to mini-
mize the upper bound when Eq. (7.27) or (7.28) are used
as an admissible solution. The cases of N=1 and 2

have already been investigated by several
authors, 2:9:11,14,16, 18,2830, 48-50

=(D)+p,1D(”+---+uND(N’.

For simplicity consider the case of N=1, which
corresponds to assuming that

8P=x,e, 8Q=p,y". (7.29)

Analogously to Eqs. (3.17) and (4.17) of II, and Egs.
(2.28) and (2.29) of V, then, we have for the eigen-
values €f and v} (=1/¢})

- AR/ ()?)?
e¥ <) (1 - A§2)<€’2>/<€>2 +A§3)<€'3>/<€>§) (7.30)
* < (B2 &)
=0 (1 g hlersiyey) . 0

The coefficients A{®, A B® B are the eigenval-
ues of

AR =i/ ™/ E)

€
€%

AR =€ (Y €)

_ e?
= ze—,derz fd!‘
X' (x))e’ (r)e’ (r,)),

v/ '3/ o)

=~ % dar, ru(rxz)(?’(rl)‘y’ (),

dr, Gt )" (r))e’ (ry)), (7.32)

#(T12) Gy (Y33)

(7.33)

(2)
B® =_

(7.34)
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B{Y =—vi®/ &'/ &P

= (3_’)3“) fdrzfdrBI‘ﬁ(ru)Fu(rm)
X' (e )y (v (T,)). (7.35)

We remark that Eq. (7.31) gives a lower bound on e¥,

1 2 ((1/e)®) )2
SRV [ - (Bg ' ey

2 (/) g, (/YD i) -
x (8@ e +B{® <1€>3) ] ’

somewhat different in form from Eqs. (4.17) in II and
(2.29) in V.

(7.36)

If the medium is statistically isotropic, Eqs. (3.16)
and (4.4) show that A®? =1/d and B®=1_-1/4. For a
symmetric cell material or for a two-phase material,
we have B2 =5,,~A{® and B{Y =5,,- 24 + A [use,
Egs. (2.25), (7.34), and (7.35)]. For a spherical-cell
material with A®® =1/4% and B® =(1 - 1/d)?, further-
more, the bounds are expressed by

* < €%/ )

e (1‘ A/ ey +(e)3> ’ (7.37)
* < oY o)

e (1 T A/ -1 7+ <y'3>/<y>s) : (7.38)

Especially when the system consists of two phases
with permittivities ¢, (=1/y,) and ¢, (=1/y,), these
inequalities reduce to

e, —€,)v,0,

* <, Few, -
S e [Tk T, e, S TR

(7.39)

and

(d-1)y, - 72)2")1”2
[’Y1 +{d- 1)'}’2]7-)1 +la- 1)y, +7’2]Uz ’

(7.40)

y* S0y v, -

the latter being transformed into

e* =z €6, (ezv1 +e,v,

(7.41)

_ {d-1)e, —€,) v,0, -1
[ld=~1), +e,Jv, +e, +(d - l)e;j§2)
{(v) Another type of trial function applicable to sym-
metric cell materials is

8P =2, -t )1 +GEt)". (1.42)

According to the arguments advanced by Dederichs and
Zeller, %' the use of this trial function results in

e* < (&) + 2, (1 +Gt) ), (7.43)

whence the bound thus presented agrees with the optical
potential approximation (6.19). Defining the T matrix
t, for v as well, we get a similar expression

y* <@y + 20 &0 +TEY™, (7.44)

which provides us with a lower bound on €*. The in-
equalities (7.43) and (7.44) reduce for a spherical-
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cell material to

e < <e T 1)<e)> / <e +d -11)<€>> ’
Vs <(d-1>yy+<v>> /<(d-11”+<7>>°

In the case of binary mixtures, Eqs. (7.45) and (7. 46)
coincide with Eqs. (7.37) and (7.38), respectively;
for Eqs. (7.45) and (7.46) in fact yield Egs. (7.39)
and (7.40), Notice that this coincidence is only acci-
dental and occurs neither for more-than-two phase
materials nor for nonspherical cells.

(7.45)

(7.46)

(vi) Upper and lower bounds for the effective permit-
tivity e* of a statistical isotropic material were de-
rived by Hashin and Shtrikman*+®* and Prager®® without
knowledge about correlation functions. Hashin and
Shtrikman*’ found that their bounds for a two-phase
mixture are the best possible in terms of phase permit-
tivities and volume fractions alone. In order to rede-
rive the Hashin—Shtrikman bounds, Dederichs and
Zeller®!! proposed an admissible solution

8P =(7 = {TNHA+G(TN, (7.47)
where
G =-1/de, (7.48)
T =8e+8e( T =be (1 + 3—:)-10 (7.49)
0

As a matter of fact, it is not difficult to show that
Eqs. (7.47)—(7.49) lead to

er < <e + (de— l)eo>/<e + (dl— 1)eo> ’

whenever ¢(r) <e,. Similarly, for the reciprocal per-
mittivity y* =1/¢*,

7= (= N +y0>/<(d— i )

if y(r) sy,. Hence the lower bound on €* is

¢ <€ - 1)€0>/<e +(d1— 1)eo>’

provided that e(r) = ¢,. If we take ¢, to be the maximum
or the minimum of the phase permittivities, it is con-
firmed that the Maxwell—-Wager formula gives an upper-
or lower bound on €*,

(7.50)

(7.51)

(7.52)
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APPENDIX A

Consider a two-phase material with phase permitti-
vities ¢, and ¢,, and introduce an indicator 5 (r) such
that n{r)=1 or 0 according to whether the point r belongs
to the first or the second phase. Then we get

5e(r) =e(r) — e, = (€5 ~ €,) + (e, — €1 (1), (A1)
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so that
{Be(r,)5e(r,) - « - be(r,)),
=(€1 —62)"(7] (rl)ﬂ(rz) . 'T’(rn))c’ (A2)
and
((Be)D = (e, —€)"™) (A3)

Thus from Eq. (2. 30), it follows that the correlation
function f(ry;, Xy, .0, Fyy ) is determined by the phase
concentrations and geometrles independently of the
permittivities e, and ¢,. This conclusion is a generaliza-
tion of the statement given by Schulgasser,!® who argues
the three-point correlation alone.

APPENDIX B

It is a simple matter to establish Eqs. (4.6)—(4.9)
and (4.12); as an illustration

5'}’(3'1)

= [ ar, [ dr,

X Gy (r )5y (r,)8y (),

T (£12)T 5y(T25)

={(67)%), f dry, Ty(r,)0

T2
X [ dry, Tpay (Fa3)B5,
= (1— (11) (Y273, (B1)
6,),(3,2)
=<(57)2>c<57)cfdr12 _/;irzsrik(rxz)
X Ty (T2)by
_ (Br)3) 7)), (1

Yo
!
,)72(; dr1z drzs Gik(rlz)Gk (i)(r23)5r12¢r23)

- (1_ é) <<ay>i>gg<al>£ .,

2
+ .;; fdrlzci(i)(r12)5r12

(B2)

We now turn to a calculation of 5y %, By definition,

Sy W =6y ) [ dry, [ dvyg [ drs, Ty(r,,)T,, (5
xrh(i)(rs4)5r145x~23 (B3)

Asg in III—V, the null function 5, will be taken to be the
limit of a characteristic function I,(7) that assumes the
value 1 or 0 according as »=p. By reference to Egs.
(4. 3) in I and (4.19) in V we introduce

Jp,ij(rza) == /dr1zcij(r12)1p(713)

x : X
Colrzs) 28ed T80t 4., (5, (B4)
23 23
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where

0 for r<p,
Cp('rzs) = (B5)
-p%/ ¥ for r>p,
1/d for r<p,
D, (ry) = (B6)
pt/dvi, for r>p.
The formula corresponding to Eq. (C4) in III is
Jo, ij(rzs) == j ar, Gik(rm)Jp,kj(rm) o (BT7)
Making use of Eqs. (2.25), (B4), and (B7), we have
2 2\2
Sy @Y =_1lim (1 - l) <—(§l3)—>—c
030 d Yo
1 2 1 (7,5)C,(7,3) )
x (1_ Lo\ 23/ p\ Va3 . 8
<1 1-1/d / V23 @2 (B8)
Q

Substitution of Egs. (B5) and (B6) into Eq. (B8) yields
67)2>2
5 (4,4) _ _ (1 ) <(
Y 7 7’0

The procedure to evaluate 5y 5 goes in like manner,
The term 5y “* is given by

(B9)

Sy 5 = ((5'}’)2>i f ary, f dra; / dry, I’ (r12)

XTI h(rzs)rh(z)(r34)6r13 r, ° (BIO)

Converting I" in Eq. (B10) to G, we obtain for the 3D
case

sy 45 = _1im <(5')’) Q (1 2/ Q(Tzs)cg('yzs) ar, )

pYO

__ ()2
=- 5 (B11)

In the 2D case, the result is

6'}’(4'5) — 11m <(67;) >g (

230

e(rza)c e(’rgg) d )

723

_ ey

. B12
THyT (B12)

The validity of Eq. (4.11) when d=1 is almost evident,
because 5y* =(5y) in 1D,

APPENDIX C

Analogously to the proof of Eqs. (4.6)—(4.12), we can
prove Egs. (5.10)—~(5.186); it is only necessary to use
Eq. (5.5) instead of Eq. (2.25). By way of example let
us show the results for x| @) (L 45,

K(s'”:<‘f3>cf drlzfdrzaAik(rm)
XAk(i)(rga)ér 6!'
=4, [ dry, 1k(r12)6

=0

f dry; A, (n(rzs)5

’ (C1)
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G2
(32 = (l(z>c(,<>ﬁ/dr12'/'dr23 A1) By (22000,

=4 ), (dz R drlZGi(i)(r12)5r12

te /‘lrm fdrzs Gm(rm)Gﬁz(i)(rzs)ﬁr1
3

1 1
=3 <1 - 2) &) K)o (C2)
@0 = 2>2 /drlzfdrzsfdrze (i), n(T23)
XAh(i)(rM)6r145r23
_.hm (K%, [ 3)C 723)
=0 in 3D, (C3)
k%Y =0 in 2D, (c4)
1) = (2)? /drlzfdrza/dr34Aik(rl2)Akh(r23)
XAnm(raq)&rmﬁrM
2\2 *©
—tim % (146 [ Bl 4,
o0 27 Y3
(22
k%5 =0 in 2D, (C6)

In contrast to the 3D case, Egs. (C4) and (C6) hold
regardless of the form of I(,5) or C,i{r,,).

APPENDIX D

Substituting Eq. (6.10) into Eq. (6.9) we obtain

tNa.iJE ofT) =0e% (r,)5, +66°‘ta rit ally)

x j dr,G Tyt o1, o1

According to Egs. (3.13) of I and (3.6) of V, it holds
for a cell material composed of uniformly oriented
ellipsoids or ellipses that

£4(ry) f dr, G, (r )t o (r) = - I—;&E (). D2)

This leads to

~ -3 ~

6(—:
bo,i;=0€" o ~Lipto s (D3)

from which Eq. (6.11) follows. Since the solution of
Eqg. (6.8) is unique, the proof of Egqs. (6.10) and (6.11)
is completed. Esgpecially for a completely random
material, the depolarization tensor becomes L;;
=6,,/d and ¢ ,(r,)¢ ,(r,) vanishes unless r; =r,. From
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Egq. (D2), thereupon, we find
ga(rl)cik(rl2)£ a(r2) == %Emi a(rx)é (rlzl- (D4)

In this case, insertion of Eq. (6.12) into Eq. (6.8) gives

66(1 ~

f,=0€%~ E;—ta, D5)

which implies Eq. (6.13).

APPENDIX E

Equation (7.18) is a dielectric analog of Eq. (31) in
Ref. 11 and has already been used implicitly in II. In
full notation we can write G',G as

fdr Gl (r13)e0Gy;(T5)

a2 dg(ry,) dg(rs,)
— T 31 32
fo ax, iaxz,j/:i 80Xy, O%s, (E1)

By integration by parts the right-hand side is trans-
formed into

az
T fdrSg(rIB) HZ,
=€ 57 8%, 0%, /drag(rla)ﬁ(raz)

== Glry,)=-Gl(r,). (E2)
Similarly,

f dr, rzk(rxs)?’orkj(rsz) =-T,{r,)= rIj(rm)' (E3)

1M, Hori, J. Math. Phys. 14, 514 (1973).

M. Hori, J. Math, Phys. 14, 1942 (1973).

%M. Hori and ¥. Yonezawa, J. Math. Phys, 15, 2177 (1974).
4M. Hori and F. Yonezawa, J. Math, Phys. 16, 352 (1975).
M, Hori and F. Yonezawa, J. Math. Phys. 16, 365 (1975).
6M. Hori, J. Math. Phys. 16, 1772 (1975); 17, 598(E) (1976).
"W.F. Brown Jr., J. Chem. Phys. 23, 1514 (1950)

8W.F. Brown Jr., Trans. Soc. Rheol. 9, 1, 357 (1965).
°p,H. Dederichs and R. Zeller, Kernforschungsanlage Jiilich
Berichte JUL-877-FF (1972).

WR. Zeller and P.H. Dederichs, Phys, Status Solidi B 55, 831
(1973).

1P, H, Dederichs and R. Zeller, Z. Phys. 259, 103 (1973).

12, Kr8ner, Int. J. Eng. Sci. 11, 171 (1973),

133 Korringa, J. Math. Phys. 14, 509 (1973).

14M. A. Elsayed and J.J. McCoy, J. Compos. Mater. 7, 466
(1973).

15w, F. Brown Jr., J. Math. Phys. 15, 1516 (1974).

186M, A. Elsayed, J. Math. Phys. 15, 2001 (1974).

1K Schulgasser, J. Math. Phys. 17, 378 (1976).

8K, Schulgasser, J. Math. Phys. 17, 382 (1976).

19, Hori and F. Yonezawa, J. Phys. C 10, 229 (1977).

5. Kirkpatrick, Phys. Rev. Lett. 27, 1722 (1971).

g, Kirkpatrick, Rev. Mod. Phys. 45 574 (1973).

2B P, Watson and P. L. Leath, Phys. Rev. B 9, 4893 (1974).

28R, B. Stinchcombe, J. Phys, C 6, L1 (1973),

R, B, Stinchcombe, J. Phys. C 7, 179 (1974).

253 .W. Essam, C.M. Place, and E, H. Sondheimer, J. Phys.
C 7, L258 (1974).

263, A. Blackman, J. Phys. C 9, 2049 (1976).

213 E. Molyneux, J. Math, Phys. 10, 912 (1969).

Motoo Hori 500



83.E. Molyneux, J. Math, Phys. 11, 1172 (1970).

M, N. Miller, J. Math. Phys. 10, 1988 (1969).

$0M.N. Miller, J. Math, Phys. 10, 2005 (1969); 12, 1057
(1971).

g, Krbner, J. Mech. Phys. Solids 15, 319 (1967).

32F, Yonezawa, Prog. Theor. Phys. 40, 734 (1968},

3D, A.G. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935).

34C.J.F. Bbttcher, Recl. Trav. Chim. Pays Bas 64, 47 (1945),

3V.1. Odelevskii, Zh, Tekh, Fiz. 21, 678 (1951),

%R, Landauer, J. Appl. Phys. 23, 779 (1952).

3'E,H. Kerner, Proc. Phys. Soc. (London) B 69, 802 (1956).

¥M.H. Cohen and J. Jortner, Phys. Rev. Lett, 30, 696
(1973).

%J.B. Keller, 3, Math. Phys. 5, 548 (1964).

403 E. Flaherty and J.B. Keller, Commun. Pure Appl. Math.
26, 565 (1973).

501 J. Math. Phys., Vol. 18, No. 3, March 1977

4K 8. Mendelson, J. Appl. Phys. 46, 917 (1975).

42y M. Finkel’berg, Zh.Eksp. Teor. Fiz, 46, 725 (1964) [Sov,
Phys. JETP 19, 494 (1964)].

43y, M. Finekl’berg, Zh. Tekh. Fiz, 34, 509 (1964) [Sov.
Phys. Tech. Phys. 9, 396 (1964)].

4w E.A, Davies, J. Phys. D 4, 318 (1971).

453, C. Maxwell, Treatise on Electvicity and Magnetism (Ox~
ford U.P., London. 1904), 3rd ed., Vol. 1, p. 440,

4K, W. Wagner, Arch. Elektrotech. Berlin 2, 371 (1914),

417, Hasin and S. Shtrikman, J, Appl. Phys. 33, 3125 (1962).

48M, Beran, Nuovo Cimento 38, 771 (1965).

4°M. Beran and J, Molyneux, Q. Appl. Math. 24, 107 (1966).

S0M.J. Beran and N.R. Silnutzer, J. Compos. Mater. 5, 246
(1971).

51Z. Hashin and S. Shtrikman, Phys. Rev. 130, 129 (1963).

525, Prager, J. Chem. Phys. 50, 4305 (1969),

Motoo Hori 501



On invariance groups and Lagrangian theories
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The problem of determining the Lagrangian theories whose equations of motion are invariant under a given

transformation group is formulated and studied.

1. INTRODUCTION

It is known that, for a mechanical system defined
from a Lagrange function, the invariance of the equa-
tions of motion under a transformation group does not
necessarily imply the invariance of the Lagrangian. 14
The reason is found in that the equations of motion re-
main unchanged if the Lagrangian is modified by the
addition of a total derivative with respect to time. So,
invariance is preserved if, under the action of any ele-
ment of the group, the transformed Lagrangian only
differs from the original one by such a derivative. By
writing the conditions expressing the group law we find
an interesting structure in which the basic equations
were established in Ref, 2. The invariance of the
Lagrangian up to a derivative at first implies the
existence of a “gauge function” defined on the product
G x M, where G is the group and M is the configuration
space including the time. The group property then
furnishes a functional equation to be satisfied by any
gauge function and depending on a second function de-
fined on GX G, This last function must, in turn, obey
another functional equation which is identified as the
functional equation of what is called “exponents” (or
2-cocycles) of G.° These exponents are related to the
central extensions of the group G.

It follows that the problem of determining the La-
grangian systems invariant under a given transforma-
tion group requires the successive solutions of the above
functional equations, starting from the exponents to end
with the Lagrange function, In these questions, which in
fact belong to the domain of cohomology theory, some
partial answers and examples are already known, =%
Here we intend to examine the whole of the problem as
directly as possible, We limit ourselves to the case
where the configuration space is a C” manifold and G a
Lie group. The equations will be solved only locally
both on the group and on the configuration space. This is
not necessarily a restriction because a local Lagrangian
may lead to equations of motion which have a sense
everywhere in the configuration space except for singu-
larities, and an example of such a situation will be
given, Moreover, the construction of conserved quanti-
ties by Noether’s theorem only needs the invariance
under a local group.

In Sec. 2 the equations defining the problem are estab-
lished. Section 3 is devoted to the equation for the ex-
ponents; after introducing some differential forms from
any exponent, we reciprocally deduce a general formula
giving the local exponents in terms of the closed left
invariant 2-forms on the group. The local gauge func-
tions are examined in Sec. 4; for transitive groups, by
an alternative reasoning as that of Ref. 2, a complete
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solution is given, while for intransitive groups the prob-
lem is reduced to the solution of a system of partial dif-
ferential equations. Section 5 deals with the determina-
tion of the Lagrange function. Finally we show in Sec.

6 that the conserved quantities given by Noether’s the-
orem generate an algebra which is identical to the cen-
tral extension defined by the associated exponent, and
in Sec. T we give some new examples,

2. BASIC EQUATIONS

The space of the “events” ({,¢), where g belongs to
the configuration space of the system, is denoted by M
and assumed to be a C* manifold. A group G is also
given which is a Lie transformation group of M; the
transformed element of x € M by w < G will be denoted
by x“,

Let L(x, x) be a Lagrangian describing the system,
where x € M and X corresponds to the derivative dx/ds
with s an arbitrary parameter; the function L is a homo-
geneous function of the first degree with respect to X,
One knows! that the equations of motion are unchanged
if (and only if) one replaces L by a function of the form

Lo, %) =L{x,%) +A ), 2.1)

in which A is an arbitrary real function and A is defined
by

A(x):yé’*a—i;A(x), @.2)

the quantities x* representing the coordinates of x in
any chart on M. For these equations being derived by
the action principle one immediately sees that equiva-
lent equations are obtained for the variables x“, with
w fixed, if one uses the transformed Lagrangian L,
which is defined by

L, (x%,2%)y=L(x,x), (2.3)
where the variables ¥ are given by the formula
SWYR _ i d wyk
eyt =xt =g ) (2. 4)

Invariance of the equations of motion under the action
of the group G means that the variables x“ obey the
same equations as the variables x; thus the equations of
motion will be invariant under the group G if a function
A¥(x) exists such that

(L, =L YweG (2. 5)
Aw
or, explicitly,
P .
L{x,x)+A“(x®)=L(x",x%). 2.6)

By writing this condition for w =ww, and using the
group law, one easily finds
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A[A“192(x) - A¥2(xT") = A1(x)] =0,

where the differentiation operates on the x variable, An
integration then gives

A“12(0) = A22(x¢T) + A1(¥) = My, wo). (2.7)

This last equation imposes some restriction on the
function A: Expressing the equality A‘“192793=A%1{293)
one obtains

Awy, Waws) = AMwiwy, wg) = AMwy, wg) ~ AMwy, wy).  (2.8)

From (2.7) and (2. 8) one derives the equalities
AS(x) = (e, w) = Mw, €)= e, ),

where ¢ stands for the neutral element of G, Next, one
observes that the preceding equations are left unchanged
if one replaces A by A - Afe,e), and A by XA — e, e); so
one may impose the conditions

A%(x)=0, (2.9)

e, e)=0. (2.10)

A real function satisfying (2. 8) and (2. 10) will be
called an exponent® (or a 2-cocycle) on the group G, and
a real function satisfying (2.7) and (2. 9) will be called
a gauge function on M associated with X.? We are in-
terested in the problem of determining the Lagrangians
leading to equations of motion invariant under the group
G. For that purpose we have to solve successively the
Egs. (2.8), (2.7), and (2. 6). In what follows, the solu-
tions will be given only locally as well on the group G
as on the space M, and we shall refer to them as local
exponents or local gauge functions, In fact we are only
interested in determining the classes of Lagrangians
modulo a transformation such that (2. 1) is satisfied.
Two functions A“(x%) differing by an expression of the
form

k(wy x)=¢(x) - ¢(xa.|) - }J-(CU),

lead to equivalent Lagrangians and will be called equi-
valent gauge functions.? The associated exponents then
differ by the function

2.11)

2.12)

and will be called eguivalent exponents (modu).> An
exponent or a gauge function equivalent to zero will be
called trivial.

“(wlwz) e U-(wl) - “(wz)

3. CONSTRUCTION OF LOCAL EXPONENTS

We restrict ourselves to the case of continuous
exponents. In fact this amounts to considering only C~
exponents in view of the theorem of Bargmann® which
asserts that, on a Lie group, any continuous local ex-
ponent is locally equivalent to a C* one; moreover, if
A=0 (mody) is a C” local exponent, and if p is con-
tinuous in the neighborhood of e it is also C* in some
neighborhood of e. We begin by associating some differ-
ential forms to any C* exponent A; if A is only a local
exponent, subsequent results remain valid in a neigh-
borhood of the neutral element. The left and right trans-
lations by we G will be respectively denoted by v, and
&, and the symmetry w — w ' by S; if X is a left invariant
vector field on G, the transformed® X=-$ X is right
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invariant and coincides with X at e, X, =X,, and the
brackets are connected by the relation

x, v]=-1%, 7. (3.1)

Let us now write the Eq. (2.8) for w;=w, w,=exp(tX),
and w;=w’. Taking the derivative with respect to ¢,
at {=0, we obtain

(X' = X (w, 0’ ) =3 (X)(w) - 2(X)(w'), (3.2)

where X’ represents the vector field X acting on the
variable w’ and where we have put

<I>(X)(w):gz>\(w,exth) :X’)\(w,w’)‘ . (3.3)
=g

t=0

3(X)(w')= a%x(exth, ')

=)Zh(w,w’)
t=0

(3.4)
w=g
If w (resp. ®') is held fixed, the last member of (3.3)
[resp. (3.4)]is a linear form on X, (resp. X, and it
then defines a differential 1-form & (resp. &), We
easily see that ¢ and ® are C*. From (3.2) we now
deduce

Proposition 3.1: The following 2-forms:

F=-24%, F=2d$, (3.5)

are respectively left invariant and right invariant and
connected by the symmetry F=S*F,

Proof: Let ¥ be a left invariant vector field. By
applying Y’ - Y to Eq. (3.2), antisymmetrizing with
respect to X and Y, and using (3.1) and (3.2), we find

- (Xe(Y) -~ Y&(X)- o (X, ¥]),,,
=(X&(7) - YX) - &([X, TD) e s;

that is
F(X,Y),,=F(X,Y)

(w?)*

Since w and w’ are independent variables, the two
members of this last equation are some constants that
evidently express the left (resp. right) invariance of
F (resp. F). The same equation then means that each
of F and F is transformed into the other by the sym-
metry S.

The 2-forms F and F are therefore closed and left
or right invariant. They may be characterized as
follows:

Proposition 3.2: Let {X_} be a basis of the Lie alge-
bra of G, let{¢*} (resp. {£*}) be the dual basis of {X,}
(resp. {X,}), and let C%, be the associated structure
constants.

(1) The 2-forms F and F are of the general form
F:Fasca/\gsy F:FaBZ—a/\Z—B’ (3.6)

where the constant coefficients F; are antisymmetrical
and satisfy
Chploy + CopF o+ C o Fop=0. (8.7

(2) For a trivial exponent the coefficients F, are
given by a formula of the type

FQB—: CZvaV‘
Proof: (1) Since the forms ¢* (resp.Z*) are left

(3.8)
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(resp. right) invariant, formulas (3.6) represent the
general form of left or right invariant 2-forms, the
coefficients F ; being some constants, antisymmetrical
with respect to the interchange of the indices, and
equal in the two formulas in view of the symmetry re-
lation between F and F. Relation (3.7) immediately
follows by expressing F and F as closed and by using
the formula

At =~ $CL, (AL, (3.9)
(2) If A is given by
Mw,w')=plww') - pw) - p(w), (3.10)

where p is C” in the neighborhood of e, definition
(3. 3) locally gives

2(X)(yy =X (@) = Xp(e) =du (X, — dp (X) ).
Then, we have

F(X,Y) =-2d®(X, ¥)=(- X&(¥) + Y& (X) + &([X, Y])),,
:—Xdp.(Y)(w) + Ydll(X)(w) +dH([X, Y])(w)

—du((x, Y],
or simply, since du is closed,
FX, V) =-dp(X, ¥)),,,-
By choosing X and ¥ among the X, we find (3. 8) with
{3.12)

(3.11)

fy == 1“(6)'

Remarks: (1) The coefficients F , may be defined
directly from the exponent A by the following formula,
easily deduced from (3.3), (3.5), and (3.6),

F o= (XX, - X X (w, w’ (3.13)

)lw=w'=e'

(2) The particular expression (3.8) automatically
satisfies condition (3.7) in virtue of the Jacobi identity
for structure constants.

(3) Formula (3. 11) shows that for a trivial exponent
x=0 (mody), the condition du,=0 leads to F=0. The
converse is true in the sense that if F=0 then A is
trivial and a function g may be found such that du,=0
and A =0 (modu). That result will appear as a conse-
quence of the general expression (3.24) which we shall
demonstrate below.

Up to now we have associated a closed left invariant
2-form F to any C” exponent A. Conversely, we will
prove that any such 2-form determines a family of
C~ local exponents by giving an explicit construction of
the latter. Let V be an open neighborhood of the neutral
element and let w® be a coordinate system in V, for
which the coordinates of ¢ vanish, and such that if
w=(w%* e Vand 0<¢<1 one also has fw=(tw*)e V.

Our main tool will be Poincaré’s lemma.’ We shall
use it under the following form:

Poincaré’s Lemma: Let B be a closed m-form (m
= 1) on V. The general solution of the equation dA=28
on Vis given by the formula

AZy, ..., 2 )=da(Z,s,...,Z,)

1
*’”f %h;«,a([wl,zz,...,zm), (3.14)
0
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in which a denotes an arbitrary (m — 2)-form (or da
=c¥ it m=1) and Z,,...,Z, arbitrary vector fields,
[w] being the vector field whose the components at the
point (w®) are equal to w®, and k, being the “homothety”
(w?®) — (tw®).

Given a closed left invariant 2-form F we have to
solve successively the equations (3.5) and (3.2) with
the following conditions, derived from (2.10),

$,=%,=0. (3.15)

Poincaré’s lemma immediately gives the solutions
of (3.5) (note that , [w]=[w]),
tdt

(I)(Z)(w):d(p(z)(w)" TF([('O]’ h’t*Z)(tw)’

Q

(3.16)
— _ Ydt =
cb(Z)(w):d<p(Z)(w)+ TF([w]!ht*Z)(tw)’
in which we have, due to (3. 15),
de,=de,=0. (3.17)
In order to solve (3.2), let us introduce the function
pwo(w)zx(w,w"wo). (3.18)
Owing to the formula
(Xf)(w'lwo) =-X-flwlw,)
which results from the definition of X, by putting
w' =wlw, in (3.2), we find
qu0=—<1>(X)+E>()Z)06wnoS. (3.19)

The last term transforms as follows:

(KX)o by 0 S==B(S,X) e Soyuzt = — S*O(X)oy ujt
== s*&:(maix)oywal ==y 5157 (X)

= s*mD@(X),
so that (8.19) gives
dp, =-% - S*5% @.
The differential form in the right member is indeed

closed as shown by (3.5) and the assumed properties of
F and F. Poincare’s lemma then gives

pwo(m:_fl M (@ + 563, 310D (3.20)

¢
in which we have incorporated the initial condition
M(e,w,)=0 which for any exponent follows from (2.10).

This last expression will be cast into a simpler form
by specializing the coordinate system, namely by
choosing the canonical coordinate system associated
with a basis {X_} of the Lie algebra of G. In such a
system we have the following relations:

wl=-w, Wwy'=uwl, Sfe]l= lw],
and (3.20) becomes
. w w1 —
po@)==["e- [ 652,
the integration paths being straight lines in canonical

coordinates that are segments of one-parameter sub-
groups. Returning to the definition of [T putting

(3.21)
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\ww' ~ »

FIG, 1, The contour C{w,w’). The
straight lines represent segments
e of one-parameter subgroups and
the curved line represents the right
@ translated of such a subgroup.

w,=ww’, and transforming the last term of (3.21) by
the translation §,, we find

A(w,w'):fs‘" (6% @ - ).
The condition A (w, ) =0 also gives the constraint
W= w
[rE=e

which, by (3.16), is equivalent to

P(w) - 9le)=¢w) - @(e). (3.22)
We then have
x(w,w'):f: (6%® - 3). (3.23)

In this last formula, the differential form appearing
under the integral sign being closed, the integral does
not depend on the integration path joining e to w. Fi-
nally, (3.23) may be directly expressed in terms of the
2-form F; adding and subtracting to (3.23) the quantity

7B 320" - plew) = 0) - (0w,
we find

A = ¢(mod (g - ¢(e)))
with

g(w,w'):fewé*da +few’$-fewd 3.

The first term in the right-hand side may be trans-
formed by the translation & thereby giving

(3.24)

w
E(w’w')=f5(w,d)5=f§(w,w')%F’ (3.25)
where the contour C is represented in Fig. 1 and where
S is any two-dimensional integration domain with C as
boundary. With the help of some change of variables,

the preceding formulas may be expressed in terms of
the differential forms & and F, we have

(A — 1
tw,w )~fc(w,w,)<1>_fsm'w- iR
and

A(w,w’):few yXo - @).

(3.26)

(3.27)

In the last formula the integral does not depend on
the integration path, while the contour C is described
in Fig. 2.

Since & and ® are defined in the canonical neighbor -
hood V by (3.16), all the preceding relations are valid
in a sufficiently restricted neighborhood of e; in parti-
cular, formulas (3.23) and (3.27) make sense if w and
w’ belong to any neighborhood v such that v*c V, and the
same is true for (3.25) and (3.26). What remains to
prove is that the function ¢ just obtained is indeed a
local exponent of G. In fact, formula (2.8) is easily
obtained, in the case where w;c v, i=1,2,3, by using
the expression of ¢ in terms of F and by a simple
application of Stokes’ formula. So, formulas (3.24)
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and (3.25) lor (3.26)] completed by (3.17) define the
family of local exponents associated with a given 2-
form F. In particular, that result contains the recipro-
cal of Proposition 3.2 concerning trivial exponents:

If the coefficients F 4 are of the form (3.8), we have

at first, with the help of (3.9),

F=-24(f,t"),
and then

"o AT r
o, @ )_fsw,w')d(f'c )_fc(m,wr)f"g :
Since ¢7? is left invariant we easily find £ =0 (modu)
with
w@)== [
To sum up, we have obtained:
Theovem 3.3: For a Lie group, any C” local exponent

A determines a closed left invariant 2-form F by the
formulas

F=F  t*rtb,

FaB= (XBX'a - XUX'B)X(Q’, w,) | w=w!ze*

Reciprocally, to any closed left invariant 2-form F
corresponds a family of C* local exponents which is
given by

A=k (mody)
with dp, =0 and
5(“”“")=fs(w.w)— 3F.

The trivial local exponents correspond to the forms F
which are differential of a left invariant 1-form.

Corollary 3. 4: The classes of local exponents on G
correspond biunivocally to the classes of closed left
invariant 2-forms, two such forms being equivalent
if they differ by the differential of a left invariant
1-form,

4. LOCAL GAUGE FUNCTIONS

We turn now to the determination of gauge functions
which is the solution of Eq. (2.7). It will be convenient
to replace the function A by the function K defined by

K(w, x)=A“(x%). (4.1)
The Egs. (2.7) and (2.9) then become

K(w,, x“2) + K(w,, x) — K(w,w,, x) =A{w,, w,), (4.2)

K(e, x)=0. 4.3)

We first examine the case of a transitive transforma-
tion group for which a direct solution may be given. Our
procedure here will be fairly similar to that of Ref. 2.

w FIG, 2. The contour C(w,w"), The
straight lines represent segments
of one~parameter subgroups and the
curved line represents the left

'we’ translated of such a subgroup.
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A. Transitive group

Suppose G is a connected and transitive Lie trans-
formation group of M. For any fixed element x, of
M, it may then be given an open neighborhood « Xv of
0 in the Lie algebra of G so that the following conditions
hold?®:

(1) v is a neighborhood of 0 in the Lie algebra of the
little group G, , and u is a neighborhood of 0 in a given
supplementary subspace of this subalgebra.

(2) The mapping uxXv (X, Y) —~expX -expY is a diffeo-
morphism of #Xv on an open neighborhood of ¢ in G.

(3) The mapping u 2X — x2*¥ is a diffeomorphism of
% on an open heighborhood of x, in M.

In particular, these conditions mean that the set U
=expu, endowed with the chart expX — X, is a submani-
fold of G, while V=x2**is an open submanifold of M
with the chart x¥* — X, For any element x of V we
denote by a(x) the unique element of U such that
x=x%"; the mapping ¥ — a(x) is evidently C*. These
properties imply at first the following theorem whose
proof is given in Appendix A:

Theorem 4.1: For a connected Lie group acting
transitively on M:

(1) Any continuous local gauge function is locally
equivalent to a C” local gauge function.

(2) If the local gauge function % is given by (2. 11),
and is C” in a neighborhood of (e,x), and if y and ¢ are
continuous in some respective neighborhoods of ¢ and
X,, they also are C” in some neighborhoods.

As for the exponents, that result reduces the study
of continuous gauge functions to that of C* ones. Now
let X be a C” local exponent on expu -expv and let K be
a C= local gauge function on (expu-expv) X V associated
with ). Let us consider the following quantity, which
is defined for (w,x) sufficiently close to (e, x,),

Kla(x*), x,) + K(o(x*Y 'wa(x), x,) + Kla(x), x).  (4.4)

[All subsequent calculations are valid in a sufficient-
1y restricted neighborhood of (e, x,). To simplify, we
shall not explicitly indicate the precise conditions which
validate each step.] The sum of the last two terms
transforms by applying (4.2) with the substitutions
w, - ¥ 'walx), w,— a(x)! so that (4.4) reads

K(a(x®), x,) + K(a (x*) @, x) + Ao (x*) wa(x), a(x)™).

A second application of (4.2) with w, - a(x¥), w,
- a(x®)lw gives

K(w, x) +a(o{x?), a (x4 w) + r{a(x®) wa (x), ax)™).
(4.5)

By using the relation (take w, =aly), w,=alx)?in

“4.2)]
Kla(x)™, x) = - K(a(x), x,) + 21 (alx), a(x)?),
the comparison of (4.4) and (4.5) leads to
K(w, x)=K(a(x¥), x,) - Kla(x), x,)

+ K(a(x“) 'wa(x), x,) +rlalx), ax)y")
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-aax®?), ax¥)'w)

—alaxe)rwa(x), a(x)?)
and then, by using the functional equation for i,

K(w, x) =x(a(x), a(x)™) - K(a(x), x,)
-aa(x®), a(x“)?) + Kla (x*), x,)
Fala (Y, walx)) - Mwalx), a(x)h)

+ Ko {(x*) wax), x,).

The sum of the first four terms represents a trivial
gauge function corresponding to a vanishing exponent.
The last term only depends on the values of K on
G, X%, By putting

x (Q)=K(Q,x,), Qe G"o (4.6)

we have then, up to an equivalence leaving x unchanged
[that is with p =0 in formula (2.11)],

K(w, x) =x{a(x*)?}, wa(x)) - xwalx), a(x)?)

+x(a(x®)y wa(x). (4.7)
From (4.2) one derives the following functional
equation for x on G, :
X (92)) +x(2,) = x(2,92,) =a(2,, 2,). (4.8)

Reciprocally one checks that the formulas (4,7) and
(4. 8) actually define a local gauge function in the neigh-
borhood of (e, x,). It then remains to determine the
solutions of (4.8).

We at first observe that (4.8) may have solutions
only if X is trivial on G, . That condition is easily
expressed with the help of the 2-form F associated
with A; if {X_}, 1<a <n, denotes a basis of the Lie
algebra of G such that {X,}, 1<a’<m, constitutes a
basis of the Lie algebra of G, , Theorem 3.3 shows
that the condition on A is equivalent to

Foy=Clhg fr; (4.9)

where the primed indices vary from 1 to m. Formula
(3. 24) then gives the following general expression for
Aon G :

ARy, 2,0 = (R) + 1 () — 1(92,82,) (4.10)
with
w@= | "t Fu®), ve)=0, dvle)=0. (@.11)

Now putting y =p +6, formula (4.8) shows that § is
a C” local homomorphism of G, into R. Such an homo-
morphism is determined by a formula of the type (see
Appendix B)
- Q
e(Q)zje 8.2%, Qe G, (4.12)
where the coefficients 6 ,, have to satisfy the relations
Clyg by =0. (4.13)

In fact, the division of x into u +6 is arbitrary as we
see, for instance, by adding (4.11) and (4.12). The
combination y ,, =f. +6 . appears, which is, from
(4.9) and (4.13), the general solution of the equation
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F o =Ch yXw, the coefficients F, , being given. We
then have

Theorem 4.2: Let x be a C” local exponent on G.
Local gauge functions may be associated with A in the
neighborhood of x, if and only if X is locally trivial on
the little group G"o' The C~ representatives of these
gauge functions are given [ modulo a function of the
type ¢(x) — ¢(x*)] by the formula (4.7) in which  is a
C” solution of (4.8).

In terms of the 2-form F associated with A, the con-
dition on X is expressed by (4.9), while y is given by

x(sz):fe“xo,;“'w(m, v(e)=0, dv(e)=0, (4.14)

where v is determined by A and where the coefficients
X o« represent a solution of

Foupg =ClhigXp, 1sa’,8',y <sm. (4.15)

Let us now determine the equivalence classes of
local gauge functions. According to (4.7) a gauge func-
tion ig associated with a pair (A,y). The basic equation
(4.2) firstly shows that if K;, i=1,2, is associated with
A;, the relation K, ~K, implies X, ~1,. Reciprocally,
let A, and X, be such that

)\1(“’1, (.02) :}\2(‘*’“ wz) + [J.((—Ulwz) - ‘J'(wl) - P‘(wz) (40 16)

and let x, and X, be corresponding solutions of (4.8).
We observe that, from (4.8) and (4.16), the function
p=X,~X:*tu is necessarily a local homomorphism of
G, into R, By using (4.7) and (4.16), the equivalence

condition of the gauge functions respectively associated
with (x,,x,) and (,,x,) reads

pla(x“) wa(x))=d(x) - d(x*) +y(w).

Let us first remark that, for x=x, and Qe G"o’ relation
(4.17) gives

(4.17)

p(Q) =y(Q). (4.18)

The following quantity

pla(x?19?)w w,a (x)) - plo(x2) w,a(x))

- p(a (x“’l‘*’z)'lwla (xwz))

vanishes since p is a local homomorphism of G,;. On the
other hand, due to (4.17), it is equal to y(w,w,) - P(w,)

- ¢(w,). This shows that y must be a local homomor-
phism of G into R. Comparing it with (4. 18) this

means that the local homomorphism p of G,, may be
extended in a local homomorphism of G. Reciprocally
this last condition immediately leads to (4.17).

Let us finally give the expression of the preceding
conditions in terms of the quantities x ,,. Let F, and
F, be the 2-forms respectively associated with 1, and
A,; formula (4. 16) gives, with the help of (3.8) and
(3.12),

FlaB:anB.*_CLBfw f)':" y“’(e)-

The property of p to be a local homomorphism of
G,, is expressed by (see Appendix B)

4.19)

CrapXpple)=0,

which is indeed verified with the help of (4.15) and
(4.19). The condition that p may be extended locally
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on G now implies the existence of quantities R,
1<y<wn, such that R,, =X, p(e) for 1<y’<m and
C*;R, =0. By putting f, =f, + R,, taking into account
the definition of p, we finally have

Proposition 4.3: The local gauge functions K, , ,
and K, x,, defined by (4.7) are equivalent under the
following necessary and sufficient conditions:

(a) A, =x,(mody),

(b) The function x, - x,+ p may be extended in a local
homomorphism of G into IR,

In terms of the 2-forms F, and F, and of the quantities
Xi g =Xux;(e), i=1,2, these conditions are equivalent
to

(a',) FlaB—anﬂz aB.fyr
(b’)XL,:_xz‘r':frl’ 1$7’Smy

for some values of the coefficients f,.

B. General case

In cases where the transformation group G is not
transitive, a general study along the line used in the
preceding subsection would be much more difficult in
view of a possible complicated structure of the orbits,
and would require some additional hypotheses. In-
stead of that we shall limit ourselves to reducing the
problem for C* gauge functions to the solution of a
system of partial differential equations, which even-
tually may be handled in practical cases. It will be
convenient to introduce the notation x* = U, (w) where
U, xe M, is a C® mapping from G into M. The velo-
city field is the set of the vector fields ), on M, X
being any element in the Lie algebra of G, which are
defined by

Dy (0) == dU,(X,).

Definition (4.20) is equivalent to the following one,
f denoting a C” function on M:

(4. 20)

Dafl== gftes)| 4.21)
From this formula we get
Dxfls)== S les)| - X fla)
or equivalently (Lie equations)
DxfoU ==X(fo U). (4.22)

This leads to the following property of the brackets:
wx,D Y]=0[x, Y] (4.23)

Now let K be a C” (local) gauge function on M asso-
ciated with the C* (local) exponent x on G, By writing
the formula (4.2) for w, =w, w,=exptX, taking the
derivative with respect to ¢, at £=0, we find, with the
help of (3.3) and (4.21),

-0 xK(w, x) + XK(e, x) ~ XK(w, x) = ®(X)(,,,-
By putting

Ky(x)= %K(exth, x| =XK(e,x)

¢=0

(4.24)
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the last equation becomes

(X +0 YK, x) = Ky (x) - #(X)()- (4. 25)

By applying the operator Y +/) 4 to (4.25) and anti-
symmetrizing with respect to X and Y we get, with the
help of (4.23), (4.25), and (3.5),

DxKy =D ¢Ky - Kix, nn=- F(X, Y), (4.26)

where F is the differential 2-form introduced in Sec. 3.
A second equation analogous to (4.25) may be obtained
by putting w, =exptX, w,=w in (4, 2); by differentiation
at =0 we obtain

XK(w’x)sz(xw)—a()_()(w)v 4.27)

That equation allows o construct the function
K(w, x) in terms of the functions K, (x). Let us first
remark that K, depends linearly on X. For any fixed
x in M let us introduce the differential 1-form g, on
G which is defined by

Kx(x“’):(Kxo Ux)(w)zsz()?)(w)‘ (4'28)
From the formula U ,=U, -5, we get
Jyo = 0%y (4.29)

We also have, due to (4.22),
2dy, (X, V) =Xy (V) - ¥y, (%) -, (X, Y])

=X(KyoU,) ~ Y(Kyo U,) +Kix, 10Uy

=(-DxKy+D yEx + K5, vy)° U,

and then, from (4.26) and the symmetry relation be-
tween F and F,

dlwbx:%i:‘
The formula (4.27) becomes
XK((") X) = (iP, - 6)()?)((‘)) .

Since the differential form on the right-hand side is
closed according to (4.30) and (3.5), that equation may
be integrated on a neighborhood of the neutral element
of G in the following form, which takes into account
condition (4. 3):

Kw,x)= [ ", - 2).

Conversely, let K, be any C” solution of (4.26), and
let us define ¢, and K respectively by (4.28) and (4.31).
The last function is a C” gauge function associated with
x: Indeed, we successively have

(4. 30)

(4.31)

K(w,, x42) + K(w,, ¥) - K(w,w,, %)
=S =2 = [ - )
= onu -8 - [ o8 - )
=fe“‘ (6%,2 - @) =r(w,, w,).

We have shown

Proposition 4, 4: With any C” solution K4(x), linear
on X, of the equations

D xKy~D yKy - Kiy, vy =- F(X, 1),

where F denotes the left invariant 2-form associated

(4.32)
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with the C* exponent A, corresponds a C™ gauge func-
tion associated with x in the neighborhood of ¢ and de-
fined by the formula

K(w,x):je“ (W, - @), (4.33)
the differential form g, being given by
(X)=Kyo U,. (4.34)

This result remains obviously valid if the functions
K, are defined only on a neighborhood of an element
%, of M; the preceding formulas then define a local
gauge function in the neighborhood of (e, x,).

Finally, the equivalence conditions of gauge functions
may be formulated as follows:

Proposition 4.5: The local gauge function K which is
defined from solutions Ky of (4.32) by (4.33) and (4. 34)
is trivial if and only if the functions Ky are of the form

Ky (x)=/) o (x) - a(X), 4. 35)

where a denotes a linear form on the Lie algebra of
G.

Proof: If K is given by (2.11) and X by (2.12), defini-
tion (4,24) immediately gives, with the help of (4.22),

Ky(x)=0 xd(x) - Xp(e).

Conversely, let us assume that K, is of the form
(4.35). From (4.32) and (4.23) we at first obtain

F(X, Y)=-a(X, ¥)).

The exponent A is therefore trivial according to
Proposition 3.2 and Theorem 3.3, and we have

Fop=— CpalX,)
and accordingly A =0 (modu) with
plw)=v) + [ "aX)", v(e)=0, dv(e)=0,

where the integration path is a straight line in canonical
coordinates. From (3.4) we next deduce

3(X) (o) = Xu (@) - Xp (€)= Xp (w) - alX).
Now, (4.34) and (4. 35) give, with the help of (4.22),
$(X) =) yd o U, = alX) == X($< U,) - a(X),
and then
(s - B)X) = - X(¢+ U,) - X
or
P, -2 =—d(poU,) -dp.
Thus, the formula (4. 33) finally gives
Kw,x)=p(x) - ¢(x*) - u(w).

5. LAGRANGIANS

The equation we have to solve is Eq. (2.8) or, by
using the gauge function K defined by (4.1),

L(x®, #9) = L(x, #) + K(@, x).

Geometrically, the pair (x, %) is the set constituted by
a point x € M and an element x of M,, the tangent vector
space to M at the point x [in other words, (x, %) belongs
to the tangent fiber space of M]. We denote by J(x)
the differential at the point x of the application x — x“,

(5.1)
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w being fixed, and by dK(w, x) the differential of x
— K(w, x). The formulas (2.4) and (2. 2) then read

%0 =d (%) (%),

—_— (5.2)
K(w, x) =dK{w, x)(x).
We note the relation
I, (x) ' =d 1(x®). (5.3)

Let le M, «; the invariance condition (1) takes the
form

L{x®, 1) = L(x, J ,(x)"*1) + dK(w, x)(J ,(x)"'1). (5.4)

We only consider the case of a connected transitive
group G and take again the notations of Sec. 4A,

Proposition 5.1: For a connected transitive trans-
formation group G and a given local gauge function K,
the Lagrangians fulfilling the invariance condition are
locally given by the formula

Lo, D) =1 (J zy-1(x)D) + dK(a (%), ) y(0y-1(2)1), (5.5)

in which the function f is a homogeneous function of the
first degree on M"o’ a solution of the equation

FUEL) = £(1,) = dK(8Q, x,)(1,) (5.6)
with Qe G, , l,e M, and
i®@)=dulx,), Qe G, (5.7

Proof: By writing (5.4) for x =x, and w =a(x) we
obtain the following necessary condition for invariance,
valid in some neighborhood of x,,

L(x, 1) = Lxg, J g5y (%)) + dK (0 (%), %N gy (x0)720).
(5.8)

Let f be the homogeneous function of the first degree
on M"o which is defined by

Fltg) = L{xo, L,). (5.9)

With the help of (5.3), the formula (5.8) is immedi-
ately rewritten into the form (5.5). That relation de-
fines L in terms of K and f. Conversely, L being given
by (5.5), we have to express the full invariance condi-
tion (5.4). Introducing (5.5) into (5.4) we have at once

L(x“, 1) = L(x, d(x)']) - dK(w, x)(J ,(x)'])
=f(J agy-1 (%)1) = [ (a1 (x9)0)
+ dK(a (x%), %) a ¢ wy-1(x%)1) — dK(a(x), x,)

X gaten1 () — dK(w, ) -1 (x*)1). (5.10)

On the other hand, by differentiating the two members
of (4.2) with respect to x and by applying the result just
obtained to the vector Jwéx(x“@)l, le M »;, we obtain

dK(w,, x*2)(1) + dK(w,, x)(Jw?(x“z)l)

= dK(w,w,, x)(J z1(x*2)1). (5.11)

By making the substitutions x —x,, w; —~ v, w, ~a(x),
l—+d 1(x*)l, we find that the last two terms of (5.10)
may be replaced by

- dK(wa (x), x,)(J (4 aeery-t (D).
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The sum of that result and of the term in dK re-
maining in (5.10) may be transformed by a second
application of (5.11) with the substitutions x - x,,
w, = a(x?), w,—ax?) walx), I+Jyuw-1x)], and
we find for this sum the expression

~ dK{a (x“Y ' wa(x), %) iy a1 (x9)).

Now putting l;=J¢, 41 6*)l€ M, , the right mem-
ber of (5.10) reads

f(Ja(x“’)‘lwu(x)(xo)lO) _f(lo) - dK(a (xw)-lwa(x)’ xo)(lo)-

The invariance condition will be fulfilled as soon as
this last expression identically vanishes. Since the
product a(x“)'wa(x) belongs to the little group G, , by
putting (5.7), we indeed obtain (5. 6). Proposition
5.1 reduces the problem of solving (5.4) to that of
solving (5.6). This last equation may be directly treated
in any particular case. Here we restrict ourselves
to transforming (5.6) into a system of partial differ-
ential equations. The correspondence § — j(2) defines
a linear representation of G, into M, . The corre-
sponding generators are given by

jx=Xj(e) (5.12)
in which X belongs to the Lie algebra of the little
group G, . The brackets are

Ui, drl=dix, n- (5.13)

The velocity field Dy associated with this represen-
tation is then given by a formula similar to (4. 20) and
is

Dx(lo)=‘dj10(xe)="jxlo, (5.14)

where we have put j,O(SZ)zj(Q)l0 and where the last
member represents the action of the linear operator
Jjx on the vector 7,. We also have, as in (4.22),

Dyfejiy=—X(fojy )

for any C® function f on M, . We now have

(5.15)

Proposition 5.2: The solution of Eq. (5.6) is equiva-
lent to the solution of

Dxf(lo) == dKX(xo)(lo)

for any element X of the Lie algebra of G,

(5.18)

Pyoof: The equation (5.6) is of the general form
FGEL) =11, +&(R) - 1, (5.17)

in which %(f2) is a linear form on M, given here by
k() = dK(Q, x,). (5.18)

We easily see that (5.17) can have a solution only
if the following necessary condition holds:

R(§48%) = k(2,) +1(2,)(@,), (5.19)

where j denotes the transpose of j. That condition is
automatically satisfied in the present case as is shown
by (5.11) written for x=x, and w,w,e G, , and by
using (5.7). By applying the operator Xgq, at the point
Q,=e to (5.19) we find
Xk(Q)=j()XR(e). (5.20)

Now, the application of )?e to Eq. (5.17) gives, with
the help of (5.15),
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- Dy fll,)=Xk(e) " 1, (5.21)

Equation (5.21) is equivalent to (5.17). Indeed, with
(5.15) and (5. 20), we successively deduce from (5.21),

X - f(§@)1) = - Dy f(5(0)1,) = Xk(e) - j(Q)1,

=j(Q)XEk(e) - I, = Xk(Q) - I,
which gives, by integration,
FGE@)L)=k(Q) - 1, + ¢(1,),

and then ¢(l,) =7(I,) by taking Q =e. It remains to be
shown that (5.21) is identical to (5.16); in fact, we have

Xk(e) =X (dK(2, x,)) = d(XK(e, %)) | sexy = A x (o).

Finally, let us give the form of (5.16) in a
coordinate system. Denoting a basis of the Lie algebra
of G, by {X,} we find

. n O n
(]a‘)':lo almf(lo):ka'nlo
0

with

0
Bon= WXQIK((‘O’X)

w=e, x=xq

6. THE ALGEBRA OF CONSERVED QUANTITIES

As we know, with any Lagrangian theory possessing
an invariance group of the type just described, corre-
sponds, by Noether’s theorem, a set of conserved
quantities. ' We will determine the Poisson brackets of
these quantities, and show that these brackets define
an algebra which is an extension of the Lie algebra of
the group, the one corresponding to the exponent .

The manifold M is the product R X V where V is the
configuration space of the system. For a given local
chart on V we denote the coordinates of x={(f, g)c IR
XV by (x*)={(x°, (x*)). From the homogeneity property
of L it is easy to see that the Lagrange equation for
x° is not independent of the others. The same property
holds for the conjugate momenta

oL

Tu= ——(x, )2).

o (6.1)

Indeed, the function L is connected to the Lagrange
function usually considered (from which the action inte-
gral is [ dt L) by the formula

L(x, ) =1L(t, q,d/ D). (6.2)
This implies the equalities
7, =pelt, 4, 4/ £, (6.3)

where p, are the conjugate momenta associated with I:,
and the constraint

TrO:_H(t’ q;'n);‘":(ﬁ)z); (6.4)

where H denotes the Hamiltonian. On the other hand,
the value /=0 must be excluded since L generally has
a singularity at this point. With this restriction, the
correspondence (x,x)— (x,m,, 7) maps the tangent fiber
space of M (velocity phase space) into the submanifold
S of the cotangent fiber space of M (momentum phase
space) which is defined by Eq. (6.4). According to the
usual hypotheses, 7 this mapping is, for any ¢+#0 fixed,
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a local diffeomorphism into S. The momentum phase
space is naturally endowed with the symplectic form
Q =dx*Adm, for which the Poisson bracket of two
functions of (x*) and (7,) ig’

{f,g}:z:a—{ni‘i—jf—»a%. (6.5)

The form £ induced by  on the section S, of the sub-
manifold S by the hyperplane x°=¢is Q= dx*Admr, and
the associated Poisson bracket is the usual one,

_of °g 9 38
{f’g}ﬁ—ﬁ om,  om, ox® ’

where f and g are functions on S expressed with the help
of the coordinates (¢, x*, m,). Now if 7 denotes the re-
striction on S of a function f defined on the momentum
phase space, an easy calculation gives the following
relation between the two kinds of brackets:

2o A of (', - 32 (3] . ;s
.= oo + 2 (% + G i) - 22 (2 47,1

(6.86)

(6.7)
The action integral is defined by
Aslx]= [ *2 ds Lix(s), ¥’ (s)). (6.8)
1 Sy
The invariance condition (5.1) then reads
Aglxe]) - Agzlx]= Klw, x(s,)) - K(w, x(s,)). (6.9)

Taking w = 8w to be infinitesimal, a classical calcu-
lation gives

5AZlx]=|K(6w, x(s))| (6.10)
with
_ S2 oL d (oL w
éAjf[x]—\nuéx“{§§+j; ds[—@?— ;g(m‘)] dx(s)
! (6.11)

in which 7, is defined by (6.1). When x(s) is a solution
of the equations of motion, (6.10) reduces to

|7 ,.6x* - K(bw, x) \if:O.
The quantity

5Q=m,0x" - K(bw, x) (6.12)

is therefore a constant of motion. Alternatively, if we
put 6w =exp(tX), where X belongs to the Lie algebra of
the group G, we obtain the finite quantities [see (4.21)
and (4.24)]

Qy=— 1,0 yx* - Ky (x). (6.13)

As it stands, this last formula defines @, as a func-
tion on the whole momentum phase space, the corre-
sponding conserved quantity Qx_being obtained by re-
stricting @y on S. Due to the form of the equations of
motion written with Poisson brackets, the conservation
property implies that the function (3/31)Qy + 1@y, H} 5
identically vanishes. Thus, the Poisson brackets of the
Qy’s are, by (6.7), directly given by those of the
Qy¢’s. From (6.13) we have

{Qx, @ute =m0 0", 1, 00 v
+'"u{77u50 qu}ngxxu +{77u., Ky(x)g D xx*

+{K (x), o D yx¥.
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Definition (6.5) implies the following relation:

{'“'u’f(x)}rzD X == (Dxx“) aa{gﬁ) =- )y flx),
and then
{Qx, @rta=1u0 v(0 xx*) = 1,0 x (D ¢x")

- D xKylx) + 1 yKy(x).

According to (4.23) and (4.26), this finally leads to
the formula

{Qx, QY}n = @Qx, v) +F(X,Y). (6.14)

If X and Y are chosen among the basis fields X,
setting @,=@y , We have

{Qu» Qat =Chp@ + F .

This shows that the Lie algebra generated by the
conserved quantities is identical to the extension of
the Lie algebra of the invariance group which is defined
by the coefficients F ;. On the other hand, this Lie
algebra is that of the group extension defined by the
exponent . %

{6.15)

Remark: From the action of the group G on M, two
different canonical transformations may be constructed
on the momentum phase space, corresponding to differ-
ent transformations of the Lagrangian.

1. Transformation (x, L) = (x*%, L)

The transformation of the conjugate momenta is de-
fined by [see (2.3) and (5.2)]

4

TTZ’: (xw)“L (x x (Jw(x)'l)‘;ﬂr,. (6- 16)
For an infinitesimal transformation we have
drulx, Mo, w)=~m, é%géx"(x). 6.17)

The Hamiltonian is not invariant; its transformed is
is

Hy(t, aym) = % [ i - Ly, (x, )] (6.18)

in which the variables x*/f must be replaced by the
momenta through the relations [see (2.3)],

d . 0
ﬂk:a_,'xIL“’(x’x)_ 3 k[L(x,x)— lé s ;—L—Ox ]

Taking into account the invariance condition (5.1)
written in infinitesimal form,

oL aL
2% —rdx M+a"‘

we get

M= %E[L(x, x) —ﬁ]

or

Sx* _GK 5K(x) =K(pw, x),

—50K= aek Lix, £). (6.19)

ax”
On the other hand, (6.18) may be written

1 0 . . d
H, (x,7)= 7 [(rrk + WGK) %% — Lx, x)] + EGK’
from which we deduce, with the help of (6.19),
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H, (x,m)= H(x,m +0(6K)) + —5K (6.20)
The infinitesimal generating function is
5@ =7,6x"(x) (6.21)
and we have
{x*, 6@} =0x*(x), {m.,08ta=0m,(x,m;, 7). (6.22)

For the motions of the system, the restriction
5@ =m,0x* - H5¢ generates the “local variations” on the
shell S (Schwinger principle). From (6.7) we deduce

dx*

I =5x%, (6.23)

{685 =0x" -6t ——

{r,, 8@}z =07, -6¢ le—t 57,

2. Transformation (x,L] = (x“ , (L,)nw ) =(x%, L)

Formula (6.16) is replaced by*

T)’ﬁ = a(:éw)“ L(xm’ x'w) Z”#(xw’ x£%)
2
=@Ml + 55K, 0)]. (6.24)
Infinitesimally we have
oL a ” 0
o 5(ax)— Ty Wéx +W6K. (6.25)

The Hamiltonian is now invariant so that the shell S
is conserved. Finally the formulas (6.22) and (6.23)
remain valid for the new variations with the following
expression of the generating function:

8@ =n,0x"(x) - 6K(x)= (6.26)

7. EXAMPLES
A. Translation group

Let us consider M =G=IR" and the group action x“
=x+w, The coefficients F , are only restricted by the
antisymmetry condition F ;= - Fgz,. The corresponding
exponents are directly defined by the formula (3, 26),

W, W,)==3 F dw* Adwf = - 3F, wfwh,
5( 1 2) 2 €y, ) aﬁd dw 2BW1

(7.1)

The gauge functions are calculated by (4.7) in which
we choose x,=0 and a(x)=x, and we find

Klw,x)= (7.2)
(Since Gx0={0} we have x =0.) Then, (5.5) and (5.6)
furnish the general form of the Lagrangian
L(x, %) =f(¥) - (7.3)

where f is any homogeneous function of the first degree.
The conserved quantities are

Qa—_-_ﬂBD‘pr_Ka(x):na-F%FaﬂxB (7.4)

and the relations (6.15) are indeed verified. If n=4,
by putting eE = (F);) and eB= (- z'*F,,) for 1 <4,j,k <3,
we find [see (6. 2)]

Lit, g, D=F (@ +

8
— 3F pwx.

F 8,

LteBAQ)-d +4e[E-q-tE-q]. (7.5)
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The coupling terms describe the interaction of a
charged particle with a constant and uniform electro-
magnetic field. The usual form of the interaction with
the electric field is recovered by adding to the
Lagrangian the “divergence term”

jetE-q=13eE-q+ jetE-q,
The invariance under translation of this interaction is

evidently well known, ** but the above calculation char-
acterizes it as being the only one having that property.

B. Forced harmonic oscillator

Let us consider a system with one degree of freedom
{M=1IR?), and with G the two-dimensional translation
group with elements a = (¢, a®) acting by

t—1,
g~ q+a'coswt +a? sinwt, (7.6)

where w is given. The exponents on G are given by
(7.1), in which we have set F,=f,

E(a a )__, 'z'f( 102 %ﬁ?wa“a'ﬂ.

From {3.4) and the expression of the vector fields
X,=X,=9/03a®, we deduce

B(X ) ) = ~ 3¢ 0t
and then
®(a) = 3fe 0% da.
On the other hand we have
D,=- coswt , D=

The Eq. (4. 32), obeyed by the functions K ,(x)
=X Kl(e,x), where K is a gauge function associated
with £, is here

D Ko ‘DzKl =-1.

Its solution is

2all)=__

(7.7)

(7.8)

inwt—a—
-8 g

-fq+o(t).

According to Proposition 4.5 we easily see that,
up to an equivalence leaving the corresponding exponent
unchanged, we may choose

Kl(t) fI) - ('fq + (P(t)) Sinwta

K, sinwt - K, coswi=

(7.9)
Kz(t’ q=- (—fq + (P(t)) coswt,

The differential 1-form g, introduced in Proposition
4.4 is then given by

Pela) =9, (X ) oy da® = Ko (x*) da®
or
¥.(@) = (- fg + @ ())(sinwtda' — coswt da®)
- fisin*wta’da’ - cos’wta'da®
+ sinwt coswt(a'da' - a*da®)).
Formula (4. 33) gives the associated gange function
K(a, x)=(-fg+ ¢@))(a' sinwt — a® cosw?)
~ l@r -

The Lagrangian must satisfy the relation (5.4) which

(@?)?) sin2wf - 2a’a®cos2wt].  (7.10)
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may be written here as

L{t, g+ a' coswt+a?sinwt, £, § + w(- a' sinwf + a? coswi)f)

=L(t, q, ¢+ ( fa +td—l—i—~) (a* sinwt — a? coswi)

+ (- fq+ @)(a* coswt + a? sinwt)wi
- $l{a')? — (@®)P)wfcos2wi — fa'alw sindwt,
The solution is easily found by calculating the deriva-

tives with respect to a' and ¢® at ¢=0, that furnishes
the derivatives 5L/8q and 3L/3q, and we obtain

Lit,q,{,§)
—hp+ 3L (-;‘f - wqut)

1 dy
= +
+ = ( i e q<pt> (7.11)
Adding the divergence term
1 “do~ T ! [ dy :
iy T Un)dr== a=; +gq dtz —t1(8)
and putting
_ 1 Fo(t) 2 ]
FH= > [—d?—— +w?@(t) (7.12)
and
f=mw (7.13)
we find for the usual Lagrange function, up to an
equivalence,
Lt, g, @) =3mF — 3mwq* + qF (1). (7.14)

This is the Lagrangian of a harmonic oscillator sub-
mitted to the driving force F(¢). With this choice of
the Lagrangian the gauge function becomes

K(a, x} = — mwq(a® sinwt — a® coswt)

- Lmwl{(@')? - (@®)?) sin2wt — 2a'a® cos2wi]

+ [*dr F(n)la! coswr + a® sinw1], (7.15)
the associated exponent being unchanged. The con-
served quantities are then

Q, = pcoswi +mwgsinwt - f‘ dt F(1)coswT,
(7.16)
Q, = psinwt - mwqcoswi ~ f t d1 F(7) sinwT,
and, according to the general result (6.15), their
bracket is
{Q., Qaf=1- 1.17)

By eliminating p or g between the two Egs. (7.16)
we immediately obtain the general solution of the
Hamilton equations of motion

fqlt)= Q, sinwt ~ @, coswi+ f‘ dr F(1)sinw(t - 7),
(7.18)
p(8) = Q, coswt + @, sinwt + [ d7 F(r) cosw(t - 7).

If F{f) acts during a finite time interval, and if the
lower bound of the integrals in (7.18) is chosen equal to
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¥, we see that the corresponding constants of motion
@, and @, are the coefficients characterizing the asymp-
totic behavior of the canonical variables, so that (7.17)
simply expresses the fundamental Poisson brackets
between these variables. More generally, there is a
connection between the gauge functions and the Green
functions associated with the equation of motion.

These results may be generalized by replacing the
functions cos and sin in (7.6) by %, and &,, two inde-
pendent real solutions of the second order equation

R"(8) +u(OR (8) + v(t)A(t) =0, (7.19)
The Lagrange function replacing (7.14) is
L(t, ¢, §) =expl | Ladru(Dim@ - smo(d) @ + gF (1))

u and v real.

(7.20)
and the associated gauge function is
Kla,x)=m exp[fot dru(t)lla*n! (t) + a®hi(1)]
X [q + %(alhl(t) + azhz (t))]
+ff drexp(f" a7’ u(r')F(7)
x[a'hy (1) + a®hy()]. (7.21)

The constant f is here m W(0) where Wis the
Wronskian of &y and £,,

W(E) = Iy (DI (1) ~ (DR (1) = W(O) exp(~ [ dTu(r))  (7.22)

and the conserved quantities @,({=1,2) are given by

Q, = ph;(t) - mqUOK,(8) - [ dT F(1) U(Th;(7), (7.23)
where we have put
U(t):expfot dTtu(7). (7.24)

As for (7.16), the Eqs. (7.23) allow us to obtain the
general solution of the equation of motion, Finally,
let us note that a simple manipulation of that equation
directly furnishes the expression (7.23): By multiplying
the equation of motion

mlg" +uq’ +vql-F=0
by any solution % of (7.19) we obtain

m[t%(q'h— gh') +ulq'h— qh')]—Fh:O
or
MUt (% (¢ = gh')U] - Fr=0.

Multiplying by U we find (d/dt)Q,=0 with
@Qu=m(g'h- g U= [ ar F(1)U(T)h(7),

which is identical with (7.23) if we introduce in that
formula the expression of p derived from (7. 20).

C. Rotation group

As a last example we take G=50, acting on M=1R
xR3, The rotations will be parametrized by the com-
ponents of their rotation vector w. The form of the
structure constants, C,=¢€,,, immediately implies
that the exponents on G are trivial, so that it will be
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sufficient to consider the case of a vanishing exponent.
The first equation we have to solve is Eq. (4.32) which
here reads

DoHe =D gKoy =€apy =0, 1<a,8,7<3 (7.25)
with
Da==ant® 505 . (7.26)
x
In vector notation this equation takes the form
grad(x - K) =xdivK. (7.27)

The integrability condition gives /) ,(divK)=0, which
implies that divK is a function of x only (except for an
arbitrary dependence on the time f). Equation (7.27) is
then integrated in the form

divK = k(x2, #),
2 (7.28)
x-K=C+%fx% ds k(s, )= K(X2, t).

Introducing the longitudinal and transverse parts in
the x space of K, the second equation in (7.28) gives

K, = 5 K, ), (7.29)
while the first becomes
divK, = - K(x?, t)/x%. (7.30)

To solve that equation in the neighborhood of the given
point x, #0 let us introduce a direct orthonormal basis
(e,,e,, e;) of R® such that e,=x/Ix,|. The transverse
part of K may be written

K,(x, 1) = (e, AX)f(X, 1) + (e, A X)g(X, 1). (7.31)

Expressing (7.30) with the help of the coordinates
r=Ix|, y=x.e,, z=x-€,, we easily find

3y 0z (P -y -z

This equation allows us to express g in terms of f and
K. We find that the only nontrivial term is the one com-
ing from K, thereby giving, up to trivial terms (that is
terms of the form xAgrad®),

K(x2, ¢
K=- X0 e nx,

where ¢(x) is the usual polar angle of X in the plane
(e;,e,). A simpler expression may be obtained by adding
the trivial function

2
—XA grad [K(’:‘z’ ) z<p(x)]
K(x®, ¢t ’X ~ Y’ze
= -(—xg—l [:p(x)es/\x + z—x,‘,_}_—yz——g] ’

which finally gives, by combining it with (7.29),

_ xe, +ye,
Kx, t)=K(»,¢) —xg+—yr

X - {e;-X)e,

=KO%, ) o T

(7.32)

The corresponding gauge function is now given by the
formula (4.33), namely
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K@, %, 8)= | “ K, (Ry, (%), DT *(w") (7.33)

in which R, is the rotation defined by the vector w,
and ¢ ¢ are the right invariant 1-forms on G. These
forms are given by the formulas

Eow) =Ag(w) dw?,

eaB‘/wy'
(7.34)

The integral (7, 33) calculated along the integration
path s ~ R ,(x),0 < s<1, becomes

_ ww? , Sinw (50‘5 w“w"\ 1—-cosw
W

AWy =—17 w w® / w?

X — (w-e,)e, - Ry, (X))
x* = (e, R X)) ’

1 w
K(w,x,t)=K(1f2,t)f ds
]

(7.35)

The integral may be explicitly calculated® by introduc-
ing the expression R,,(x) in terms of w and X, but the
final result which is a sum of four functions arcfg with
rather complicated arguments will be not given here.
The formula (7. 35) then defines a family of gauge func-
tions depending on an arbitrary function K (1*2, ) and on
a given direction e,. As we shall see later, this last
dependence will disappear at the level of the equations
of motion.

Let us now consider the determination of the Lagrange
function, Although the action of SO, on R? is not tran-
sitive, the results of Proposition 5.1 are readily adapted
and furnishes the expression

L(x’ t’iyé):f(lx| » L R;l(x)(’i)a t.)

+dK(a(x), [x|e,, )Ry, &), ) (7.36)

in which f is a solution of the equation

Ax|, b, Ra®), 1) = f(| %], £, %, {) =dK(Q, |%|e,, DX, ).
(7.37)

In these equations the reference point x, of Proposi-
tion 5.1 is replaced by a set of vectors playing the
same role in each orbit, namely the vectors [xle,,
the rotation vector &(xX) is taken equal to

a(x)= LT arccosx/ 7, (7.38)

le, Ax|

and @ is of the form 2= Qe,. The right member of
(7.37) is easily calculated from (7. 35) and we find

3 (K ? (K
AK(Qe,, |x|e“’)*9[a_t <;> dt+ 5;(;> dxl-].

Equation (7.37) is then reduced to an equation of the
form

glly, ze' = g(1,, 2)=QlA + Bl,],

with 1 =%/f and z=1, +4l,. The solution is
gl)=g.(1,, 2+13) + (A +Bl)arctg %
2

From that we deduce the solution of (7. 37),
Axl kb= [ 1xl, 60,2+ 8

+(%<§) + 88_1'(57{) ll) arctg ;—:] (7.39)
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The contribution to the Lagrange function (7. 36) of
the first term in the right-hand side of (7, 39) is the
most general form-invariant Lagrangian; this is due
to the relations

(Raw®), = %i’
E(R;‘m(l))i: ’;_2 - (_x?:tz_g

Collecting the other terms we obtain

~~ .

K R, (x (83) - X

L=L, + —arctg 2%/ 2
vy gRa(x)(ez)'x

+dK(a®), |x|e,, )Ry &), ). (7.40)

To cast this expression into an explicit formula we
have to introduce expression (7.38) for a(x) and ex-
plicitly calculate the differential dK. The calculations
are tedious and finally give

K zxy-yx
Lelo- 5 @5y
K x(z% - x2) - y(yZ - 2z9)

T < 9) (7.4

Karct

This Lagrangian is in general a multiform function
and depends on a particular direction of space. These
two features are absent from the equations of motion
deduced from (7.41). If, for example, we choose for
L,,, the usual nonrelativistic kinetic energy term
im¥2/{, the equations are in fact the following:

2 (K\x-[ d[d (K\r[
A 218(2) % |= !
av(v)?‘ +dt[dt<r)£’“] ® (7.42)
where we have put
[_=x/\5{. (7.43)

The rotational invariance of these equations is evi-
dent. The fact that they do not depend on the direction
of space defining the Lagrangian proves that the various
Lagrangians associated with the various directions are
all equivalent. The same is then true for the corre-
sponding gauge functions (7.35). The expression of the
energy is easily derived and reads

o (K

E:%mi{z-i»——(—)A, (7.44)

ot \7v
in which A denotes the arcig term contained in (7.41).
The function is uniform as soon as the function Kis
time independent. The conserved quantities, as given
by the general theory of Sec. 6, are

Q=xAp-K. (7.45)

These quantities are different from the usual genera-
tors of the rotation group in phase space. In terms of
the velocities, the expression for Q recovers a sym-
metrical aspect, namely

’I?x/\[

v X (7. 46)

Q=ml -5 5%
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No more than XAp the components of the angular
momentum mXAX are conserved.

A particularly simple case is obtained when K=2\7,
with A a constant, The Lagrangian then becomes uni-
form, and is reduced to that of a charged particle in a
static magnetic field. This field may be identified in
the Eqs. (7.42) as being that of a magnetic monopole
situated at the origin, eB=xx/7°. The Hamiltonian
formalism is, in this particular case, easily defined.
The conjugate momenta and the Hamiltonian are
respectively

— % yz
b =mXx+x ET Y
. P74
Py=my —x r(x2+y%) ’ (7.47)
b =ms,
_ 1 24 22 p2y e A z
H= m (px+py+pz)+ %’ ,r(xz _|_y2) (xpy —yp,)
AZ z? (7.48)

+ 2m P+ %)

Thusg, although the equations of motion in velocity
phase space are perfectly invariant, we see that any
Lagrangian or Hamiltonian formulation of the theory
must necessarily introduce a preferential direction in
space. At the same time neither the generators xA p
of the rotations nor the components of the angular mo-
mentum mXAX are conserved. However, the equal time
brackets of the components of XAp are evidently the
usual ones. These features look similar to that which
are postulated for the so called broken symmetries in
particle physics., This aspect is presently under
investigation.

APPENDIX A

Proof of Theorvem 4.1: (1) Let K be a continuous local
gauge function which is defined and bounded on the
neighborhood v Xw of (e,%,), and associated with the
continuous local exponent ». Owing to the theorem of
Bargmann, the neighborhood v may be assumed so
chosen that x=X;(mody), where A, is C” and g is con-
tinuous and bounded on v. The local gauge funciion K,
defined by K, {(w, x)=K(w, x) + p(w) is locally equivalent
to K and associated with x|. Let us first show that K,
is locally equivalent to a local gauge function C* with
respect to w. Let », and w, be open neighborhoods of
e and x, respectively such that v*C v and w,"1 C w.
Following Bargmann we introduce a function y(w) with
the following properties:

(a) vis C” on G,

(b) v vanishes outside an open neighborhood v, con-
contained in v,

{(¢c) fgvdw=1, where dw denotes a right invariant
measure on G.

The following function:

d(x)=J do' v(w"K, (@', x)
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is defined on w and satisfies, for we v, and x € w,,
o(x) - d(x*) = [ dw’ v(w)K, (0", %) - Ky(w’,x*)].
That is, by using (4. 2),
P(x) - p(x*) =K, (0, %) - [ dw’ v, (', )
+f dw’ V(w')[Kl(w’,x)-Kl(w'w,x)].

This shows that K| is locally equivalent to the
function

Ky(w,x)= j do'[v(w'w™?) - v(w)]K, (', x).

For any x e w, that function is C” with respect to
we v,. The corresponding functional equation is

Ky(w,, x“2) = K(w,w,, x) - K,(w,, x)
+j do'lv(w wid) - V(w')]xl(w',wz),

where we have used the functional equation for A,. By
putting x =x, and choosing the neighborhood v, in G
such that v3C v, and x33C w,, one sees that the mapping

V3 X033 (@), w,) = Ky(w,, x52) (A1)

is C*, If we now assume that G is connected and transi-
tive, the conditions we have recalled at the beginning of
subsection A of Sec. 4 i',j7‘p1y the existence of a submani-
fold UC v, of G which is mapped diffeomorphically onto
an open neighborhood of x, by the mapping w — x§’. The
restriction of the mapping (A1) to v, X U is therefore

C~ and the same property holds for the mapping

v Xx5Y > (w, %) — K,(w, x).

(2) Let 2 be a C* local gauge function defined on the
neighborhood v X w of (e, x,) by the formula (2.11) with
continuous functions ¢ and u. From (4.2) the local ex-
ponent A =0 (modyu) associated with 2 is C* in the neigh-
borhood of e. Bargmann’s theorem then implies that p
is C” in the neighborhood of e. Since % is defined on
vXw, the function ¢ must be defined on w®*. For any
fixed x in w the mapping w — ¢(x) - ¢(x*) is C* on some
neighborhood v’ C v. As in the preceding paragraph, let
U,C ' be a submanifold of G diffeomorphically mapped
onto an open neighborhood of x by w — x*; the function
U,D>w— ¢(x®) being C*, the same is true for the func-
tion x% >y — ¢(y). It follows that ¢ is C* on w.

APPENDIX B: LOCAL HOMOMORPHISMS FROM
G INTOR

We will show that C* local homomorphisms w — 8{(w)
from G into R are given by the formulas

bw)=f "0,6%=["6.T", (B1)

where the coefficients Ga:XaG(e):)?aB(e) only have to
satisfy the conditions

c’;zﬂer =0. (B2)

Proof: Let § be a C” local homomorphism. By writ-
ing the relation ¢ (w,w,)=0(w,) +8(w,) for w,=w, w,
=eXxptX, taking the derivative with respect to ¢, at
t=0, we find

do (X)(w)=X8(w)=X8(e).
The differential df is then locally left invariant and

may be written
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de =8,t°, (B3)

the coefficients 8 , being some constants. With the help
of (3.9), the closure condition d(dg)=0 immediately
gives (B2), while (B3) integrates to give the first formu-
la (B1). The second of these formulas is easily derived
by permuting the roles played above by w, and w,. In
particular, df is simultaneously left and right

invariant.

Conversely, the condition (B2) implies that the 1-form
0.t % is closed and therefore that the first integral in
(B1) does not depend (locally) on the integration path.
Let 8(w) be the C~ function so obtained. We have 6(e)
=0 and, due to the left invariance of the form under
the integral sign,

6(w,w,) — 9(“’1) - 9(“’2) = jewlwze Lo ewl 0,L°

Wiy «
_fwl 8at%

516 J. Math. Phys., Vol. 18, No. 3, March 1977

This last expression locally vanishes as the integral
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On Bogoliubov transformations for systems of relativistic
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A simple expression for the normal form of the unitary operator implementing a Bogoliubov transformation
on a system of relativistic charged particles is obtained. Necessary and sufficient conditions for the

transformation to be unitarily implementable are rederived.

1. INTRODUCTION

It is well known that the interaction of relativistic
particles with external fields should be considered as a
many-particle problem. The classical (i.e., single-
particle} theory leads to difficulties which are connected
with the unphysical negative energy solutions of rela-
tivistic wave equations. In the many-particle framework
the wave equation is looked upon as an equation for a
quantized field, which is an operator-valued distribution
acting on a Fock space. (For a more algebraic view-
point see Refs. 1 and 2.) If the particle has a distinct
antiparticie (which will be assumed in this paper) this
space is the symmetric or antisymmetric Fock space
over the direct sum of a one-particle and a one-anti-
particle space, depending on whether the particle is a
boson or a fermion. When the classical theory can be
formulated in a Hilbert space it is convenient to smear
field operators with vectors from this space instead of
with test functions from a Schwartz space, since one can
then easily use various operators from the classical
theory, for instance the time-evolution operator. If
these operators are pseudo-unitary, resp. unitary (in
the boson, resp. the fermion case) they generate trans-
formations of the field operators which amount to
Bogoliubov transformations of the annihilation and crea-
tion operators, i.e., linear transformations which leave
the canonical commutation relations (CCR), resp.
canonical anticommutation relations (CAR) invariant.
When these transformations are unitarily implementable
the resulting unitary Fock space operator is assumed to
be the physical operator corresponding to the unphysical
operator from the classical theory.

More information on the connection between this type
of Bogoliubov transformation and the external field prob-
lem can be found in Refs. 3—5. General Bogoliubov
transformations are treated in the books by Friedrichs®
and Berezin’ and, for bosons, in Ref. 8.

The main result of this paper is a simple expression
for the normal form of the unitary operator // which
implements the field operator transformation generated
by a (pseudo-) unitary operator U acting on the classi-
cal Hilbert space. We prove that on the dense subspace
of “physical vectors,” to be defined below, {/ equals a
strongly convergent infinite series, the terms of which
contain creation and annihilation operators in the nor-
mal order. The coefficients of the terms are deter-
mined by an operator A which is closely related to U.
In forthcoming papers on the interaction of relativis-
tic charged spin-0 and spin-3 particles with external
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fields® we will use this result to establish the connection
between the formal Feynman—Dyson series for the Fock
space S operator and the unitary operator implementing
the transformation generated by the classical S opera-
tor. Qur results might also be useful for higher spin
theaories.

Section 2 contains definitions and a summary of
various equivalent requirements for the transformation
to be unitarily implementable. In Sec. 3 we introduce
operators which are used in Sec. 4 to obtain the normal
form of //. In the fermion case there is a restriction on
U that is dropped in Sec. 5, in which an expression for
the normal form of // is obtained for the general fermion
case. Section 6 contains a new proof that a cerfain well-
known condition is necessary for our kind of Bogoliubov
transformation to be unitarily implementable, and re-
marks about unbounded pseudo-unitary operators.

2. PRELIMINARIES

The classical Hilbert space will be denoted by #. It
is the direct sum of two subspaces /4, and /4., with cor-
responding projections P, and P_. //, will be the one-
particle space, /4. the one-antiparticle space. This
decomposition is closely connected with the occurrence
of unphysical negative energies in the classical theory.
For more details we refer the reader to Refs. 10, 1, 4,
and 9, It is convenient to assume

HaH.=LYR%,dp)¥, M<w, (2.1)

This assumption has definite notational advantages and
corresponds to physical applications.® We will indicate
at various points how one could proceed in a coordinate-
free way. If will also become clear that our results
hold true as well if 4/, or //_ are finite dimensional.

We shall now summarize some results on second
quantization, most of which are well-known. The ele-
ments of the (anti) symmetric Fock space 7, over 4
{¢ =a, s} can be written as

{lp""(pb ai, e ;pm an;qh Bi’ o3 Gy, ﬁr)}’

where n,7e N and oy, 8;=1,..., M; J7 is (anti)
symmetric in particle and antiparticle variables sepa-
rately, The inner product in 7, is given by

©

(zp1, Z1)2) = E

7=l CfpeeesCpyBiyecayBy=1

f dpy =+ +dp,dq,*+dq,

X d)’;" (pi’ a‘lr e ;pm Qp, qi’ Bh vee Gy Br)

x%’"(?n“u--wpm an;qvﬁp-- (2'2)

> qys Br)'
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An element Y 7, will be called a finite vector if there
are N, R <« guch that §*"=0 if #> N, ¥> R. The dense
subspace of finite vectors will be denoted by D,. In 7,
one has particle and antiparticle creation and annihila~
tion operators a'*’(f), resp. 5'*(g), where fc /#,,
g< .. On a finite vector ¢ they are defined by

(a(f) (\D) "'r(pb 011, L )pn’ Ol"; qi: ﬁi; LR ’qn ﬁf)

=DV Y [ dpfalp)

°ZV'+1"(P, a,pi’ ab .. ,pm an;qh Bi; DRI/ Y Br),

(b(g)d)) ""(Pu 0(1, oo ypm an;ql? Bi: . :q” Br)

M
=(1’+1)”2(¢)"£ [ dag, (@)

°ZP"'“1([J1, Oy eevyPpy 054, B8, 91 31: eo sy Br);

(a*(f) d)) n,r(pl, 011, .o ’pm anin; Bp o ’qrs B‘r)

=1/t 35 @ 7, ()
<5 Pny ¥ui 4y, ﬁb cs sy Br)9

A A
,pi’ai, ..

¢ ZP"""(Pp a‘p .

(b*(g) zp)n,r(p1, 0[1, v ’pm (2"; qv Bia v ’qr: Br)

T
—=qp~1/2 Z} (;)Mhl gBj(qJ)
¥=1

sy Br)'
(2.3)

* lp"'r-i(pv ah oo ’pm an; q‘l! B‘p sy aj, Bj, .

We will suppress the indices from now on. In (2. 3) the
upper sign refers to fermions, the lower to bosons. This
convention will be used in the whole paper. One can
easily show that these operators are bounded in the
fermion case and unbounded, but closable, in the boson
case. It is straightforward to verify that on D, the well-
known CAR (CCR) hold,

la(fy), a2k =[b(g1), b))k =1a*(P), b)), =0,
[a(fj)9 a*(fQ)]t = (fiyfz), [b(g]_)y b*(g2)]:t = (g15 gz)'
(2.4)
We will denote the spectral projection of the number
operator N=Q(1) (for this notation and additional infor-
mation see Ref. 11) on the interval [0, M] by P,. One
easily sees that the demain of the closure of a*'(f)
(which will be denoted by the same symbol) can be
characterized as the set of vectors ¥ for which
s-limy, ., a*(f) P, ¥ exists, and that D(a(f)) = D{a*(f));
this is also true for b*’(g). Hence,

a® (N P=s.lima* (N P,y ¥ < Da()=D*(f),
b () =s-limb* (g) Pyy V b D((g) =DB*(g))-

(2.5)

This implies that (2. 3) holds true for any ¢ in the
domain of the respective operators. One also concludes,
using relations like

a(f) (A Py< || f|*(N+1)P,,

that the domain of N1/? belongs to the intersection of

(2.6)
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the domains of all creation and annihilation operators.
The latter subspace will be denoted by D. (For fermions
D=7}, of course.)

We will also have occasion to use the dense subspace
D, on which all powers of the number operator are
defined,

D.= f_wl D(N?), (2.7)
From well-known (and easily proved) relations like
(2.6) and

a(f) NPy,=(N+1Y al(f) P,, {(2.8)

one concludes that, for ¥< D.,

s-lim I a™(f,) 11 b* (g, ) Pyt
Mwo 4 4 3=1

exists and belongs to D, i.e., the closure of any finite
product of creation and/or annihilation operators (w.r.t.
the subspace of finite vectors) is defined on D, and
leaves D., invariant. One also verifies that on D,, the
closure of the product equals the product of the closures.
The relations (2.4) clearly hold true on D,.

We need one more subspace. Let @ be the vacuum;
then we will call “physical vectors” the finite linear
combinations of vectors of the form IT}_{ a* (f;) IT},,
b*(g;) 2, where n,>0. (From a physical point of view
these vectors are the relevant ones in describing initial
states in a scattering theory.) The physical vectors
form a dense subspace, denoted by D.

We define field operators on D by

&) =alPwYb*(P.v) VY veH, {2.9)

where the bar denotes complex conjugation on 4_; in a
coordinate free approach one could take any conjugation
K which maps /. onto itself. [The connection between
& (v) and the usual field operators from the Klein—
Gordon and Dirac theories can be found in Ref, 9.]1In
theAfermion case we consider transformations ®(v)
—&(v), generated by unitary operators on 4 as follows:
3(v) =0(U*v) VY ve . (2.10)

In the boson case we also have (2. 10) but now U is
pseudo-unitary, i,e.,

UqU* =U*qU =g, (2.11)
where
qg=P,~P_. (2.12)

(We will assume that U is bounded. At the end of the
paper we shall comment on the case that U is unbound-
ed.) Defining

U.=PUP., €€ =+, (2.13)
we observe that
U, *=U* (2.14)

(X34 e'e

and that the (pseudo-) unitarity of U is equivalent to the
relations
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U*++U++ = 1**; U*+-U-+,
U*_ U_=1_3U*_U,,

UHU*H= 1,.5U0,.U*,,
U_U* _=1_+7 U_+U*,_ s
. U~H>U*+-::F U+-U*--a
=FU*_U,, U _U* ,=3U_U*,,.

U U, =% U* U @.15)

U*__U._,
Decomposing &(v) in new annihilation and creation
operators as in (2.9), i.e., setting

d(v)=a(P,v) +b5*(P.v), (2.16)

one easily sees that (2.10) is equivalent to the trans-
formation

a(f) ~a(f),b(3) = b(3),
where

a(f) =a(U*, /) +b*(U*_f) VY feh,

b(g)=b(T* _g)+a*(U*,_g) W gcH..
Using (2.15) it is straightforward to verify that these
operators also fulfil the CAR (CCR). The reader will
have no difficulty in writing our transformation in
terms of “one-~body” annihilation and creation operators

™ (v)=a'™ (P, v) +b*(P_v), and establishing the special
character of the resulting Bogoliubov transformation.

(2.17)

The transformation (2. 10) by definition is unitarily
implementable if there exists a unitary operator //,
mapping D onto D, such that

d(w) =(/*e ()| ¥ veH (2.18)
or, equivalently, such that
a(f)=U*aNU v feh.
(2.19)

B2 =U*(RU Y geA..

It is well known that this is equivalent to the existence
of a nonzero vector < D such that

aNQ=b(2)2=0 Vv fe/H, Vgc/h.;

if such a vector exists it is a scalar multiple of //*Q.

(2.20)

Because we want to obtain an expression for //Q it is
convenient to consider as well the transformation gen~
erated by the inverse of U, i.e., the transformation
& (v) ~®'(v) where

' (v)=®(Uv) W vet (2.21)
in the fermion case, and
' (v)=@(qUqv) ¥ ve H (2.22)

in the boson case. Existence of a unitary operator {/
satisfying (2. 18) is obviously equivalent to existence of
a unitary operator [/ satisfying

e'w)=le()* ¥ velH, (2.23)
or, equivalently, satisfying

a'(f)=la(NU* v fet.,

D) =/ Ib(5) /> (2.24)

() =Ub(RU* wegehH.,
where

a’'(f)=a(U,,f) £ b*(U_.1),

2. 25)

b(g)=b(U_g)+a*(U,.g).
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From (2. 15) one again concludes that these operators
fulfil the CAR (CCR), so implementability is also
equivalent to existence of a nonzero vector Q’'c b
satisfying

a(QV=b" (=0 V fet, Vgeh.;

if such a vector exists it is a scalar multiple of (/.

(2.26)

From the work of several authors!?=1 it follows that
the transformation (2.10) or, equivalently, (2.21)—
(2. 22) is unitarily implementable if and only if

U,, U, €HS,

where HS is the set of all Hilbert—Schmidt (H.S.)
operators on /4. In Secs. 3, 4, and 5 it will be assumed
that (2. 27) holds true. We will denote the correspond-
ing unitary operator on Fock space by (/. From the fact
that the Fock—Cook representation of the Clifford
algebra, resp. the Weyl algebra over 4, is irreducible
it follows that // is up to a phase factor uniquely
determined.

(2.27)

We remark that the sufficiency of (2.27) will be a
consequence of our results, while we will give a new
proof of the necessity in Sec. 6, so in this respect the
paper is self-contained.

3. THE OPERATORS A AND EXP (A, .a*b™)

In the boson case one easily concludes from (2, 15) that
U,, and U__ have bounded inverses (as operators on //,
resp., #/.). In the fermion case this also follows from
(2.15) and (2.27) if we make the additional assumption

(3.1)

We will assume (3. 1) in this section and the next one,
and deal with the general case in Sec. 5.

KerU,,=KerU__=0.

We now introduce a bounded operator A on /4 which
will enable us to obtain a simple expression for the
normal form of {/. A is defined by

A_=x(1_-U_"),
A,=xU_"U_,
A, =U,U_",

A++:U++" 1++" u.u

o -

(3.2)

-1 v,,.

From (2.15) it follows that this is equivalent to
A_==(Q__ -U* + U*_ULU*,),
A, =-U*_ Ux"

A,, =F U*fi U*,, , (3- 3)
A++: - 1+++ Ut*-i'

One easily verifies that (3. 2) is also equivalent to

(fermions) (U~1)-A~(U-1)P_A

=(U-1)-A -AP_(U-1)=0, (3.4)

(bosons) (U-1)—-gA+(U-1)P_A

=(U-1)-gA -qgAP_(U-1)=0, (3.5)
We will need the following relations, which follow from
(3.2) and (3. 3):
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U«_A+-U-+=1+++A++; Al :FU +A U 0,

- - T

(3.6)

Ut A* U, _=1_FA*, U_+ A*_+AXU, =0.(3.7)
From (2.27) and (3.2) we infer that A,_and A_, are
H.S.; moreover, one obtains from (2.15), in the boson

case,
“ty, U,.U. '1)

o -

(v, v)

(U,.w, U, w)
up w (U_w, U__w)

nA.-n*=sup< U
Y& H

UL AT
—WEE’I U* U, w,w) + (w, w)

<1, (3.8)

Consequently,
Mo
(bosons)A, =2, NFy(Gy,+) Mysw=, 0<\;<6<1, (3.9)
i1
where {F}, {G,} are orthonormal sets in #/,, #_ and
where Ay <A, if i>j (see Ref. 15); furthermore,
]
2iAi<w, (3.10)
i1
We set
A, a*v*= [dpdp’A,_(p, p")a* (p)b* "), (3.11)

where A, _(p,p’) is the kernel of A,_. The operator
A._a*b* and its powers are clearly defined on D,. The
next lemma shows that the operator exp(A,_a*b*) is de-
fined on D,

Lemma 3.1: Let ¢ D and let

(A*.a*b* )n ¢

2 (3.12)

$n=

Then s-limy. » TV o ¢, exists and belongs to D..

Proof (A. bosons): We assume first that ¢ =Q. Exis-
tence of the limit is then obviously equivalent to exis-
tence of limy, o3V a,, where

*\n
n:ll(A_*raT—b)_Q\Z. (3.13)
n!
One easily obtains (n>1)
1
ay= 5 [ apg--dp,day - -aa,
n —— 3.14)
X E I A+. (qispi)Ac-(qi’po(i)); (
oS Sy i=l
where S, is the symmetric group. We now define
A
4y, p=|| 22V "‘f” Yale, (3.15)
where
N
Ay=20NF (G, ). (3.16)
i=1
The analog of (3.14) for a, y implies
lim a, y = . (3.17)

Neoo

On the other hand,
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N =

i [Bat E*GOF
n!

3 0w Q‘

ki""’kN=0 i=1 kl
ki-)"- #kN_n

n N
2 TIA%%
ki....,kN-O i=1 .
kl“'”kN

(3.18)

We now introduce a function

Fyla)=11(1- axd), (3.19)
i=1

which is clearly analytic in the disc 0, defined by
0={accC|lal<g?}, (3.20)

Using (3.18) one easily verifies

Fyla)=2a, ya". (8.21)
n=0

We shall prove that lim,, - Fy(a) exists on 0 and that
the limit function is analytic in 0. Let 7 be such that
0<r<g?, (3.22)

If lal<y,

N N
|F, (@) | < TT|1-an}|-t< 1(1 - mdt
i=1 i=1
N
=eXp[— 221n(1 _rxg)]
it

< exp<- N'In(1 - 76%) + 27 25 A ) =C,< %, (3.23)
§=N"+1

where N’ is such that

PNy < 3. (3.24)
From (3.23), (lal<r,M>N),
M

IFN(a) -F,(a)l SC,' 1- 11 (- a)x%)‘ik
i=N+

3 In(1- ah%)]’n (3.25)

i=N+1

=C,|1- exp[—

We now observe, (N> N),

M
22 In(1-ard)
i=N+]

<

=

i=N+

2> |in]1-ar| .+ E larg(l and)|

<- i} In(1 - 77\2)+— Z} lsm[arg(l ard)]|
=N+

(27‘+—> Z) A2, (3.26)
i=N+
It evidently follows from (3.25) and (3. 26) that

lim Fy(a)=F(a) ac0, (3.27)

N
where F(a) is analytic in 0.

Using (3.17) and (3.21) we infer
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F(a)=2Ja,a". (3.28)
n=0
Thus, since 72> 1,
2ia,=F(1) <, (3.29)

n=0

which proves that s-lim,.. 3y, ¢, exists if $ =Q. We
notice that

M
F(1)=1lim Fy(1) = I (1 - A2, (3.30)
Neco i=1
Hence (see Ref. 16),
(bosons) || exp(A,_a*b*)Q |2
=det(1__- A,_*A,_)". (3.31)
We now introduce the functions
Gyla) = 2 (2n)*a,a" ke N. (3.32)
n=0

These functions are analytic in 0 because the power
series on the rhs of (3.32) has the same convergence
radius as the rhs of (3.28). Therefore,

2 (2n)*a, = G,(1) < . (3.33)
n=0
From (3.13) and (3. 33) it then follows that
exp(A,_a*b*)Qe D,. (3.34)
One obviously has
N xpkyt n r
Z}‘:’L—.‘fﬂ.b__)_ I a*(f,) T1b*(g,)Q
n=p % i=1 i=1
n r
= Ia*(f;) [1b*(g,) P,y exp(A, a*b*)Q. (3.35)
i=1 =1

From (3.34) and (3. 35) we finally conclude that the limit
of the lhs of (3. 35) exists and belongs to D,, which
proves the lemma for bosons.

(B. fermions): Proceeding in the same way as for
bosons, one obtains instead of (3. 14),

a”:m dpi"'dpndqf"dqn
e
X E sgno I A...(q{,p{)A...-(qi,po(i))'
e = (3.36)

Defining

T=A_*A,, (3.37)
we have

a,=(1/n!)T,, (3.38)
where

TnEfdpi"'dpnT(ph"-apn) (3.39)

and T(py,...,p,) is the determinant the elements of
which are T(p,;,p;) ((,j=1,...,n). Introducing the en-
tire function

d(\) =det(1__+\T), (3.40)
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one has (see Ref, 16)

an =f()) %pnv, (3.41)
where
Py=1,
oo 1. 0 ..-0 0
g, 00 2 ... 0 0
P, = . , (3.42)
Opg Opg Op #0701 =1
Oy Opg Opz =" Oy Oy
and
o, =Tr(T%). (3.43)

Expanding the determinant, we obtain the recurrence
relation
(n-1)!

TP, (n>1).

(n“_ Pl (3.44)

n
P,=20 (- 1)
=1
Expanding T{py, ...,P,) in (3.39), one easily sees that
T, obeys the same recurrence relation. Thus, since
T1 = P1,

T,=P, Yrc N (3. 45)
Therefore,
() = a " (3. 46)
n=0

so the limit exists if ¢ =8 and

(fermions) | exp(A, a*b*)|?=det(1..+ A,_*A,.).
(3.47)

Arguing in the same way as for bosons, one concludes

exp(A,.a*b*)Q < D.. (3.48)

The lemma now follows from (3. 48) and (3. 35). .

We point out that the proof of the lemma could be
shortened in the boson case by using more results on
infinite determinants, 113

If one does not assume (2.1), one should define

H,
(bosons) A,_a*b* = ng,-a* (FD*(KG;), (3.49)
1

where K is the conjugation chosen in (2.9). One could
then map # onto L? spaces as in {2.1) in such a way
that K becomes complex conjugation on #/_, use the
lemma, and transform back. Using the analog of (3.49)
for fermions one could prove the lemma in a similar
way for fermions.

4. THE NORMAL FORM OF {/

The result of the next lemma was obtained in different
forms by several authors. %3 It essentially dates back
to the work of Friedrichs.®

Lemma 4.1: The following relation holds true:
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(/e =exp(if)det(1._+ A, *A, )™/2

X exp(A,_a*p*)Q 0<8<2m, (4.1)

Proof: By (3.31) and (3.47) the norm of the rhs
equals 1, so by (2.26) and (2. 25) it suffices to prove

[a(U., £) £ b*(U_,f) exp(A, a*b*)Q=0 ¥ fc 4.,

(bU_.g)ta*(U,_g)lexp(A,_a*b*)2=0 Y g /.. (4.2)

Notice that the lhs of these equations are well defined
in virtue of (3.34). [In the fermion case this of course
already follows from the relation exp(A, a*b*)Qe 7,.1]
Using (2.5) and the CAR (CCR), we conclude that (4. 2)
is equivalent to

[0* (8, *U,. /) +b*(U_. Nl exp(A,_.a*b*)Q=0 ¥ fe /,

[Fa*(A, U_g)+ a*(U, g))exp(A, _a*b*)Q=0 v g /..

(4.3)
However, (4.3) follows immediately from (3. 2) and
(3.3). a
We normalize [/ by setting 6 =0 in (4.1):
(S =det(l__+ A,_*A, )" /2 exp(A,_a*b*) Q2. (4. 4)

We now introduce the operators which are needed for
the normal form of /. Let K, L, M be bounded opera-
tors on //. We set

KLL’L M£+ a*ip*rpkpt ot o
= [ dky << dkjdpy - - - dpjday* ** dq]

=

(K, )5y, £) 1L (L)

o=}

(/70, Pé) h (fw.uf)((In q;) (l*(k.‘) R a*(kj) b*(p1) °° °b*(pk)

T=

[

Xb(pg) o+ b(p blgq) -+ blg;)g)) -+« - alg) al®]) ++ alk]),
4.5)

where, e.g., (K,,)(k, ') is the tempered distribution
which corresponds to K,, by the nuclear theorem. The
formal expression at the rhs of (4.5) is defined on D
by writing

a*(f) = [dpa*(p)f(p), b*(g)=[dpb*(p)g(p) (4.6)

and then using the formal CAR (CCR)
la(p), a(p")]). =[b(p), b(p"], =[a"*(p),b(p"]. =0,

la(p), a* (p")].=[b(p), b*(p")). =8(p - p") .7
and the relation
a(p)Q=>b(p)2=0, (4.8)

to get rid of all annihilation operators in (4.5). One
should then set, e.g.,

[ drdrk’ (K, )k, k') a* (R)F(R') = a* (K. f),
[dqda’M_)g,q") @) fla’) = (g, M. /).

One easily convinces oneself that this gives rise to a
well-defined linear operator mapping D into D, It is
clear that one could define this operator on D without
using (2.1) but this would obviously give rise to very
unwieldy formulas. Denoting the operator by O, , ;, it
is straightforward to verify relations like

4.9)
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Oj,k,z a*(f) = a*(f) Ol,k,l +]'d*(K++f) Ol-i,k,l
+10y, 4,11 b(M_.f)
which hold on D.

(4.10)

Defining the transpose N7 of a bounded operator N
on # by
(NT(p) = W) (p) (4.11)

we can now proceed to the first theorem. We define an
operator I'(U) by

T(U)=det(1__+ A,_*A, )= /2 25 (/,, (4.12)
L=
where
U, = ZL) _1 AL A7 (7 AT )RA!
o PRI 23 17277 B -t
{+j+k+1=L
X a*ip*ig*xip¥rprptalal, (4.13)

Notice that //; is well defined on D. We can abbreviate
(4.12) and (4. 13) as follows:

T(U) =det(1__+ A,_*A, )7 /2
X:exp{A,_a*b* + A, a*a+ A__bb*+ A_, ba):.

(4.14)

Defining the domain of T'(U) by

~ N
DIT() ={pc D| s-lim 20 U/, ¢ exists} (4.15)

“ww L=0

we have the following theorem.

Theovem 4.1: The domain of f(U) equals D,
D(F(U)) =D, (4.16)
and

T(U) D CD.. (4.17)

The operator // is equal to I'(U) on D,

{{d=det(l_x A,_*A, )*/?
x:exp(A, a*b* + A, a*a+A_bb* +A_ba): ¢ ¥ ¢pc D.
(4.18)

Proof: From Lemma 3.1 and (4. 4) it evidently follows
that &< D(T(V)), T() QL ={/Q, and (/Q<c D,. To prove
the existence of the limit in (4. 15) for a vector ¢ of the
form

¢= “1 a*(f;) 11 0*(g)) 9, (4.19)

we observe that the individual term in (4. 13) only con-
tributes if

l+jsn, l+ksvr. (4.20)
Since there is only a finite number of (j, k,1) which
fulfill (4. 20) we conclude from Lemma 3.1 that the
limit in (4. 15) exists and belongs to D.. It remains to

prove (4.18),

In view of (2.24) and the relation L) a={9, it
suffices to show that on D

S.N.M. Ruijsenaars 522



(4.21)
(4.22)

T at(N=a*(ATW) Vv feH,
LU b*(2) = (DT (W) Vge/i.

Using relations like (4.10) and the relations (3.6) and
(2. 25) we now have on D [observe that, e.g.,

limy, . a*(AZY o =a*(f)limy.. Y1 ** on D accord-
ing to Lemma 3.1, (2.5), and the argument after (4.20)]

F) a* (5 =[a*(f) +a* (A, NIT W)+ T b(A_, )
=la*(U,., ) - a*(A,_U_ NI W) + B (A7)
=[a*(,, P2 b(U_ AITW) + T(W) (AL f)

+detreed 2y <AL a*ip*i(s bm)

XAZ,'“a’”'"a’

=a* (AT +TW) (A FU_,+A_U_)S)
=a™* () FW),
which proves (4.21). Similarly, using (3.7), we obtain
Fo* (9 =0b*(@+p*A% ) TW) +T(U) o+ A, *g)
=[p* (U@ +0*(A*_U, ) T() + T al A, *g)
=[p*(U_g)+ a(U,_g) ] () + T(U) ax A,_*g)
+det - b*EaU, g) d
=p*( T()FT(U) al(A*+U,_+ A% U, ) g)
=b"(g) T(W),
which proves (4.22). »

1t should be noticed that as a consequence of this
theorem one can write the “matrix element” (¢, {{¢)
for “physical vectors” ¢, as a finite sum of terms
each of which is a finite product of the “matrix ele-
ments” of the operator A on /4 and the scalar
det(* - .) /2,

We further observe that a pseudo-unitary U is unitary
if and only if

U, =U_=0. (4.23)

Assuming (4. 23) for bosons and fermions one can define
a unitary operator U by

U,_.=0.,=0, U,=U,, U._=0_, (4.24)
where

T__0)(p)=(U_D)(p) VoveH. (4.25)
Then

F) cr@) (4. 26)

which motivates our notation [for a definition of I'()
see, e.g., Ref. 15].

Using Stone’s theorem, one can conclude from the
Weyl algebra formulation of the CCR that ¢/ maps D
onto D. This also follows from our theorem. To show
this, let < D,. Then Py =4 if N is big enough. Now
let ¥, D be such that Py, =9, and ¢, ~9. Then, e.g.,

a() Py, =Ua'(f) Py,. 4.27)
The lhs is well defined since by the theorem

UDCD,. (4.28)
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Now the limit #n ~ in (4.27) exists since a’(f) is bound-~
ed on Py /.. Hence

Uve Dla(f)) a(NUY=Ua’(f)}. (4.29)
Thus,

UD;Cb. (4.30)
If ¢ D, then by (4.29),

a() [Py d=Ua'(f) Pyo. (4.31)
The limit M —« in (4. 31) exists in view of (2.5).
Therefore,

Ude D(a(f)), alNlo=Ua(f) ¢, (4.32)
S0

Ubchb. (4.33)
Repeating the argument for (/* we infer

{D=D (4.34)

as asserted.

In a coordinate-free approach one should define the
operator in (4.5) directly on D, replacing complex con-
jugation by the conjugation K. One could then proceed
as indicated at the end of Sec. 3.

5. THE GENERAL FERMION CASE

We shall now treat the general fermion case, i.e.,
we drop the assumption (3.1). Let {g/}¥; and {f]}{.; be
orthonormal bases for KerU,,, resp. KerU_. In view
of our standing assumption (2.27), one has M, L <,
Defining

fi=Ufi, gj:Ungy

one easily verifies that {f;}{; and {g,}/%, are orthonor-
mal bases for KerU¥,, resp. Ker U*. From (2.15) and
(2.27) we now infer that U__, as an operator from
(KerU__)* to (KerU* )*, has a bounded inverse mapping
(KerU*)* onto (KerU_)*. We extend this inverse to //_
by setting it equal to zero on KerU/* and denote the re-
sulting operator on/4/_by U__". In an analogous fashion
we define the bounded operator U¥%™,

(5.1)

Defining a bounded operator A by (3. 2) it is straight-
forward to verify, using the unitarity relations (2.15),
that (3. 3), (3.6), and (3.7) again hold true. However, it
should be noticed that (3. 4) only holds if L =M =0,
since it implies that U__, as an operator from #/_ to #/_,
has the inverse 1__- A

-2

The next lemma is the generalization of Lemma 4. 1.
An analogous result has been obtained in Ref. 5.

Lemma 5.1: The following relation holds true:

L
UQ=exp(E@) det(1__ + A, *A, Y /2 11 a*(f;)
it

M .
x 11 b*(g;) exp(A,_a*b*)Q, 0<6 <27, (5.2)
Pyoof: From
A*fi=A_g;=0, i=1,...,L, j=1,...,M, (5.3)

it follows that a(f;), b(g;) commute with exp(A,_a*b*).
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Consequently the norm of the rhs of (5.2) equals 1. It
remains to prove

. L
la(U.. ) +0*@., I 1T a*(7)
M -
><I.I_T1 b*(g;) exp(A,_ a*d*)Q =0, ¥ fc #,, (5.4)
R L
@ D +a*W. ] i a* ()
M
x b *(g) exp(A,_a*p*) =0, Wge H.. (5.5)
It follows from (5. 1) that these relations hold if
fe KerlU,,, resp. ge KerU__. If f< (KerlU,,)* then
a(U,, f) in (5.4) (anti)-commutes with [TeeTlee>,
Since
AXU,,f+U_,f=0 V¥ fec (KerU,,)* (5.6)

we conclude as in Lemma 4.1 that (5. 4) holds. Simi-
larly, (5.5) follows from

-A_U_g+U,_g=0 wge (Kerl )" (5.7)
B
We normalize // by setting
U=det(1..+ A, *A )V [T a*(r)
x le':I‘ b*(g,) exp(A,.a*b*) R, (5.8)

where the products are in the natural order of the
indices. This convention will also be used in the sequel.

Defining the operator £(U) : D —~D,, by (4. 14), one
concludes in the same way as in the proof of Theorem
4.1 that on D,

T a* (N =a™(ATW) ¥ feH,, (5.9)
T(W)b* (2 =b™ () T(WU) wgeh.. (5.10)
From this proof one also infers that on D
T a*(N=TW)b*(g)=0 v fecKerlU,, WgeKerl..
(5.11)

Hence, by (5.9) and (5.10),
b(FIT(U)=a(g")T(U)=0 V f'cKerlU* vg'cKerlU%.
(5.12)

We note that I'(- U) also satisfies (5.9)—(5. 12), apart
from a minus sign at the rhs of (5.9) and (5. 10).

Now let P be the set of all partitions of the index set
{1,...,L}u{1,..., M} into two subsets. P clearly con-
tains 2**# elements. An element {p, 7)e P is specified
by two subsets {py,...,p,}U{7y, ..., Tt and {p,0q, ..., 0.}
U{Tpst, - - -, T4 in which we take by convention the in-
dices in the natural order, We now define a function on
P by

sgn(p, 7) =sgn(p,; 4, ..
+L,Pgy.ns

’,pL’Tm+1+L!‘°"TM

sPy, T4+ Ly oo, Tu+ L), (5.13)

i.e., sgn(p, 7) is the sign of the permutation of the in-
dices {1,..., L+ M} which occur in the rhs of (5.13).
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Defining the operator //’: D —D., by

U= % selp, 7 1 a(5,) I ox(g) F(F )
(o, EP i=1 L1 J
M
x 1 b(r;) 11 alg)
i+l F=m+ i

(5.14)
we are in a position to state the following theorem.

Theorem 5.1: The operator [/ is equal to //’ on D,

1 m o
do= “"%DEP sgn(e, 7) o () j£I1 b*(g; ) T((=)** V)
) i rz-lq b(f‘: lA!Id a(g:,j) ¢ v ocD. (5.15)

Proof: 1t follows from (5. 8) that (/' =(/Q, so it suf-
fices to prove

Ua*(N=a™NlY’ vreh.,
Uv* (D) =bv"™(U" Vvgeh.,

which should hold on D. To show this, first take

fe (KerU,,)*. Then a*(f) anticommutes with the a and

b in (5.14) so we can use (5.9). Both a*(U,, f) and
b(U_, /) now anticommute with all ¢* and b* in (5. 14)
since U,, fe (KerU*)* and U_, fe (KerU* )*. If L+ M is
odd the resulting minus sign is compensated by the extra
minus sign from (5.9). We conclude that (5. 16) and,
similarly, (5.17) hold true if f& (KerU,,)*, resp.
ge (KerU_)*. It therefore suffices to show

U’a*(g}o):b(z.o)é/' Ve, ..., M},
Uo*(ri) = alfi ) U’ Vicql,...,L}

To prove (5.18) we observe that from (5, 11) it follows
that {/’a*(g} ) equals the sum of all terms in (5.14) in
which the index j; is at the right of I‘ with the factor
a(g} ) suppressed, while from (5.12) it follows that

(E;D)U’ is equal to the sum of all terms in which it is
at the left, with the factor b*(g,o) suppressed; the terms
get an extra minus sign if the number of transpositions
required to pull the suppressed factor to the right, resp.
the left, is odd. It is easily seen that the same terms
occur in the lhs and the rhs of (5.18). To show that they
have the same sign, let (p, 7) be a partition such that j,
is at the right of T and let (o, T’') be the corresponding
partition, i.e., it equals (p, T) except that j, is at the
left. We should then prove that

(5.16)
(5.17)

(5.18)
(5.19)

sgn(p, 7')(=)"*"1" = sgn(p, 7)(=)"1, (5. 20)
where j{,j; are such that
Jo= T =T (5.21)

However, this follows immediately from (5. 13), so
(5.18) is proved. The proof of (5.19) is similar. =

6. THE NECESSITY OF (2.27)

We observe that the sufficiency of (2.27) for imple-
mentability, i.e., for the existence of a nonzero vector
Q’c D satisfying (2. 26), follows from Lemmas 3.1, 4.1,
and 5.1. We now give a proof of the necessity of these
conditions. For notational convenience (in the boson
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case) we again assume (2.1). One easily sees that the
result does not depend on this choice,

Theovem 6.1: Let U be a (pseudo-) unitar~y operator
on #/. If there exists a nonzero vector Q’< D such that

a(f)QU=b( Q' =0 VrcH, VYgchH., (6.1)
where

a'(f)=a(U,, ) £b*(U_, f),

b'(g)=b(U.. @) +a*(U..8),
then U,_and U_, are H.S.

(6.2)

Proof (A. bosons): We define projections P™"

(n, 7< Z) by [see (2.2)]
(P n,rzp)n',r’: 5m’ 5", Zl)"'r, (6. 3)

where the notation should be clear. One easily verifies
relations like

P™*a(f) =a(f) P™b7, (6.4)

which of course holds on D{a(f)). Since P™"a’(f)'=0
we have (n,7 = 0)
a(U“f)P"""' Q'Zb*(U_*f) prrige, (6. 5)

It evidently follows from (2. 15) that RanU,, equals /4,,
so from (6.5) we conclude that if P®"1Q/=0, then also
P™hL7Q’ =0, This implies

PHREQI=0 ¥ >0 VE20. (6.6)
From P™"b'(g) Q' =0 we infer analogously

PhtQ =0 Yy¥>0 VI=O0. (6.7)
Since ||Q’]] #0 it follows from (6.6), (6.7), and the
argument given above that we must have

PYQr=a#0. (6.8)
Defining

¥(p,q) =(1/a)} P 1(p,q), (6.9)

one has, using P%1a’(f) @’ =0, resp. P1%’(g)Q’ =0,
and (2. 3),

J W NPV, a)=UL @) VYfeH,, (6.10)

JdgU_.@@¥(p,q)=U._g)p) Vgeh. (6.11)
Introducing a H.S. operator Hg: 4_—#, by

(Hs 2)(p)= [ dg¥(p,q) gla), (6.12)
we can write (6.10), resp, (6.11), as

HyU,, =U, (6.13)

HyU..=U,_. (6.14)

We conclude that U_, and U,_ are H.S.

(B. fermions): Let {f,}f, and {g,}¥, be orthonormal
(0.n.) bases for KerU¥,, resp. KerU*.. Let {f;};.; 41
and {g,};. 4.4 be o.n. bases for RanU,,, resp. RanU__.
Then {f;}7., and {g,}}., obviously are o.n. bases for /4,
resp. /.. We now introduce an o. n. basis for Fa by
setting

¢P1,n2....;71,1'2---= I a*(f,)! _;I31 b*(g,) 7,

(6.15)
i=1
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where

pi)szoy 1, iEi P‘+121 TI<°°' (6'16)
Then
Q= 2 arl....:1'1,...¢91,.,..:-r‘,...- (6.17)

F"n'rj
From (6.1) and (6.2) [cf. Sec. 5, esp. (5.1)],
a*(f)Q =b*(g,)Q’ =0, i=1,...,L, j=1,...,M.
(6.18)

Using (6. 17) one now concludes that L, M <« (this was
anticipated above for notational convenience) and that

L

M
24 p<L or 121 T<M=a, ... =0 (6.19)
Thus,
PmrQI =0 VY nu<L Vy<M, (6.20)
L M —
phi¥gr=g {1‘11 a*(f,) jni b*(g,) @, (6.21)
PIbigr= 35 2 vua*(f)b*(g) PLver.
k=L+] 1=M+1
(6.22)

From PI"¥7q!(£) Q' =0 (n,v = 0) it follows that

a(U,, f) PLemlirgr— b*(m) pLmisr-qer (5. 23)

Using (6. 19) one easily concludes that (6.23) implies:
If pLsm¥r=10r =0 then PL*hi+7Q! =0, Hence, from
(6. 20),

Pl 0 Y>>0 YVE=0. (6.24)
Analogously,
PL+I,M+r+IQI=0 V>0 VI1=0, (6.25)

We therefore must have g#0 in (6.21).

Defining a H.S. operator Hz: RanU__—~RanlU,, by

© o0

Heg= 2 2 fiYulg Q)

R=L+1 I=M+

one infers from (6. 21) and (6. 22), using P ¥ 4'(5) Q’
=0, resp. PL*U¥p/(2) Q' =0,

H’I.f‘ U++f=— U—+f v fE (KerU-n) L,
HpU._g=U._g

(6.26)

(6.27)
(6.28)

Thus, U_, and U,_are direct sums of a H.S. operator
and a finite-rank operator. Therefore, U_, and U, _
are H.S. =

v g< (KerlU_)*.

We finally make some remarks about unbounded
pseudo-unitary operators. It seems reasonable to
require that (2.11) hold on a dense subspace M belong-
ing to the domains of U and U* and invariant under
P,,Uand U*. If U,_and U_, are H.S. one concludes
from (2.15), which holds on M, and from the relation

(U, M* D U* . I M, (6.29)

which follows from our assumptions, that U must be
bounded.

On the other hand, if the conditions of Theorem 6.1
are met (for any f,g< M), one is again led to (6.13) and
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(6. 14) which now hold on M [use (2.15) and (6. 29) to es-
tablish that Ran(U,, } M) and Ran(U__I' M) are dense in
/., resp. /). Now from (6.29) and (2.15) it follows
that A=U__MM has a bounded inverse A™! and that
AV A =1 _pgXH, (6.30)

on U__M, where (6.14) has been used. In virtue of the
relation A-*=A- it follows from (6.30) that

A*1A1-1__-HiH, (6.31)
on /.. Since Hy is compact,
latg| zelgl, e>0 vecu_m. (6.32)

Thus, U_IM is bounded. Similarly, U, M is bounded,
so U must be bounded. We conclude that unbounded
pseudo-unitary operators (as defined above) cannot give
rise to implementable Bogoliubov transformations,
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The singular coupling and weak coupling limits
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We show that the analysis of the motion of a system coupled to an infinite reservoir in the singular
coupling limit and the weak coupling limit can be performed in the same mathematical framework. This
enables us to clarify the way in which the motion of the system in the singular coupling limit depends on

the temperature of the reservoir.

1. INTRODUCTION

Open quantum mechanical systems have recently
been studied to provide some understanding of irrevers-
ible behavior in quantum statistical mechanics and in
certain limiting situations it has been possible to prove
rigorously that the time evolution of an open system
obeys a semigroup law.*~? It seems that two distinct
limiting procedures are possible, the weak coupling
limit, !* and the singular coupling limit, 2:3

In this paper we show that the two limits are mathe-
matically very similar and that the distinction depends
on which of two possible time scales is regarded as
natural or “physical”. We describe a simple singular
coupling model and show how by suitable rescaling it
may be considered as a weak coupling model. By apply-
ing the general theory of Ref, 1 to this case, we con-
sider how the evolution of a system coupled to a heat
bath depends on the temperature in the singular coupling
limit.

2. THE SINGULAR COUPLING MODEL

We describe a model of 2 system coupled to a heat
bath of fermions, which is essentially that used by
Hepp and Lieb,? and Gorini and Kossakowski., 3

The system is described by a Hilbert space // ;¢ with
free Hamiltonian Hg. The heat bath is described by a
quasifree representation of the CAR with an infinite
number of degrees of freedom. To be specific we take
the single particle space [/ to be either L*(R, dw) or
L3((0, <), dw), where dw is Lebesgue measure. The
single particle free evolution is given by

frlw)=expon)flv), fel/. 2.1)

For each f~ |/ we have a bounded operator ¢“(f) on a
space #/; satisfying the CAR

o“(N)o“(g) + 0 ()o“(f) =2Re(f, ) @.2)

There is a cyclic vector Q in //; and a Hamiltonian H§
on /{5 such that

HeQ=0 2.3)

exp(tHET) 9 (flexp(— iHET) = ().

The representation is determined by its two point
correlation functions. For a bath at inverse temperature
B and chemical potential yu we knowS5:8

(@, 9°(No“ ()

=(f, g) - 2¢ Im(f, {1 +exp[B(w - W)} g),

2.4)

(2.5)
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where

Qf (w) = wf(w). (2.6)

The Hilbert space of the composite system is

H="Hs®Hsg 2.7
and the full Hamiltonian is

H,=Hs®1+1®HZ +H,, (2.8)
where

H =Q®¢“(f). 2.9)

Here ¢ is an arbitrary bounded self-adjoint operator on
7L/S, fc Vw’ and
SHw) =f(\Pw). 2.10)

With the correct choice of f, 3, u the time correlation
function

(De(fNO (s, u 2.11)
can be shown to become a § function in the limit A — 0,
This is the “singular coupling limit, ” and in this limit
we may expect the states of the system to obey a
Markovian time evolution, 2:3

3. THE EQUIVALENT WEAK COUPLING PROBLEM

We call 7 the “slow” time and define a rescaled
“fast” time ¢ by

Mt=1. (3.1)
We also rescale the underlying variable w by
w=\w (3.2)

and let [/¥ be L3R, dw) or L%((0, <), dw) according to the
choice of [/* made in Sec. 2.

The unitary dilation

f=A7 (3.3)
gives a unitary map
U/ =e. (3.4)

Using U, and ¢“ we can construct a representation of
the CAR over [/¥ on the same space HB, and then con-
struct a free bath Hamiltonian H} from the single
particle evolution

fi(w) = expiwt)f(w). (3.5)

The correspondence between the singular coupling
problem and the weak coupling problem is contained in
the following rather easy theorem.
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Theorem 3.1: With the above notation let H¥be the
singular coupling Hamiltonian

HP=H ®1+13HE+QD0“(f,) (3.8)
and HY be the weak coupling Hamiltonian
HY=3H 31 +13HY + QD %(f). 3.7
Then
exp(iHYT) = exp ((HYE). (3.8)
Proof: Since exp(iwT) =exp(iwt) it follows that
exp(iHgT) = exp(iH%t), (3.9)

¢¥, ¢¥ satisfy their respective forms of the CAR so
that

Ape(f)=o*(f) (3.10)
and Eq. (3.8) follows from the fact that =%,
If 5¢ is the temperature of the bath in the initial
problem, when we rescale we must ensure that
BU(Hg —pu®) = B¥(HE - u*), (3.11)

where $“ is the temperature of the rescaled problem
and n“, p¥ are the initial and rescaled chemical poten-
tials, respectively.

Since
HY =X?H¢ (3.12)
then we must have
BY=N"2B%, pv=xuc, (3.13)

Thus we must in general allow a temperature rescaling,
except when ¥ =0 (infinite temperature limit) or 1/8%
=0 (zero temperature).

In order to compare these two limits we extend the
results of Ref. 1. First, for pe 7(# ), the space of
trace class operators on/ g, let

p(B) =ty {exp(-iHN (3| Q)XQ|)expHyn}  (3.14)
and let
h).(t)=<n: ¢w(ft)¢w(f)g>s,u’ (3.15)

where we allow 8, n and hence h, to depend on A.

Theovem 3. 2: Suppose that Hg is bounded. Suppose
also that for some g{#), £=0, €>0,

|m ()< g®) t=0 (3.16)
and

fo"’g(t)(l +1)edt <o, (3.17)
If 1, () — h(f) pointwise for ¢= O then for all 7,20

lim Msllxngo{llp»(t) - || 1=0, (3.18)
where

U, =exp((Z + K)\*t]. (3.19)
Here

Z(p)=-ilHg,p] (3.20)
and

K(p) =~ cQQp + cQpQ + cQpQ - cpQY (3.21)
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where
c=fo°“ R(2) dt. (3.22)

Proof: This theorem may be proved by the method of
Ref. 1, Theorems (3.1)—(3.5) with the following
modifications’:

(1) We require Hg bounded so that

lim || exp(iX2H 1) - 1||=0. (3.23)
A0

(ii) The interaction is linear rather than quadratic in
the field operators. This only makes the proof easier,

(iii) The system evolution is A dependent. We note
that in Ref, 1 all terms arising are eventually written
as a sum of tensor products and simple norm estimates
made on the system variables. This A dependence dis-
appears at this stage.

(iv) The error estimates eventually involve multiple
integrals of »,. We may compute these estimates uni-
formly in X using g(¢)

V) ¢= jo°° () di — ¢

by dominated convergence theorem,

3.24)

Remarks: (i) This theorem holds for a general Hf,
not just the specific one we have discussed.

(ii) This result holds for systems linearly coupled to
Boson heat baths. The proof may be on the lines above,
though the usual difficulties with unbounded field opera-
tors arise. See also Ref. 4.

(iii) In the limit » — 0, the spectrum of »*H is {0} and
K does not depend on Hg, We contrast this with the
result of Ref. 1 for the weak coupling problem with

HY=H 21 +12HY +2Q® *(5). (3.25)

For this HY the properties of K depend strongly on Hj.

4. THE SINGULAR COUPLING LIMIT

We use the general theory of Sec., 3 to study the
dynamics of the system of Sec. 2 in the singular coupling
limit.

In the case of the vacuum £, () is independent of A,

NG =f_: exp(— iwt) [ f(w) |2 dw. 4.1
If
o=/ " h(t)at @.2)
then
2Re c=f:o f;_wexp(— iwt) | fw) |2 dw
+f:o fu:mexp(iwt) |f(w) |2 dw
=f:_wf_°: exp(— iwt) | f(w) |2 dw
=27|£(0)|?, 4.3)
so that if f(0)=0, c is imaginary
c=id, de R, 4.4)
and
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K(p) = - idQQp - idQpQ + idQpQ +idpQQ

= - id[@?, p). 4.5)

The condition (3.20) is satisfied if | f(w)|? has a con-
tinuous (1 + €)th derivative which is integrable. Cer-
tainly it is enough-that fis twice continuously differen-
tiable and f', f" = L?, However in the semibounded case
we also require that at least

FO)=f'(0)=0. 4.6)

Thus we obtain dissipative behavior only in the un-
physical case where the bath spectrum is unbounded
below. In the semibounded case K only gives a shift of
energy levels.

In the infinite temperature limit =0 and

m()=1% | " exp(- iwt)g(w) dw, @.7)
where
glw) = f(w) |2 +| f= w)|2. 4.8)

Clearly the nonsemibounded and semibounded cases are
essentially the same since if suppf< (0, <) we may use
(1/V2)f (1 w!) instead of f.
Imc=0, since g is even and
c=m|f0)|? 4.9)
so
K(p) == cQQp +2cQpQ - cpQQ. (4.10)

This generates a Gaussian semigroup and the limiting
evolution is dissipative.

When g¥=8, p“=yu with 8, 1 constants and >0 then
we must rescale the temperatures 8%, and chemical
potential p* by

BY=8/22, u¥=»%y, (4.11)
Now ‘
()= ) | fw) | (4.12)

o 1eXp[A2B(w - Z)[+ 1]

exp(~iwt) | f (w)i?

* Texpl- 2 2Blw— e[+ 1}
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Since fe L? the dominated convergence theorem shows
that

I8 = 1) = [ ° expiwt)| fw) |2 dw

+ [ exp(= iwt) | f(w) | dw. (4.13)

The condition (3.16) is satisfied if the integrands of
Eq. (4.12) have (1 +¢)th derivatives with uniform L?
bound. By inspection we require at least that

F0)=s'(0)=0. 4.14)

As was the case with the vacuum, K therefore only
gives a shift of energy levels, Note also that K does not
depend on B.

Davies® has shown that where it is not true that
f(0)=7'(0)=0 we may expect non-Markovian behavior.
This provides some illumination on the analysis of
Frigerio and Gorini® who discovered non-Markovian
behavior for the particular test function f(w) =exp(- u?)
at finite nonzero temperatures.
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A prolongation structure is determined for a single equation from which the Korteweg~de Vries and all of
its higher order forms can be derived. As result, inverse scattering problems for all of the equations are

determined simultaneously.

1. INTRODUCTION
It is well known that the Korteweg—deVries equation
1.1)

owes many of its remarkable properties to the fact that
it admits a Lax representation! in the form

ut = uxxx + 6uux

L=|B,, L], (1.2)
where the differential operators L and B, are given by
& d d d
L—W+u and Bz—4d3+3( dx“'a-u . (1.3)

One of the most interesting features of the Korteweg—
de Vries equation (1.1) is that is posses an infinite
number of conservation laws? of the form

I(w)= j_: P(u,...,u"™)dx, (1.4)

where B,(u,...,u"™) is a polynomial in the first n +1
space derivatives of u, u*, 2, ..., u'™.

Lax and Gardner!'? have shown that each of the known
polynomial integrals [, (x) determines an equation

d { 8l
= dx <6u(x)> (1.5)
admitting a Lax representation
L=1B,, L], (1.6)

where the B, are skew symmetric differential operators
of order (2n +1). The first three of the conserved quan-
tities are given by

L= ] 2 dx, 1.7

L=/ ") +u)ax, (1.8)

L= [ 7 3l0a,)? + 5o, +5ut dx, (1.9)
and by Eq. (1.5) they give rise to the equations

uy =4u,, (1.10)

=u,,, +6uu, (1.11)

Uy = Gty + DUty + Bttt + 208 (1.12)

Equation (1.12) and the equations which result from
I,, n= 3 are known as the higher order Korteweg—de
Vries equations. In the following section we will show
how all of these equations can be determined from the
single equation

u,=3C_, +2C, (u=-2) +2,C

XXX

(1.13)
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which we will refer to as the generating equation.
Equation (1.13) has previously been discussed by
Gardner, Green, and Miura, 3

In Sec. 3 we will determine a prolongation struc-
ture? for Eq. (1.13) and by so doing obtain simultan-
eously prolongation structures for all of the Korteweg—
de Vries equations. In Sec. 4 we construct one and two
dimensional representations of the prolongation struc-
ture and examine the resulting inverse scattering
problems that they lead to.

2. THE GENERATING EQUATION
The equation

3C,. +2C (u =) + Cu,=u, 2.1)

yields the Koretweg— de Vries equations in the follow-
ing way. If we suppose that u(x, t) is independent of X
and that C(«, 1) can be expressed as a polynomial of de-
gree n in X given by

oy R
Clu, )= 24 C;(u)A™, (2.2)
i=0
then Eq. (2.1) yields the following relationships:
3C, . +2C,u+Cu, =2C,,, i=1,...,n-1, (2.3)
3C e +2C 0 + Cout, =1y, (2.4)

Thus if we define the sequence of functions {C,}, by
the recurrence relation

3C, . +2C, u+Cu,=2C,, (2.5)
it is clear that we are considering the evolution
equations

u,=(2C,), n=1,2,...,%, 2.6)
If we choose
C, =4, 2.7

then the early members of the sequence {C,(u)}7, are
given by

Co=4, C,=2u, C,=3(u, +3u?

Cy= %uxxxx + guxxu + g(ux)z +3u’ (2.8)

which by (2.86) gives rise to the Egs. (1.10)—(1.12),
Clearly we must have

1061,

55l (2.9)

C,(u)=5
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and so the recurrence relation (2. 5) is capable of gen-
erating the polynomial conserved quantities {1,,},“,":1.

3. APROLONGATION STRUCTURE FOR THE
GENERATING EQUATION

If we define U=u -~ X then a set of forms equivalent
to the equation

3C,,, +2C.U+UC=U, (3.1
is given by
a,=dCAdt-Zdxndt, (3.2)
a,=dZAdt - Pdx A dt, (3.3)
a,=dUAdx +3dPAdi+UdCAdt+ CdUAdt
+ZUdx Adt. (3.4)
It may be easily checked that
da, = a, A dx, (3.5)
doy,=2a,A (dx + Cdt) - 2a,A (Udx), (3.6)
dag=a A (Zdf)~ ayA (Udx). (3.7
We seek a prolongation structure in the form
Q=d; +F(C,Z, P,U,0) dx +G(C, Z, P, U, £)dt  (3.8)
and by the standard procedure? we arrive at the
equations
oG oF oG oF
[F, G]_Z<a—c— U-(,}—U)+Pa—z- -ZUz3,
oG _ ., 8G oF
255=Ct =57 (3.9)
oF _9F _oF -0
aC 8z  aP
where [F, G] is the Lie bracket defined by
[F, Gl=(FG, - GF,). (3.10)
We can determine a solution to (3.9) with F and G
having the forms
F=X, +UX, (3.11)
G=3PX, + CUX, + ZX, + CX, + X,. (3.12)

The substitution of (3.11) and (3.12) into (3.9) yields
the Lie bracket relations

x,, x%,]=2x,, [x,x]=0, [x,x,]=X,,

[Xzy Xs] ==X, [Xz, X4] =-2X,, [Xs, X1] =0, (3.13)
[X,, X,]=0.

The Jacobi identity supplies the bracket relations
[XS’X4]="X4, [Xsa X3]=0, [X5, X4]:0, (3. 14)

which completes the algebraic relations (3. 13) into the
Lie algebra
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[Xl,Xz]'—"ZXS, [Xqu]=X4, [X1:X4]=0s [Xqu]:O,

[Xza Xs]:—Xz, [X2,X4]: ~2X,, [XZ,X5]=0,
(3.15)
[Xax X4] ==X, [X3, Xs] =0,

[x,, X,]=0.

Examining this Lie algebra we see that we can consis-
tently make the identification,

X, =X, (3.16)
which simplifies the algebra to

[XL,X2]22X3’ [Xqu]:Xn [erxa]:"‘Xz , (3.17)

[x;,X;]=0, i=1,2,3, (3.18)

There are two simple representations of the algebra
(3.17) and (3. 18) which prove useful and we construct
these in the following section.

4. REPRESENTATIONS OF THE PROLONGATION
STRUCTURE

(a) A one-dimensional representation of the Lie alge-
bra (3.17)—(3. 18) is given by

4 0

55, X2:%7 (4.1)

Xlqu2 Xy=-9¢

9
oo’
X,=0.

The resulting one-dimensional prolongation structure
is given by
Q=do +(U+¢2)dx +[(3P+Cu) + Co? - Zo]dt. (4.2)

Sectioning onto a solution manifold of Eq. (3.1) gives
the inverse scattering problem

¢, =-U—¢? (4.3)

¢, =~ (ZP+CUY+Zd - Co?. 4. 4)

(b) A two-dimensional representation is given by
X, == gzbu X, = gzbz,
Xy=3(8'0, - £2b,), X;=p(L'b, +£2by),

(4.5)

where b, =3/9¢" and u is completely arbitrary and may
be a function of A, This representation gives rise to the
prolongation structure

Q@ =det - Pax+[(GZ+p)et - cflat

(4.6)
P =de* +pr Uvdx +[(zP+COVE +(u - 32)¢%] at.
The related inverse scattering problem is given by
01
&= ¢,
-U 0
4.7
—Gz+w,  C @7
¢ = T.
—%P“ CU’ (%Z— IJ')

In terms of u=U+2x and ¢* Egs. (4.7) become
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L Hut* =2E,
(4.8)
G-Cll+3Z =pgt.
It is clear that the inverse scattering problems for the

various higher order Korteweg—de Vries equations are
given by

1 —
%X + ucl "‘Kél,

(4.9)
£ = C e + 300 )t = et
where
C (@)= 23 Cmt, (4.10)
i=0

For example if n=2, we have shown that the equation

ut = %ux”u + 5uxuxx + %uxxxu +12§u2ux (4- 11)
has the inverse scattering formulation
gL Fugt=xgt
g — 422 +2un + 3(p + 3d)]22
+|Gu+nz+ir-plet=0, (4.12)
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where z=u,, p=u,, ¥=1l,.

If we note that as well as u— 0 we have C™ — 42" when
x—+o we can solve the relevant Gelfand—Levitan equa-
tions for the general inverse scattering problem (4. 9)
and easily obtain the general result

ulx, ) =2a?sech®(ax +4a®t +35) 4.13)

for the single soliton solution of the »th order
Korteweg—de Vries equation, The multisoliton solutions
may also be constructed in general for any order
equation,

1p.D. Lax, Commun. Pure Appl. Math. 21, 467—490
(1968).

2C, Gardner, H. Kruskal, and R. Muira, J. Math. Phys, 9,
1202—09 (1968).

3C, Gardner, J. Green, M. Kruskal, and R. Miura,
Commun. Pure Appl. Math, 27, 97 (1974). The author
wishes to thank the referee for bringing this important re-
ference to his attention,

%9, D. Wahlquist and F. B. Estabrook, J. Math, Phys, 186,
1—7 (1974),
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A prolongation structure for the AKNS system and its

generalization

H. C. Morris

School of Mathematics, Trinity College, Dublin 2, Ireland
(Received 17 May 1976)

A prolongation structure is determined for the AKNS system of equations. Using an interpretation in
terms of Cartan—Ehresmann connections, a generalization is then constructed which leads to an inverse
scattering problem for the multicomponent nonlinear Schrodinger equation iq,, = (1/2)qayx + 9a(25 - 1lgg®

(a=1,.,n).

1. INTRODUCTION

Ablowitz, Kaup, Segur, and Newell! have shown that
the equations

A,=qC - ¥B, (1.1
D,=vB-gqC, (1.2)
g =B, +(A—D)g T+ 2\Bi, (1.3)
7, =C,+ (D= A)r-22Ci, (1.4)

can yield most of the special equations such as the
Korteweg—de Vries equation, the nonlinear Schrodinger
equation, and the sine Gordon equation which have been
solved by the inverse scattering method. We will refer
to this system as the AKNS system. In this paper we
will determine the prologation structure of these equa-
tions and also the prolongation structure of a multi-
component form of these equations. We do not make the
conventional identification of D with — A until it is con-
venient to do so as the identification fails to hold in the
generalized form of the equations that we will later de-
termine. The plan of the work is as follows: In the fol-
lowing section we will establish a closed set of forms
equivalent to (1.1)—(1.4) and determine a prolongation
structure for that ideal of forms. We then look at a re-
cent interpretation®? of such a structure in terms of
Cartan—Ehresmann connections and in Sec. 3 determine
from such a connection a generalized form of the AKNS
system. The most important physical equation associat-
ed with this new system is the two-component nonlinear
Schrédinger equation previously considered by Manakov.*
Finally in Sec. 4 we generalize to the n-dimensional
case and determine an inverse scattering problem for
the multicomponent nonlinear Schrodinger equation.

2. THE AKNS SYSTEM

The forms
ay=dANdt+ (rB-qgC)dxn dt, (2.1)
a,=dBA dt+dgA dx+[2iB+(A-D)qldcnrdt, (2.2)
a,=dCA dt +drA dx~[2iC+(A-D)v]dxn dt, (2.3)
o, =dDA dt +(gC - vB) dx A dt, (2.4

form a closed ideal which is equivalent to the AKNS
system (1.1)—(1.4). I, following the normal proce-
dure,® we seek a prolongation structure in the form
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Q=d¢+F(A,B,C,D,r,q, {)dx

+G(A’ B’ C, D? V, q! g) dt (2’5)

we find that we can choose F and G in the forms
F=uxy +x,qtx7 (2.8)
G=x,+ Bx, t Cx, T Ax, T Dx,. (2.7

These objects must satisfy the equation

oG oG

= _ — - MB+ - —

[F, 6]= - B 4€) 35 — [22iB + (4 - D)g) | 50

, 9G oG

T[ZACZT(A-D)V]E—C——((]C—VB)EI—) (2.8)

and their substitution into (2. 8) gives rise to the bracket
relations

[xa,x2]=x6—x4, [xa, x4]=x3,

[xy, %)== 20x,8, [xg, x5]= = 53,

205, %] = = x,, [x1, x4]=0, (2.9
ENENEEM [x1, xs]=0,

[xy, %)= 2Xx;,  [x;,x%5]=0 for i=1,2,3.

The Jacobi identity yields all the additional relations to
complete the algebraic structure (2. 9) into the Lie
algebra

[xy, x,)= = 2idx,, [xy,x,]=2i0xy, [y, %,]=0,

I

%]
[xn Xs] 0, [xa, X3]: (x4 = %), [xz’ x4]: =X
%]
]

(x5, Xgl =5, [x5, %, ]=x,, [x5, x5]=~ x,, (2.10)
[y, %51=0, [x;5,x;,]=0Vi
If we define
Yy=3(xy = %), Y,=3(x,+xp),
Yy =x,, Y=y —iMxg—x,), (2.11)
Y =xs, Y, =xs,
the Lie algebra (2. 10) takes the form
(Yo, =Yy, (Yo Y4l=-Y,, [1,v,]=2v,
(2.12)
[Y,,Y,]=0 (@=2,3,4) (i=21,0), (2.13)

The semisimple component (2. 12) is the Lie algebra
s1(2, R). A one-dimensional representation of sl(2, R)
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is given by

0

d a
Y —_ - = 2— Pt .
0 VB,V’ Yl v ayv Y-l ay (214)
This representation together with the trivial one-
dimensional representation of (2.13),
Y,=Y,=Y,=0, (2.15)

gives the representation of the Lie algebra (2.10) de-
fined by

X ==2ihy 3/3y, x,=y%3/3y, x3=-23/y,

(2.186)
X, == Xg=v3/3v, x,=0,
The resulting prolongation structure is given by
Q=dy - [r+2ixy = gy?]dx - [C - 24y — By?]dt, (2.17)

where we have now made the usual identification of D
with — A,

The variable ¥ is known as a pseudopential.® Hermann?
has recently suggested an interesting geometric inter-
pretation of the analagous result for the Korteweg—
de Vries equation in terms of a Cartan—Ehresmann con-
nection® with structure group SL(2, R). As the Korteweg—
de Vries equation is only one of the equations obtainable
from the AKNS equations it is of interest to see how his
interpretation is easily extended to that system.

A connection w is said to be associated with a differ-
ential equation if its connection forms 6 generate the
ideal / which define the differential equation. For the
AKNS system (2.1)—(2.3) with D=~ A the quadratic
connection

w=wy Wy T wyy? (2.18)
where

w,=7rdxtCdt, (2.19)

w; = 2(ixdy ~ A dt), (2.20

w,= = (gdx +Bdt), (2.21)
gives rise to the curvature forms

6, =dw, T 2wiA wy= = ay, (2.22)

By = dw, = Wy A Wy = = (2.23)

fp=dw,+ w A w; = a, (2. 24)

and so are clearly associated with the ideal (2.1)—(2.3)
with D=-A,

The two-dimensional representation of the algebra
given by

Y, =5(8%,~ £y, Yi=-8%,, Yo =-0b, (2.25)

gives rise to the following representation of the algebra
(2.10):

*1 :i)\(glbl = §2b2)’ Xpg=— gzbl, Xy=— gle’
4T = £y, x5=u(E'by +£20,), where K is arbitrary,
Xg=—= L2D,.

This representation gives rise to the normal inverse
scattering problem of AKNS! and Zakharov and Shabat.®
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We note that for any given equation such as the
Korteweg—de Vries equation a much larger prolongation
structure may exist. This is well demonstrated by the
results of Wahlquist and Estabrook, ® and will also be
apparent from the following section.

3. GENERALIZING THE AKNS SYSTEM BY AN
SL (3, R) CONNECTION

The two 1-forms

Wh=wht el T eiy® +wp () F20h0, (3.1)
W= Wit of iyt el y® Tl ()7 T 20d e, (3.2)
where
wi=(rdx +Cdt), wi=(sdx+Fdt), (3.3
Wy =2Adx - (A=D)dt, wi,=Gdt, (3.9
Wi =Hdl, w},=2ixdx~(A=1dt, (3.5)
Wiy =+ 208 ,=~ (gdx + Bdb), (3.6)
T2wh = wh,=— (pdx+Edl), (3.7

define a Cartan—Ehresmann connection® with structure
group SL(3, R) which clearly generalizes that defined
in equations (2.18)—(2. 21).

The curvature 2-forms of this connection generate an
ideal spanned by the nine 2-forms

ay=dAndT +{(yB~qc) + (pF - Es)|dx A dt, (3.8)
a,=dBA dg A dx +[2)B+(A - D)q - pH]dx A dt, (3.9)
a,=dC A dt +dva dx +[-2MC (D= Ayr tsGldxn dl,

(3.10)
a,=dDA dt + (gC - vB) dx A dt, (3.11)
a;=dEA dt +dp A dx+[2ME T (A -Dp — qGldxn dl,

(3.12)
ag=dF A df +dsA dx+[=2MF v (I-A)s T vH)dx A di,

(3.13)
a,=dGA dt + (pC — vE)dx A dt, (3.14)
ag=dHA dt + (qF — sB)dx A dt, (3. 15)
ag=dIA dt + (Fp - sE)dxA dt, (3.16)

The most interesting new equation of this extended sys-

tem is the two-component nonlinear Schrodinger equation
iq,= 3qx T allq|2* [p1?),
. 3.17
o= th 0l * [p]2). (3.19

This is obtained from expanding the A, B,C, D, E, F, G,
H,I as quadratic series in A, The exact expressions
which give rise to (3.17) are

1 s 2 . 1
= -+ 2 =—4fH -
A=zl +p|?) T2, BE=gp.~ 2,
B:lq - N F:lp*-k)\p*
Zi x b ZZ' X 3
1 i (3.18)
—_— gk + % = - *
C zqu >‘(] s G 21([1 p)v
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—_Ly e =_ 1
D__Zilq\’ H—_Zl(P q)}

Y
I_—lepl .

The prolongation structure for the system (3. 8)—(3. 16)
has the form

Q=dt+L{p,q,7,s,L)dx+M(A,B,C,D,¢t)dt, (3.19)
with L and M having the forms
L=x, tx,g txgv T 5,0 T 248 (8.20)
M=x;+Bx, TCxy *Ax, * Dxg+ Ex, + Fxg +Gx,
+ Hxyy + Ixy,. (3.21)

The x, satisfy the Lie algebra SL(3, R) and the repres-
entation is given by

Xy =- Zix(ylbl +y2bz), Xy = ((yl)zbl +y‘y2b2)
Xg==by, x,=(¥'b; +9%b,), x;=0,
xﬁz—ylbl» x7=(1’1y2b1 +(y2)zb2), xsz—bz,

Xg==— ¥2by, %= =31by, X == yPb,,

(3.22)

where b;=23/3y" and £= (3!, »?).

Changing to projective coordinates £2/¢' =4, ¢3/¢
=y? yields the linear three-dimensional representation

Xy =MLy - 83, ~ £30,), xp=— £%b,,
Xy = = Ehy, Xy = £y, %,=0, x4== %Dy, (3.23)
K== 03y, Xg=— by, xg=- %,
X< - gzbs, Xy == 8%,
The prolongation structure which results for the two-
component nonlinear Schrodinger equation is given by
Q =dit - (= ingt + gL T pL) dx
—[lql?+ |pl2/2i T 208! + (q,/2i - Ag) &

+ (q,/2i - )31 dt, (3.24)
Q2=dL ~ (N + vl dx = | (gF/2 T \g¥) 8!

—% [q]? &+ (—%(q*p)) c"’]dt, (3. 25)
B=dgd - (I +sEt)dx = [(p:;/Zi T ap*) ¢!

—%(p*q)c“‘(—%\p]a)cs]dt. (3.26)

The equations
Ge@ogi=o

yield the inverse scattering problem previously deter-
mined by Manakov.* The linear operator involved is

9/3x b q
L% » ~3/ax 0 {3.27)
s 0 - 9/3x

and the scattering theory of this operator has been an-
alysed by both Manakov* and Date.’
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4. THE GENERAL CASE OF SL{n, R) AND THE
MULTICOMPONENT NONLINEAR
SCHRODINGER EQUATION

The extension to # dimensions is easily established.
The quadratic connection forms

W= wf +of gy T Wiy, (4.1)
where

W= (" dx +C* dt), (4.2)

Wi g = (26105 dx +(ASy - Dg) dt), (4.3)

‘Ugﬂr:—%[(%ég +q,85) dx + (B8 +B,8&) dt], 4.4

define a Cartan—Ehresmann connection with structure
group SL(n, R) which generalizes those previously
considered.

The curvature forms determine an ideal spanned by
the #% 2-forms

o, =dA A dt + (¥ B, ~ q,C*) dx A dt, (4.5)
Qo =dBy A dt +dqy A dx +[2iXB, T (A8 - DB)q,]

Xdx A dt, (4.6)
of =dC* A di +dv* A dx = [+ 2ixC*

+(ASE - D)¥E]dxn dt, 4.7
o p=dD% A dt +(C%qy — v* By) dx A dt, (4.8)

and the corresponding prolongation structure is defined
by

Q¥ =dy® - w*. 4.9
The choice
A=22— o(g %), (4.10)
B=(1 Agq (4.11)
- 21 Gux =~ af °
o 1
C =57t W), (4.12)
- 1
Y s:(Van)‘z‘?, (4.13)
gives rise to the equations
iqcxt:%q«xx‘ ((]a(]ﬂyﬁ)’ (4. 14)
Firt, == 5 (). (4. 15)

If ¥*= - ¢* these equations reduce to the single equation

Gat = 5ure + 0o (Z; quiz) (4.16)
Y=

which we refer to as the multicomponent nonlinear
Schrddinger equation. The inverse scattering problem
which results from the prolongation structure (4.9) by
changing to projective coordinates is given by

{4.17)
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Equation (4. 16) has the internal symmetry group U(n).

Other multiple component analogs of the standard
equations of the AKNS system may also be obtained. For
example, one can easily determine from a cubic ex-
pansion in A an inverse scattering problem for the
equation

qag+<qaxxi2 <Z,q$)qa)x:0 (azl, ...,12), (419)
K

which is a multicomponent form of the modified
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